
Springer Nature 2021 LATEX template

Well-posedness for multi-point BVPs for

fractional differential equations with

Riesz-Caputo derivative

Mi Zhou

School of Mathematics and Physics, University of South China,
Hengyang, 421001, People’s Republic of China.

Contributing authors: mzhou@usc.edu.cn;

Abstract

In this work, a class of nonlinear multi-point boundary value prob-
lems (BVPs) in the context of fractional differential equations involv-
ing the Riesz-Caputo derivative is proposed. The nonlinearity term
f involves the left Caputo derivative. Under given some condi-
tions, the existence and uniqueness of the solution are provided.
Though we apply the standard tools of the fixed point theory to
develop the existence and uniqueness criteria for the solutions of
given problems, the obtained results are new in the given scenario.
Finally, some examples are given to illustrate our main results.
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1 Introduction

In this paper, we investigate the existence and uniqueness of solutions to the
following boundary value problems (BVPs) of fractional differential equations
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2 Well-posedness for multi-point BVPs for fractional differential

involving the Riesz-Caputo derivative and multi-point boundary conditions:

RC
0 Dα

1 ω(τ) = f(τ, ω(τ),C0 D
β
τ ω(τ)),

ω(0) = 0, ω(1) =

m∑
i=1

βiω(ξi),
(1)

where 1 < α ≤ 2, 0 < β ≤ 1, βi > 0, 0 < ξ1 < ξ2 < · · · < ξm < 1, 0 ≤ τ ≤ 1,
RC
0 Dα

1 is a Riesz-Caputo derivative, C0 D
β
τ is the left Caputo derivative of order

β and f ∈ C([0, 1] × R2,R). βi and ξi(i = 1, 2, ...m) satisfying the following
condition:

4 :=

m∑
i=1

βiξ
α−1
i < 1.

In recent years, with the development of science and technology, there are lots
of works devoted to the study of fractional differential equations, see [1–4]
and the references therein. Fractional differential equations with Riesz-Caputo
derivative have been of great interest in recent years. This is because of both the
intensive development of the theory of Riesz derivative itself and the applica-
tions of such construction in various scientific fields. There are a few papers to
study that the fractional differential equations problems with the Riesz-Caputo
derivative[5–10, 12, 13]. By means of new fractional Gronwall inequalities and
some fixed point theorems, Chen et al. [8] studied the existence of solutions
for the two-point BVPs involving the Riesz-Caputo derivative given by

RC
0 Dα

Tω(τ) = f(τ, ω(τ)), τ ∈ [0, T ], α ∈ (0, 1],

ω(0) = ω0, ω(T ) = ωT ,

where RC
0 Dα

T is a Riesz-Caputo derivative. In [10], the authors studied the
existence of positive for the above BVPs by using Leray-Schauder theorem
and Krasonselskii’s fixed point theorem in a cone, where T = 1. In [7], by
employing new fractional Gronwall inequalities and some fixed point theorems,
the authors investigated the existence results of solutions for the two-point
anti-periodic BVPs involving the Riesz-Caputo derivative given by

RC
0 Dα

Tω(τ) = f(τ, ω(τ)), τ ∈ [0, T ], α ∈ (1, 2],

ω(0) + ω(T ) = 0, ω
′
(0) + ω

′
(T ) = 0,

where f : [0, T ]× R→ R is a continuous with respect to τ and ω.
In [14], by means of a fixed point theorem on a cone, the authors inves-

tigated the existence of positive solutions for the following singular fractional
BVP

Dα
0+ω(τ) + f(τ, ω(τ), Dβ

0+ω(τ)) = 0,

ω(0) = ω(1) = 0,
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where α ∈ (1, 2), α − β ≥ 1, f : [0, 1] × (0,+∞) × R → (0,+∞) satis-
fies Carathéodory type consitions. Here Dα

0+ denotes the Riemann-Liouville
fractional derivative, the nonlinear term f(τ, ω, ν) may be singular at ω = 0.

In [15], Zhang et. al. studied the following fractional differential equation

Dα
τ ω(τ) + f(τ, ω(τ), Dβ

τ ω(τ)) = 0,

Dβ
τ ω(0) = 0, Dβ

τ ω(1) =

∫ 1

0

g(ς)Dβ
τ ω(ς)dA(ς),

where Dα
τ is Riemann-Lioville’s fractional derivative, 0 < β ≤ 1 < α ≤ 2,

α − β > 1, A is a function of bounded variation and dA can be a signed
measure, f ∈ C((0, 1) × (0,+∞) × (0,+∞), (0,+∞)), and f(τ, ω, ν) may be
singular at both τ = 0, 1 and ω = ν = 0.

To the author’s knowledge, no one have considered the qualitative prop-
erties of solutions to multi-point BVPs of fractional differential equation
involving the Riesz-Caputo derivative. In this paper, the purpose of this study
is to establish some existence and uniqueness results for the problem (1)
by using Krasnoselskii’s fixed-point theorem, Schauder fixed point theorem,
Leray-Schauder’s degree theory and the Banach contraction principle. Though
the tools used in this paper are standard, their application in the framework of
the given problem is new. Furthermore, instead of f(τ, ω(τ)), we consider the
nonlinear term f(τ, ω(τ),C0 D

β
τ ω(τ)), which leads to extra difficulties. Finally,

the multi-point is involved in boundary conditions.
This paper is organized as follows. In Section 2, we introduce some basic

definitions and preliminaries results. In Section 3, we prove the main results
of this paper, which includes the existence and uniqueness of solutions to the
problem (1). Some examples are given in Section 4.

2 Preliminaries

In this section, we sum up some definitions, lemmas and preliminary facts will
be applied to this paper.

