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1. Introduction

The integro-differential equation is one of the most valuable tool that have been used in
solving real world problems .In recent times, integro-differential equations have gained a lots
of significance because of their several applications in different fields. The fixed point theo-
rem (FPT ) and measure of noncompactness (MNC) are very important in solving Integro-
differential Equation. Kuratowski [12] first defined the idea of MNC in 1930. In 1955, the
Schauder’s fixed point theorem was modified by G. Darbo [13] with the help of Kuratowski’s
MNC. There are many new research projects related to the applications of FPT on inte-
gral equatins, differential equations and integro-differential equations has been established by
several mathematicians ( see [11, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 28, 29, 30] ).

Fractional calculus deals with the investigation and applications of derivatives and integrals
of arbitrary order. It is a very important topic having interconnections with different types of
problems of function theory, integral and differential equations, and other branches of analysis.
It has been continually developed , stimulated by ideas and results in several fields of math-
ematical analysis. Fractioanl integro-differential equations are widely used to describe many
important phenomena in various fields such as physics, biophysics, chemistry, biology, control
theory, economy and so on; see [2, 3, 4, 6, 7, 8, 9, 10, 32, 33, 34]. Das et al. [35] and Arab
et al. [36] used a measure of noncompactness for the infinite systems of integral equations.
Banas and Lecko [37], Rzepka and Sadarangani [38] discussed the solvability of infinite systems
of integral equations with the help of measure of noncompactness. Aghajani and Haghighi [39]
using the techniques of measures of noncompactness and Darbo fixed point theorem, proved
the existence results for solutions of systems of nonlinear equations in Banach spaces, and dis-
cussed the existence of solutions for a general system of nonlinear functional integral equations.
Surang Sitho, Sotiris K Ntouyas and Jessada Triboon [40] proved the existence results for initial
value problems for hybrid fractional integro-differential equations. Ahmed Bragdi, Assia Friour
and Assia Guezane Lakoud [41] discussed the existence of solutions for boundary value problem
of nonlinear sequential fractional integro-differential equations with the help of Krasnoselskii
fixed point theorem.
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The main goal of this work is to obtain the existence of a solution of the integro-differential
equation (1.1) containing Riemann-Liouville (RL) fractional derivative and integral by using
an extended version of Darbo’s FPT Dξ

[
U(η)− Iζ K(η,U(η))

G(η,U(η))

]
= Q(η,U(η)) , η ∈ T = [0, L]

U(0) = 0 ,

(1.1)

where Dξ is the RL fractional derivative of order ξ , 0 ≤ ξ ≤ 1 ; Iζ is the RL fractional integral
of order ζ , ζ > 0 ; G is a function from T ×R to R\{0} and Q,K are functions from T ×R to
R. Also from the Lemma 5.4 , the above integro-differential equation (1.1) is equivalent to the
following fractional integral equation (FIE)

U(η) =
G(η,U(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ

(1.2)

Finally at the end , we discuss about the solvability of the following IDE
D

1
5

U(η)− I 1
7

U(η)
17+η

U(η) + 1

19 + η

 =
U(η)
21 + η

, η ∈ T = [0, L]

U(0) = 0 ,

(1.3)

2. Preliminaries

Assume , (G, ∥ . ∥) be a real Banach space and B(θ, e0) = {t ∈ G :∥ t− θ ∥≤ e0} .
Let ,

• XG is the collection of all non-empty bounded subsets of G and YG is the collection of
all non-empty relatively compact subsets of G ,

• P̄ and ConvP denote the closure and the convex closure ofP respectively, whereP ⊂ G.
• R = (−∞,∞),
and

• R+ = [0,∞) .

Now , We consider the following fundamental theorems and definitions which are useful for
the generalization of Darbo’s Fixed point theorem :

Definition 2.1. [5] A map W : XG → R+ is known as a MNC in G. If it holds the axioms
given below,

(i) ∀ P ∈ XG, we get W (P) = 0 gives P is relatively compact.
(ii) ker W = {P ∈ XG : W (P) = 0} ≠ ∅ and ker W ⊂ YG.
(iii) P ⊆ P1 =⇒ W (P) ≤ W (P1) .
(iv) W

(
P̄
)
= W (P) .

(v) W (ConvP) = W (P) .
(vi) W (AP+ (1− A)P1) ≤ AW (P) + (1− A)W (P1) for A ∈ [0, 1] .
(vii) if Pl ∈ XG, Pl = P̄l, Pl+1 ⊂ Pl for l = 1, 2, 3, 4, ... and lim

l→∞
W (Pl) = 0 then

⋂∞
l=1Pl ̸=

∅.

The family kerW is known as the kernel of measure W. Since W (P∞) ≤ W (Pl) for any l,
we can say that W (P∞) = 0. Then P∞ =

⋂∞
l=1 Pl ∈ kerW.
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Theorem 2.2. ( [Shauder][1] ) Let V be a nonempty , bounded , closed and convex subset
(NBCCS) of a Banach space G. Then H : V → V has at least one fixed point provided that H
is a compact, continuous mapping.

Theorem 2.3. ([Darbo][13]) Let V be a NBCCS of a Banach Space G and let H : V → V.

Assume that we have a constant M̂ ∈ [0, 1) such that

W (HZ) ≤ M̂ W (Z), Z ⊆ V.