Definition 1 (see[11]) The fractional left, right and Riemann-Liouville fractional
integral of order n− 1 < α ≤ n are defined as

(0I
α
τ ω)(τ) =

1

Γ(α)

∫ τ

0
(τ − ς)α−1ω(ς)dς,

(τ I
α
Tω)(τ) =

1

Γ(α)

∫ T

τ
(ς − τ)α−1ω(ς)dς,

(0I
α
Tω)(τ) =

1

Γ(α)

∫ T

0
| τ − ς |α−1ω(ς)dς,

where n ∈ N, 0 ≤ τ ≤ T , Γ is the Euler gamma function defined by Γ(α) =∫+∞
0 τα−1e−τdτ .
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4 Well-posedness for multi-point BVPs for fractional differential

Definition 2 (see[11]) The classical Riesz-Caputo derivative of order α > 0 is given
by

RC
0 DαTω(τ) =

1

Γ(n− α)

∫ T

0

ω(n)(ς)

| τ − ς |α+1−n dς

=
1

2
(C0 D

α
τ + (−1)nCτ D

α
T )ω(τ), n ∈ N, 0 ≤ τ ≤ T,

where C
0 D

α
τ is the left hand side Caputo derivative, Cτ D

α
T is the right hand side

Caputo derivative, which are respectively given by

C
0 D

α
τ ω(τ) =

1

Γ(n− α)

∫ τ

0

ω(n)(ς)

(τ − ς)α+1−n dς, n ∈ N, 0 ≤ τ ≤ T,

C
τ D

α
Tω(τ) =

(−1)n

Γ(n− α)

∫ T

τ

ω(n)(ς)

(ς − τ)α+1−n dς, n ∈ N, 0 ≤ τ ≤ T.

In addition, if 1 < α ≤ 2 and ω(τ) ∈ ACn[0, T ], then

RC
0 DαTω(τ) =

1

2
(C0 D

α
τ − C

τ D
α
T )ω(τ).

Lemma 1 (see[11]) Let n− 1 < α ≤ n, n ∈ N, ω(τ) ∈ ACn[0, T ], then

0I
α
τ
C
0 D

α
τ ω(τ) = ω(τ)−

n−1∑
i=0

ω(i)(0)

i!
(τ − 0)i

and

τ I
α
T
C
τ D

α
Tω(τ) = (−1)n

(
ω(τ)−

n−1∑
i=0

(−1)iω(i)(T )

i!
(T − τ)i

)
.

Thus, we have

0I
α
T
RC
0 DαTω(τ) =

1

2
(0I

α
τ
C
0 D

α
τ + τ I

α
T
C
0 D

α
τ )ω(τ) + (−1)n

1

2
(0I

α
τ
C
τ D

α
T + τ I

α
T
C
τ D

α
T )ω(τ)

=
1

2
(0I

α
τ
C
0 D

α
τ + (−1)nτ I

α
T
C
τ D

α
T )ω(τ).

In addition, if 1 < α ≤ 2 and ω(τ) ∈ C1[0, T ], then

0I
α
T
RC
0 DαTω(τ) = ω(τ)− 1

2
(ω(0) + ω(T ))− 1

2
[ω
′
(0)τ − ω

′
(T )(T − τ)].

Lemma 2 Suppose that4 :=
∑m
i=1 βiξ

α−1
i < 1, βi > 0, 0 < ξ1 < ξ2 < · · · < ξm < 1,

1 < α ≤ 2, 0 ≤ τ ≤ 1, then for h ∈ L1[0, 1], the following BVP{
RC
0 Dα1 ω(τ) = h(τ), τ ∈ [0, 1],
ω(0) = 0, ω(1) =

∑m
i=1 βiω(ξi)

(2)

has a unique solution

ω(τ) =

∫ 1

0
G(τ, ς)h(ς)dς +

τ

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)h(s)dς,

where

G(τ, ς) = g(τ, ς)− 2τ(1− ς)α−1

(1−∆)Γ(α)
,

g(τ, ς) =
1

Γ(α)

[
(1− ς)α−1 − (α− 1)(1− ς)α−2(1− τ)+ | τ − ς |α−1 ].
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Proof From Lemma 1, we have

ω(τ) =
ω(0) + ω(1)

2
+
ω
′
(0)τ − ω

′
(1)(1− τ)

2
+

∫ τ

0

(τ − ς)α−1

Γ(α)
h(ς)dς

+

∫ 1

τ

(ς − τ)α−1

Γ(α)
h(ς)dς.

(3)

Furthermore, we have

ω
′
(τ) =

ω
′
(0) + ω

′
(1)

2
+

∫ τ

0

(τ − ς)α−2

Γ(α− 1)
h(ς)dς −

∫ 1

τ

(ς − τ)α−2

Γ(α− 1)
h(ς)dς. (4)

Using the boundary condition ω(0) = 0, (3) and (4), we have

1

2
ω(1) =

1

2
ω
′
(0) +

∫ 1

0

(1− ς)α−1

Γ(α)
h(ς)dς

1

2
ω
′
(1) =

1

2
ω
′
(0) +

∫ 1

0

(1− ς)α−2

Γ(α− 1)
h(ς)dς

ω(τ) =
1

2
ω(1) +

1

2
(ω
′
(0)τ − ω

′
(1)(1− τ)) +

∫ 1

0

|τ − ς|α−1

Γ(α)
h(ς)dς.

(5)

From (5), we have

ω(τ) =ω
′
(0)τ +

∫ 1

0

(1− ς)α−1

Γ(α)
h(ς)dς −

∫ 1

0

(1− ς)α−2(1− τ)

Γ(α− 1)
h(ς)dς

+

∫ τ

0

(τ − ς)α−1

Γ(α)
h(ς)dς +

∫ 1

τ

(ς − τ)α−1

Γ(α)
h(ς)dς

=ω
′
(0)τ +

∫ 1

0
g(τ, ς)h(ς)dς.

(6)

By ω(1) =
∑m
i=1 βiω(ξi), combining with (6), we obtain

ω
′
(0) =

1

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)h(s)dς −

∫ 1

0

2(1− ς)α−1

(1−∆)Γ(α)
h(ς)dς. (7)

Substituting (7) into (6), we obtain

ω(τ) =

∫ 1

0
G(τ, ς)h(ς)dς +

τ

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)h(s)dς.

The proof is completed. �

3 Main results

Let X = C([0, 1]) be a Banach space with the maximum norm ‖ω‖X =
maxτ∈[0,1] ‖ω(τ)‖, and the Banach space Y = {ω : ω ∈ C[0, 1], C

0 D
σ
τ ω ∈

C[0, 1], 0 < σ < 1} with the norm

‖ω‖Y = max
τ∈[0,1]

|ω(τ)|+ max
τ∈[0,1]

|C0 Dσ
τ ω(τ)|.

Denote

µ =

∣∣∣∣ ∫ 1

0

{
(1− ς)α−2

Γ(α− 1)
− 2(1− ς)α−1

(1−∆)Γ(α)

}
ϕ(ς)dς

∣∣∣∣+ max
τ∈[0,1]

∣∣∣∣ ∫ 1

0

| τ − ς |α−2

Γ(α− 1)
ϕ(ς)dς

∣∣∣∣,
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ν = max
τ∈[0,1]

∫ 1

0
| G(τ, ς)ϕ(ς) | dς +

Γ(2− β) + 1

(1−∆)Γ(2− β)

m∑
i=1

βi

∫ 1

0
| g(ξi, ς)ϕ(ς) | dς,

χ =
1

Γ(α+ 1)
+
|(1−∆)21−α + 2|
(1−∆)Γ(α+ 1)

+
1

Γ(2− β)

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
+ ρ.

where ρ is defined in (H4). In order to obtain our main results, we give some
conditions on the function f :

(H1) f : [0, 1]× R× R→ R is continuous;
(H2) There exists a nonnegative real valued function ϕ ∈ L[0, 1] such that

|f(τ, u, v)| ≤ ϕ(τ) + k1|u|+ k2|v|,

where k1, k2 ≥ 0 are constants and k1 + k2 < χ−1;
(H3) There exist two constants l1, l2 > 0 such that

|f(τ, u1, v1)− f(τ, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|

for all τ ∈ [0, 1] and all u1, u2, v1, v2 ∈ R;
(H4) The constant

ρ =
(1 + Γ(2− β))

(1−∆)Γ(α+ 1)Γ(2− β)

m∑
i=1

βi(|1− (1− ξi)α|+ ξαi + (1− ξi)α)

and l1 + l2 < ρ−1.

The BVPs (1) can be converted into a fixed point problem Tω = ω, where the
operator T : Y → Y is presented by

(Tω)(τ) =

∫ 1

0

G(τ, ς)f(ς, ω(ς),C0 D
β
τ ω(ς))dς

+
τ

1−∆

m∑
i=1

βi

∫ 1

0

g(ξi, ς)f(ς, ω(ς),C0 D
β
τ ω(ς))dς.

(8)

Now, we present the first result of this paper by applying Krasnoselskii
fixed point theorem.

Theorem 1 Suppose that (H1), (H2), (H3) and (H4) hold. Then the fractional BVP
(1) has at least one solution in Y .

Proof Consider a ball

Ωr1 := {ω ∈ Y : ‖ω‖Y ≤ r1, τ ∈ [0, 1]}.

where

r1 ≥
ν + 4µ(Γ(2− β))−1

1− (k1 + k2)χ
.
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Obviously, Ωr1 is a closed, convex and bounded set.
Next, we subdivided the operator T into two operator T1, T2 : Ωr1 → R as

follows:

(T1ω)(τ) =

∫ 1

0
G(τ, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))dς

(T2ω)(τ) =
τ

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))dς.

If ω ∈ Ωr1 , by the condition (H2), then we have that

0 ≤ |ω(τ)| ≤ max
τ∈[0,1]

|ω(τ)| ≤ ‖ω‖Y ≤ r1,

0 ≤ |C0 Dβτ ω(τ)| ≤ max
τ∈[0,1]

|C0 Dβτ ω(τ)| ≤ ‖ω‖Y ≤ r1.

Hence,
f(τ, ω(τ),C0 D

β
τ ω(τ)) ≤ ϕ(τ) + (k1 + k2)r1. (9)

The proof is divided into several steps.
Step 1. T1ω + T2ω ∈ Ωr1 . For any ω ∈ Ωr1 , we have from (9)

|(T1ω)(τ)| =
∣∣∣∣ ∫ 1

0
G(τ, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))dς

∣∣∣∣
≤
∫ 1

0
|G(τ, ς)ϕ(ς)|dς + (k1 + k2)r1

∣∣∣∣ ∫ 1

0
G(τ, ς)dς

∣∣∣∣.
For notational convenience, we denote by

0I
α
τ (1) =

∫ 1

0

(1− ς)α−1

Γ(α)
dς, 0I

α
1 (1) =

∫ 1

0

|τ − ς|α−1

Γ(α)
dς,

0I
α
τ (τ) =

∫ 1

0

τ(1− ς)α−1

Γ(α)
dς.

(10)

From (6)-(7), we have∣∣∣∣ ∫ 1

0
G(τ, ς)dς

∣∣∣∣ =

[
0I
α
τ (1)− (1− τ)0I

α−1
τ (1) + 0I

α
1 (1)− 2

1−∆
0I
α
τ (τ)

]
≤
[
|0Iατ (1)− (1− τ)0I

α−1
τ (1)|+ |0Iα1 (1)− 2

1−∆
0I
α
τ (τ)|

]
≤
∣∣∣∣ 1

Γ(α+ 1)
+
τ − 1

Γ(α)

∣∣∣∣+

∣∣∣∣τα + (1− τ)α

Γ(α+ 1)
+

2τ

(1−∆)Γ(α+ 1)

∣∣∣∣
≤ 1

Γ(α+ 1)
+

(1−∆)21−α + 2

(1−∆)Γ(α+ 1)
.

Thus,

|(T1ω)(τ)| ≤ max
τ∈[0,1]

∫ 1

0
|G(τ, ς)ϕ(ς)|dς+ (k1 +k2)r1

(
1

Γ(α+ 1)
+

(1−∆)21−α + 2

(1−∆)Γ(α+ 1)

)
.
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Furthermore, we have from (9)-(10)

|(T1ω)′(τ)|

=

∣∣∣∣− ∫ 1

0

2(1− ς)α−1

(1−∆)Γ(α)
f(ς, ω(ς),C0 D

β
τ ω(ς))dς +

∫ 1

0

(1− ς)α−2

Γ(α− 1)
f(ς, ω(ς),C0 D

β
τ ω(ς))

+

∫ τ

0

(τ − ς)α−2

Γ(α− 1)
f(ς, ω(ς),C0 D

β
τ ω(ς))−

∫ 1

τ

(ς − τ)α−2

Γ(α− 1)
f(ς, ω(ς),C0 D

β
τ ω(ς))

∣∣∣∣
≤
∣∣∣∣ ∫ 1

0

(1− ς)α−2

Γ(α− 1)
ϕ(ς)dς −

∫ 1

0

2(1− ς)α−1

(1−∆)Γ(α)
ϕ(ς)dς

∣∣∣∣+

∣∣∣∣ ∫ τ

0

(τ − ς)α−2

Γ(α− 1)
ϕ(ς)dς

+

∫ 1

τ

(ς − τ)α−2

Γ(α− 1)
ϕ(ς)dς

∣∣∣∣+ (k1 + k2)r1(|0Iα−1
τ (1)− 2

1−∆
0I
α
τ (1)|+ 0I

α−1
1 (1))

≤µ+ (k1 + k2)r1

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

1

Γ(α− 1)

(
τα−1

α
+

(1− τ)α−1

α

))
≤µ+ (k1 + k2)r1

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
,

where use the following inequality

0I
α−1
1 (1) =

∫ τ

0

(τ − ς)α−2

Γ(α− 1)
dς +

∫ 1

τ

(ς − τ)α−2

Γ(α− 1)
dς

=
1

Γ(α− 1)

(
τα−1

α
+

(1− τ)α−1

α

)
≤ 22−α

Γ(α+ 1)
.

Therefore, we know that

‖T1ω‖X ≤ max
τ∈[0,1]

∫ 1

0
|G(τ, ς)ϕ(ς)|dς + (k1 + k2)r1

×
(

1

Γ(α+ 1)
+

(1−∆)21−α + 2

(1−∆)Γ(α+ 1)

)
,

‖(T1ω)′‖X ≤µ+ (k1 + k2)r1

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
.

(11)
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Similarly, we have

|(T2ω)(τ)| =
∣∣∣∣ τ

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)f(ς, ω(ς),C0 Dβτ ω(ς))dς

∣∣∣∣
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
| g(ξi, ς)ϕ(ς) | dς

+
(k1 + k2)r1

1−∆

m∑
i=1

βi

∣∣∣∣ ∫ 1

0
g(ξi, ς)dς

∣∣∣∣
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)r1
1−∆

m∑
i=1

βi

[∣∣∣∣0Iατ (1)

−(1−ξi)0I
α−1
τ (1)

∣∣∣∣+∫ ξi

0

(ξi − ς)α−1

Γ(α)
dς+

∫ 1

ξi

(ς − ξi)α−1

Γ(α)
dς

]
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)r1
1−∆

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
,

where∣∣∣∣ ∫ 1

0
g(ξi, ς)dς

∣∣∣∣ =

∣∣∣∣0Iατ (1)−(1−ξi)0I
α−1
τ (1)+

∫ ξi

0

(ξi−ς)α−1

Γ(α)
dς+

∫ 1

ξi

(ς−ξi)α−1

Γ(α)
dς

∣∣∣∣
≤|0Iατ (1)−(1−ξi)0I

α−1
τ (1)|+

∫ ξi

0

(ξi−ς)α−1

Γ(α)
dς+

∫ 1

ξi

(ς−ξi)α−1

Γ(α)
dς

∣∣∣∣
≤|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α).

Furthermore,

|(T2ω)′(τ)| =
∣∣∣∣ 1

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))dς

∣∣∣∣
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς+ (k1 + k2)r1

1−∆

m∑
i=1

βi

∣∣∣∣ ∫ 1

0
g(ξi, ς)dς

∣∣∣∣
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)r1
1−∆

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
.
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10 Well-posedness for multi-point BVPs for fractional differential

Therefore, we know that

‖(T2ω)‖X ≤
1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)r1
1−∆

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
,

‖(T2ω)′‖X ≤
1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)r1
1−∆

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
.

Furthermore, from Definition 2, we have

|(C0 Dβτ T1ω)(τ)| ≤ 1

Γ(1− β)

∫ τ

0
(τ − ς)−β |(T1ω)′(ς)dς|

≤ ‖(T1ω)′‖X
Γ(2− β)

,

and

|(C0 Dβτ T2ω)(τ)| ≤ 1

Γ(1− β)

∫ τ

0
(τ − ς)−β |(T2ω)′(ς)dς|

≤ ‖(T2ω)′‖X
(1− β)Γ(1− β)

,

which means that

‖(C0 Dβτ T1ω)‖X ≤
‖(T1ω)′‖X
Γ(2− β)

, ‖(C0 Dβτ T2ω)‖X ≤
‖(T2ω)′‖X
Γ(2− β)

. (12)

Therefore,

‖Tω‖Y =‖Tω‖X + ‖C0 Dβτ Tω‖X
≤‖T1ω‖X + ‖T2ω‖X + ‖C0 Dβτ T1ω‖X + ‖C0 Dβτ T2ω‖X
≤ν +

µ

Γ(2− β)
+ (k1 + k2)r1χ

≤r1,

which yields that T1ω + T2ω ∈ Ωr1 .
Step 2. The operator T1 compact and continuous.
From condition (H1), the operator T1 is continuous. According to Step 1, we have

from (11)-(12)

‖T1ω‖X ≤ max
τ∈[0,1]

∫ 1

0
|G(τ, ς)ϕ(ς)|dς + (k1 + k2)r1

×
(

1

Γ(α+ 1)
+
|(1−∆)21−α + 2|
(1−∆)Γ(α+ 1)

)
,

‖(C0 Dβτ T1ω)‖X ≤
‖(T1ω)′‖X
Γ(2− β)

.
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Well-posedness for multi-point BVPs for fractional differential 11

Thus, for ∀ω ∈ Ωr1 , we have

‖T1ω‖Y =‖T1ω‖X + ‖(C0 Dβτ T1ω)(τ)‖X

≤ max
τ∈[0,1]

∫ 1

0
|G(τ, ς)ϕ(ς)|dς + (k1 + k2)r1

×
(

1

Γ(α+ 1)
+
|(1−∆)21−α + 2|
(1−∆)Γ(α+ 1)

)
+

µ

Γ(2− β)
+ (k1 + k2)r1)

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
,

which means that T1 is uniformly bounded on Ωr1 .
Next we prove the compactness of the operator T1.

For any 0 ≤ τ1 < τ2 ≤ 1, ω ∈ Ωr1 , letM = maxτ∈[0,1],ω∈Ωr1
f(τ, ω(τ),C0 D

β
τ ω(ς))

+1, we have

|(T1ω)(τ1)− (T1ω)(τ2)| ≤
∫ 1

0
|G(τ1, ς)−G(τ2, ς)| | f(ς, ω(ς),C0 D

β
τ ω(ς)) | dς

≤M
∫ 1

0
|G(τ1, ς)−G(τ2, ς)|dς

≤M
{∫ 1

0

2(τ2 − τ1)(1− ς)α−1

(1−∇)Γ(α)
+

(1− ς)α−2(τ2 − τ1)

Γ(α− 1)
dς

+

∣∣∣∣ 1

Γ(α)

∫ 1

0
|τ2 − ς|dς −

1

Γ(α)

∫ 1

0
|τ1 − ς|dς

∣∣∣∣}
≤M{I1 + I2},

where

I1 =

∫ 1

0

2(τ2 − τ1)(1− ς)α−1

(1−∇)Γ(α)
+

(1− ς)α−2(τ2 − τ1)

Γ(α− 1)
dς,

I2 =

∣∣∣∣ 1

Γ(α)

∫ 1

0
|τ2 − ς|α−1dς − 1

Γ(α)

∫ 1

0
|τ1 − ς|α−1dς

∣∣∣∣.
Obviously, it is easy to see that I1 → 0 as τ2 → τ1.

On the other hand, we have

I2 =

∣∣∣∣ ∫ τ1

0

(τ1 − ς)α−1

Γ(α)
dς −

∫ τ2

0

(τ2 − ς)α−1

Γ(α)
dς

+

∫ 1

τ1

(ς − τ1)α−1

Γ(α)
dς −

∫ 1

τ2

(ς − τ2)α−1

Γ(α)
dς

∣∣∣∣
≤ 1

Γ(α)

∫ τ1

0
[(τ2 − ς)α−1 − (τ1 − ς)α−1]dς +

1

Γ(α)

∫ τ2

τ1

(τ2 − ς)α−1dς

+
1

Γ(α)

∫ 1

τ2

[(ς − τ1)α−1 − (ς − τ2)α−1]dς +
1

Γ(α)

∫ τ2

τ1

(ς − τ2)α−1dς

=
1

Γ(α+ 1)
[τα2 − τα1 + (1− τ1)α − (1− τ2)α − (τ2 − τ1)α − (τ1 − τ2)α]

tending to 0 as τ2 → τ1.
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12 Well-posedness for multi-point BVPs for fractional differential

Furthermore, we obtain

|C0 Dβτ (T1ω)(τ1)−C0 Dβτ (T1ω)(τ2)|

=

∣∣∣∣ 1

Γ(1− β)

∫ τ1

0
(τ1 − ς)−β(T1ω)

′
(ς)dς − 1

Γ(1− β)

∫ τ2

0
(τ2 − ς)−β(T1ω)

′
(ς)dς

∣∣∣∣
≤ ‖(T1ω)

′
‖X

Γ(1− β)

∣∣∣∣ ∫ τ1

0
(τ1 − ς)−βdς −

∫ τ2

0
(τ2 − ς)−βdς

∣∣∣∣
≤ ‖(T1ω)

′
‖X

Γ(2− β)
|τ1−β

1 − τ1−β
2 |

tending to 0 as τ2 → τ1. So, T1 is relatively compact on Ωr1 . Hence, T1 is compact
on Ωr1 by the Arzela-Ascoli Theorem.

Step 3. The operator T2 is a contraction mapping.
For any ω, ν ∈ Ωr1 , τ ∈ [0, 1], from (H3), we have

|(T2ω)(τ)− (T2ν)(τ)|

≤ τ

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)||f(ς, ω(ς),C0 D

β
τ ω(ς))− f(ς, ν(ς),C0 D

β
τ ν(ς))dς

≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)|(l1 + l2)‖ω − ν‖Y dς

≤ l1 + l2
(1−∆)Γ(α+ 1)

m∑
i=1

βi(|1− (1− ξi)α|+ ξαi + (1− ξi)α)‖ω − ν‖Y .

On the other hand,

(T2ω)′(τ) =
1

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))dς,

and

|(T2ω)′(τ)− (T2ν)′(τ)|

=

∣∣∣∣ 1

1−∆

m∑
i=1

βi

∫ 1

0
g(ξi, ς)(f(ς, ω(ς),C0 D

β
τ ω(ς))− f(ς, ν(ς),C0 D

β
τ ν(ς)))dς

∣∣∣∣
≤ 1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)|(l1 + l2)‖ω − ν‖Y dς

≤ l1 + l2
(1−∆)Γ(α+ 1)

m∑
i=1

βi(|1− (1− ξi)α|+ ξαi + (1− ξi)α)‖ω − ν‖Y .

Furthermore, we have

|C0 Dβτ (T2ω)(τ)− C
0 D

β
τ (T2ν)(τ)|

=

∣∣∣∣ 1

Γ(1− β)

∫ τ

0
(τ − ς)−β(T2ω)′(ς)dς − 1

Γ(1− β)

∫ τ

0
(τ − ς)−β(T2ν)′(ς)dς

∣∣∣∣
≤ ‖(T2ω)′ − (T2ν)′‖X

Γ(1− β)

∫ τ

0
(τ − ς)−βdς

≤ (l1 + l2)‖ω − ν‖Y
(1−∆)Γ(α+ 1)Γ(2− β)

m∑
i=1

βi(|1− (1− ξi)α|+ ξαi + (1− ξi)α).
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Well-posedness for multi-point BVPs for fractional differential 13

Thus, it follows that

‖T2ω − T2ν‖Y ≤ (l1 + l2)ρ‖ω − ν‖Y , and (l1 + l2)ρ < 1.

This means that T2 is a contraction.
It follows Krasnoselskii fixed point theorem that the BVP(1) has at least one

solution ω ∈ Y . �

We change the condition (H2) to the following conditions:

(H2)′ There exists a nonnegative real-valued functions ϕ ∈ L[0, 1] such that

|f(τ, u, v)| ≤ ϕ(τ) + k1|u|δ1 + k2|v|δ2 ,

where k1, k2 ≥ 0 are constants and δ1, δ2 ∈ (0, 1); or
(H2)

′′ |f(τ, u, v)| ≤ ϕ(τ) + k1|u|δ1 + k2|v|δ2 , where k1, k2 ≥ 0 are constants and
δ1, δ2 ∈ (1,+∞);

Remark 1 In Theorem 1, the function f is required to satisfy the conditions (H2)

and (H3). If (H2)
′

or (H2)
′′

is satisfied, the function f generally does not meet the

condition (H3). Thus, if the conditions (H1)-(H2)
′

or (H1)-(H2)
′′

are satisfied, we
apply Schauder fixed theorem to obtain the existence result of to (1). Meanwhile, if
the conditions (H1)-(H2) are satisfied, we can also obtain the existence of the solution
of (1) through the Schauder fixed theorem.

Theorem 2 Suppose that (H1)-(H2)
′
hold. Then the fractional BVP (1) has at least

one solution in Y .

Proof Define
Ωr2 := {ω ∈ Y : ‖ω‖Y ≤ r2, τ ∈ [0, 1]}.

where

r2 ≥ max

{
4ν,

4µ

Γ(2− β)
, (4k1χ)

1
1−δ1 , (4k2χ)

1
1−δ2

}
.

Obviously, Ωr2 is a closed, convex and bounded set. Consider the operator T defined
in (8) on Ωr2 . Similar to the Step 1 in the proof process of Theorem 1, we know that
T (Ωr2) ⊂ Ωr2 , i.e., T (Ωr2) is a uniformly bounded set.

Next, we will show that T is completely continuous.
In view of the continuity of f and G, the operator T is continuous.
Let τ1, τ2 ∈ [0, 1] and ω ∈ Ωr2 , then we have

|(Tω)(τ1)− (Tω)(τ2)|

≤ |τ1 − τ2|
1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)f(ς, ω(ς),C0 D

β
τ ω(ς))|dς + |(T1ω)(τ1)− (T1ω)(τ2)|

≤ M |τ1 − τ2|
1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)|dς + |(T1ω)(τ1)− (T1ω)(τ2)|

25 Jul 2023 04:19:03 PDT
220918-Zhou Version 3 - Submitted to Rocky Mountain J. Math.



Springer Nature 2021 LATEX template

14 Well-posedness for multi-point BVPs for fractional differential

tending to 0 as τ1 → τ2. That is, T1 is equicontinuous.

|C0 Dβτ (Tω)(τ1)− C
0 D

β
τ (Tω)(τ2)|

≤
∣∣∣∣ 1

Γ(1− β)

∫ τ1

0
(τ1 − ς)−β(Tω)

′
(ς)dς − 1

Γ(1− β)

∫ τ2

0
(τ2 − ς)−β(Tω)

′
(ς)dς

∣∣∣∣
≤ ‖(T2ω)‖

′

X + ‖(T1ω)‖
′

X

Γ(2− β)
|τ1−β

1 − τ1−β
2 |

→ 0 as τ1 → τ2.

Therefore, we have ‖(Tω)(τ1)− (Tω)(τ2)‖Y → 0 as τ1 → τ2 for ω ∈ Ωr2 . According
to the Arzela-Ascoli theorem, we claim that T is completely continuous. Thus, the
Schauder fixed point theorem implies the existence of a solution in Ωr2 for the BVPs
(1). �

Theorem 3 Suppose that (H1)-(H2)
′′
hold. Then the fractional BVP (1) has at least

one solution in Y .

Proof The proof is similar to that of Theorem 2, so it is omitted. �

Next, we apply Leray-Schauder’s degree theory to obtain the existence
result of solution to (1).

Theorem 4 Suppose that assumptions (H1) and (H2) hold. Then the fractional BVP
(1) has at least one solution on Y .

Proof Introduce a suitable ball Ωr3 ⊂ Y as

Ωr3 := {ω ∈ Y : ‖ω‖Y ≤ r3, τ ∈ [0, 1]},

where r3 is a positive constant and will be given later.
Obviously, Ωr3 is a closed, convex and bounded set.
Consider the operator T defined in (8) on Ωr3 . We will prove that T : Ω̄r3 → Y

satisfies the condition

0 /∈ (I − ϑT )(∂Ωr3), ∀ω ∈ ∂Ωr3 , ∀ϑ ∈ [0, 1], (13)

where I is the identity operator. Introduce the homotopy

hϑ(ω) = H(ϑ, ω) = ω − ϑTω. (14)

Next, we prove that hϑ is completely continuous.
If ω ∈ Ωr3 , then we have that

0 ≤ |ω(τ)| ≤ max
τ∈[0,1]

|ω(τ)| ≤ ‖ω‖Y ≤ r3,

0 ≤ |C0 Dβτ ω(τ)| ≤ max
τ∈[0,1]

|C0 Dβτ ω(τ)| ≤ ‖ω‖Y ≤ r3.

Hence,
f(τ, ω(τ),C0 D

β
τ ω(τ)) ≤ ϕ(τ) + (k1 + k2)r3.
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Well-posedness for multi-point BVPs for fractional differential 15

As argued Theorem 2, T is continuous, uniformly bounded and equicontinuous.
Therefore, according to the Arzela-Ascoli theorem, from (14), we know that hϑ is
completely continuous. If (13) is satisfied, then the Leray-Schauder degrees are well
defined. From the homotopy invariance and normalization degree, it follows that

deg(hϑ,Ωr3 , 0) =deg((I − ϑT ),Ωr3 , 0) = deg(h1,Ωr3 , 0)

=deg(h0,Ωr3 , 0) = deg(I,Ωr3 , 0) = 1 6= 0,

since 0 ∈ Ωr3 . From the nonzero property of the Leray-Schauder degree, we get
h1(ω) = ω − Tω = 0 for at least one ω ∈ Ωr3 . To give the value of r3, we suppose
that ω(τ) = ϑTω(τ) for some ϑ ∈ [0, 1] and for all τ ∈ [0, 1]. Thus,

|ω(τ)| = |ϑ(Tω)(τ)| ≤ ‖Tω‖X ≤ ‖T1ω‖X + ‖T2ω‖X

≤ max
τ∈[0,1]

∫ 1

0
|G(τ, ς)ϕ(ς)|dς + (k1 + k2)‖ω‖Y

(
1

Γ(α+ 1)
+
|(1−∆)21−α + 2|
(1−∆)Γ(α+ 1)

)
+

1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)‖ω‖Y
1−∆

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
,

and

|C0 Dβτ ω(τ)| = |ϑC0 Dβτ Tω(τ)| ≤ ‖C0 Dβτ Tω‖X ≤ ‖C0 Dβτ T1ω‖X + ‖C0 Dβτ T2ω‖X

≤ µ

Γ(2− β)
+

(k1 + k2)‖ω‖Y
Γ(2− β)

(
2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
+

1

Γ(2− β)(1−∆)

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)ϕ(ς)|dς +

(k1 + k2)‖ω‖Y
Γ(2− β)(1−∆)

×
m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)
+

1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
.

Thus,

‖ω‖Y =‖ω‖X + ‖C0 Dβτ ω‖X = ϑ‖Tω‖Y = ϑ‖Tω‖X + ϑ‖C0 Dβτ Tω‖X
≤ν +

µ

Γ(2− β)
+ (k1 + k2)χ‖ω‖Y ,

which means that

‖ω‖Y ≤ (1− (k1 + k2)χ)−1
(
ν +

µ

Γ(2− β)

)
.

Let r3 = (1− (k1 + k2)χ)−1

(
ν + µ

Γ(2−β)

)
+ 1, the inequality (13) is satisfied. �

Theorem 5 Suppose that (H1) and (H3) hold. If l1 + l2 < χ−1, then the BVP (1)
has a unique solution.

25 Jul 2023 04:19:03 PDT
220918-Zhou Version 3 - Submitted to Rocky Mountain J. Math.



Springer Nature 2021 LATEX template

16 Well-posedness for multi-point BVPs for fractional differential

Proof By condition (H3), we obtain following estimate:

|(Tω)(τ)− (Tν)(τ)|

≤
∫ 1

0
|G(τ, ς)||f(ς, ω(ς),C0 D

β
τ ω(ς))− f(ς, ν(ς),C0 D

β
τ ν(ς))|dς

+
1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)||f(ς, ω(ς),C0 D

β
τ ω(ς))− f(ς, ν(ς),C0 D

β
τ ν(ς))|dς

≤(l1 + l2)‖ω − ν‖Y
(∫ 1

0
|G(τ, s)|dς +

1

1−∆

m∑
i=1

βi

∫ 1

0
|g(ξi, ς)|dς

)

≤
(

1

Γ(α+ 1)
+
|(1−∆)21−α + 2|
(1−∆)Γ(α+ 1)

+
1

1−∆

m∑
i=1

βi

(
|1− (1− ξi)α|

Γ(α+ 1)

+
1

Γ(α+ 1)
(ξαi + (1− ξi)α)

)
(l1 + l2)‖ω − ν‖Y ,

and

|(Tω)
′
(τ)− (Tν)

′
(τ)| = |(T1ω)

′
(τ)− (T1ν)

′
(τ) + (T2ω)

′
(τ)− (T2ν)

′
(τ)|

≤|(T1ω)
′
(τ)− (T1ν)

′
(τ)|+ |(T2ω)

′
(τ)− (T2ν)

′
(τ)|

≤
(

2− α(1−∆)

(1−∆)Γ(α+ 1)
+

22−α

Γ(α+ 1)

)
(l1 + l2)‖ω − ν‖Y

+
l1 + l2

(1−∆)Γ(α+ 1)

m∑
i=1

βi(|1− (1− ξi)α|+ ξαi + (1− ξi)α)‖ω − ν‖Y ,

|C0 Dβτ (Tω)(τ)− C
0 D

β
τ (Tν)(τ)| ≤ 1

Γ(1− β)

∫ τ

0
(τ − ς)−β |(Tω)

′
(ς)− (Tν)

′
(ς)|dς

≤ 1

Γ(2− β)
‖(Tω)

′
− (Tν)

′
‖X .

Thus, we obtain that

‖(Tω)
′
(τ)− (Tν)

′
(τ)‖Y < (l1 + l2)χ‖ω − ν‖Y and (l1 + l2)χ < 1,

which means that T is a contraction. Therefore, the BVP (1) has a unique solution.
�

4 Examples

Example 1 Consider the following BVP

RC
0 D

3
2
1 ω(τ) = f(τ, ω(τ),C0 D

1
2
τ ω(τ)), τ ∈ [0, 1], α ∈ (1, 2],

ω(0) = 0, ω(1) =
1

4
ω

(
1

2

)
+

3

8
ω

(
3

4

)
+

5

16
ω

(
7

8

)
.

(15)

Taking

βi = (2i− 1)

(
1

2

)i+1

, ξi = 1−
(

1

2

)i
, i = 1, 2, 3,

f(τ, ω, ν) = 2τ2
(

sin2
(

π

200
ω +

1

3

)
+

π

100
ν + 1

)
.

25 Jul 2023 04:19:03 PDT
220918-Zhou Version 3 - Submitted to Rocky Mountain J. Math.



Springer Nature 2021 LATEX template
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By computation, we deduced that

f(τ, ω, ν) ≤ 4τ2 + 1 +
π

50
|ν|,

|f(τ, ω1, ν1)− f(τ, ω2, ν2)| ≤ π

100
|ω1 − ω2|+

π

50
|ν1 − ν2|.

Let ϕ(τ) = 4τ2 + 1, k1 = 0, k2 = l2 = π
50 , l1 = π

100 . Furthermore,

∆ =

3∑
i=1

βiξ
α−1
i ≈ 0.5774 < 1, ρ ≈ 4.8782,

l1 + l2 =
3π

100
, (l1 + l2)ρ ≈ 0.4598 < 1,

k1 + k2 =
π

50
, χ ≈ 15.0825, (k1 + k2)χ ≈ 0.9477 < 1.

Hence, the conditions (H1)-(H4) are satisfied. By Theorem 1, the BVPs (1) has a
solution.

Example 2 Consider the following BVP

RC
0 Dα1 ω(τ) = f(τ, ω(τ),C0 D

β
τ ω(τ)), τ ∈ [0, 1], α ∈ (1, 2],

ω(0) = 0, ω(1) =
1

2
ω

(
1

4

)
+

1

4
ω

(
1

2

)
+

1

4
ω

(
3

4

)
,

(16)

where 0 < β ≤ 1. Taking

βi =
(i− 1)!

2i
, ξi =

i

4
, i = 1, 2, 3,

f(τ, ω, ν) =
λ1τ

ve∆τ

1 + τ2
+
λ2 sinπτ√
π + |ω|

|ω|δ1 +
λ3e
−vτ√

4 + |ν|
|ν|δ2 ,

where v, λi(i = 1, 2, 3) > 0. By computation, we deduced that

∆ =

3∑
i=1

βiξ
α−1
i =

3∑
i=1

(i− 1)!

2i

(
i

4

)α−1

<

(
3

4

)α−1

< 1,

f(τ, ω, ν) ≤ ϕ(τ) + k1|ω|δ1 + k2|ν|δ2 ,

where ϕ(τ) = λ1τ
ve∆τ

1+τ2 , k1 = λ2√
π

, k2 = λ3
2 . For 0 < δ1, δ2 < 1, the condition (H2)

′

holds and for δ1, δ2 > 1, the condition (H2)
′′

holds. Hence, from Theorem 2 and 3,
the BVPs (1) has a solution.

Example 3 Consider the following BVP

RC
0 D

3
2
1 ω(τ) = f(τ, ω(τ),C0 D

1
2
τ ω(τ)), τ ∈ [0, 1], α ∈ (1, 2],

ω(0) = 0, ω(1) =
5

7
ω

(
2

5

)
+

2

3
ω

(
3

5

)
+

8

21
ω

(
4

5

)
.

(17)

Taking

β1 =
5

7
, β2 =

2

3
, β3 =

8

21
, ξi =

i+ 1

5
, i = 1, 2, 3,

f(τ, ω, ν) =
e−∆τ (ω + ν)

(30
√
π + 25e−∆τ )(1 + ω + ν)

.
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18 Well-posedness for multi-point BVPs for fractional differential

For ω1, ν1, ω2, ν2 ∈ R, by computation,

|f(τ, ω1ν1)− f(τ, ω2ν2)| < 1

30
√
π + 25

(|ω1 − ω2|+ |ν1 − ν2|),

l1 = l2 = 1
30
√
π+25

. Hence, the condition (H3) is satisfied. Furthermore,

l1 + l2 =
2

30
√
π + 25

, χ ≈ 17.0292, (l1 + l2)χ ≈ 0.4357 < 1.

Thus Theorem 5 guarantees the uniqueness of a solution for the BVPs (1).

Acknowledgements This work is supported by Scientific Research Founda-
tion for the PhD (University of South China, No. 210XQD024). The authors
are very grateful to the associate editor and the anonymous referees for their
careful reading and valuable suggestions, which have notably improved the
quality of this paper.

References

[1] B. Ahmad, Sharp estimates for the unique solution of two-point fractional-
order boundary value problems, Appl. Math. Lett., 2017, 65, 77–82.

[2] B. Ahmad, Y. Alruwaily, A. Alsaedi and J. J. Nieto, Fractional integro-
differential equations with dual anti-periodic boundary conditions, Differ.
Integral Equ., 2020, 33(3-4), 181–206.

[3] B. Ahmad, A. Broom, A. Alsaedi and S. K. Ntouyas, Nonlinear integro-
differential equations involving mixed right and left fractional derivatives
and integrals with nonlocal boundary data, Mathematics, 2020, 8(3), 336,
13 pages. DOI:10.3390/math8030336

[4] B. Ahmad and R. Luca, Existence of solutions for sequential fractional
integro-differential equations and inclusions with nonlocal boundary
conditions, Appl. Math. Comput., 2018, 339, 516–534.

[5] O. P. Agrawal, Fractional variational calculus in terms of Riesz fractional
derivatives, J. Phys., 40(24), (2007), 6287–6303.

[6] R. Almeida, Fractional variational problems with the Riesz-Caputo
derivative, Appl. Math. Lett., 25(2), (2012), 142–148.

[7] F. Chen, A. Chen and X. Wu, Anti-periodic boundary value problems
with RieszCCaputo derivative, Adv. Differ. Equ-Ny, 119, (2019), 13 pages.
DOI:10.1186/s13662-0.19-2001-z.

[8] F. Chen, D. Baleanu and G. Wu, Existence results of fractional differential
equations with Riesz-Caputo derivative, Eur. Phys. J.: Spec. Top., 226(16-
18) (2017), 3411–3425.

25 Jul 2023 04:19:03 PDT
220918-Zhou Version 3 - Submitted to Rocky Mountain J. Math.



Springer Nature 2021 LATEX template

Well-posedness for multi-point BVPs for fractional differential 19

[9] G. Frederico, D. Torres, Fractional Noether’s theorem in the Riesz-Caputo
sense, Appl. Math. Comput., 217(3)(2010), 1023–1033.

[10] G. Gu, J. Zhang and G. Wu, Positive solutions of fractional differential
equaations with the Riesz space derivative, Appl. Math. Lett., 95, (2019),
59–64.

[11] A. Kilbas, S. Samko and O. Marichev, Fractional Integrals and Derivatives
Theory and Applications, Gordon and Breach, Longhorne, 1993.

[12] G. Wu, D. Baleanu and Z. Deng, Lattice fractional diffusion equation in
terms of a Riesz-Caputo difference, Physica A, 438 (2015),335–339.

[13] Q. Yang, F. Liu and I. Turner, Numerical methods for fractional partial
differential equations with Riesz space fractional derivatives, Appl. Math.
Model., 34(1) (2010), 200–218.

[14] R. P. Agarwal, D. O’Regan and S. Stanek, Positive solutions for Dirichlet
problems of singular nonlinear fractional differential equations, J. Math.
Anal. Appl. 371(1) (2010), 57–68.

[15] X. Zhang, L. Liu, Y. Wu and B. Wiwatanapataphee, The spectral analysis
for a singular fractional differential equation with a signed measure, Appl.
Math. Comput., 257 (2015), 252–263.

25 Jul 2023 04:19:03 PDT
220918-Zhou Version 3 - Submitted to Rocky Mountain J. Math.


	Introduction
	Preliminaries
	Main results
	Examples