Then H has a fixed point in V provided that H is a continuous mapping.

Definition 2.4. Let ∆ : Rn → R+ be a function whih satisfy :

∆(s
′

1, s
′

2, ........, s
′

n) ≤ max{s′1, s
′

2, ........, s
′

n}.

This class of functions is denoted by ∆̄.
For example ,

(1) ∆(s
′
1, s

′
2, ........, s

′
n) = max{s′1, s

′
2, ........, s

′
n} ,

(2) ∆(s
′
1, s

′
2, ........, s

′
n) =

1
n
{s′1 + s

′
2 + ........+ s

′
n} ; s

′
1, s

′
2, ........, s

′
n ∈ R.

Definition 2.5. Let F, α, ψ : R+ → R+ be functions which satisfy:

(1) The family of F is denoted by F̄ where F is nondecreasing and continuous satisfying
F(0) = 0 < F(s

′
) ; s

′ ∈ R+.

(2) The family of all α is denoted by ᾱ where α is continuous , α(0) = 0 and is bounded by
s
′
(α(s

′
) < s

′
) ; s

′ ∈ R+.

(3) The family of all ψ is denoted by ψ̄ where ψ is a nondecreasing continuous mapping .

Definition 2.6. [20] Let g : R+ → R+ be a nondecreasing and upper semicontinuous operator
. Then , the following conditions are equivalent

(1) limn→∞ gn(s
′
) = 0 for every s

′
> 0.

(2) g(s
′
) < s

′
for every s

′
> 0.

Definition 2.7. [42] Let Λ be the family of all operators λ : R+ → (1,∞) such that:

(λ1) λ is increasing and continuous ;
(λ2) lim

s→∞
ts = 0 iff lim

s→∞
λ(ts) = 1 ∀{ts} ⊆ (0,∞).

Definition 2.8. Φ denotes the family of all operators ϕ : [1,∞) → [1,∞) so that:

(ϕ1) ϕ is non-decreasing and continuous ;
(ϕ2) lim

n→∞
ϕn(s

′
) = 1 for all s

′ ∈ [1,∞),

Definition 2.9. γ̄ denotes the family of all nondecreasing operators γ : R+ → R+ such that
limt→∞ γt

(
s
′)

= 0 for every s
′ ≥ 0.

For example , γ(s
′
) = ℵ , ℵ ∈ (0, 1) , s

′ ∈ R+.

3. New Generalized Darbo’s Fixed point theorems

In the article [31], Deb et al. discussed about the following types of new fixed point theorems
with the help of measure of noncompactness :
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Theorem 3.1. [31] Let H : V → V be a continuous mapping where V is a nonempty, bounded,
closed and convex subset of G such that

Ê(Ψ̂(W (HmZ))) ≤ F̂
[
α̂(Mm−1(Z)), β̂(Mm−1(Z)), Φ̂(Mm−1(Z)), γ̂((Mm−1(Z))

]
, (3.1)

where

Mm−1(Z) = max{W (Z),W (HZ), · · · ,W (Hm−1Z)},
for each ∅ ̸= Z ⊆ V, where W is an arbitrary MNC, (Ψ̂, Φ̂) ∈ Υ, F̂ ∈ Z̄, Ê ∈ A, α̂ ∈ A′,

β̂ ∈ Ā and γ̂ : R+ → R+. Then there is at least one fixed point for H in V .

Motivated by the above mentioned work, we have established the following types of new
fixed point theorems.

Theorem 3.2. Suppose V be a NBCCS of a Banach space G and H : V → V be a continuous
mapping with

F[W (HpZ) + ψ(W (HpZ))] ≤ α[F{(Op−1Z) + ψ(Op−1Z)}] (3.2)

where

Op−1(Z) = ∆
(
W (Z),W (HZ), ......,W (Hp−1Z)

)
for each Z ⊂ V, where W is an arbitrary MNC and F ∈ F̄, α ∈ ᾱ , ψ ∈ ψ̄ and ∆ ∈ ∆̄. Then

H has at least one fixed point in V.

Proof. Take Z0 = V , Zq+p = conv(HpZq), for q = 0, 1, 2, . . ..
Evidently, {Zq}q∈N is a NBCCS such that

Z0 ⊇ Z1 ⊇ · · · ⊇ Zq ⊇ · · · ⊇ Zq+p.

If N ∈ N be an integer such thatW (ZN) = 0, then ZN is relatively compact and by Schauder
Theorem we can say that H has a fixed point.

So, we can take W (Zq) > 0 for all q ∈ N ∪ {0}.
Since W is monotone, hence the sequence W (Zq) is nonnegative and nonincreasing, and we

deduce that W (Zq) + ψ(W (Zq)) → a when n→ ∞ , where a ≥ 0 is a real number.
Now we cliam that a = 0. For this purpose from the equation (3.2) , we have

F[W (Zq+p) + ψ(W (Zq+p))] = F[W (HpZq) + ψ(W (HpZq))]

= F[W (HpZq) + ψ(W (HpZq))]

≤ α[F{(Op−1Zq) + ψ(Op−1Zq)}]
< F{(Op−1Zq) + ψ(Op−1Zq)}
< F{W (Zq) + ψ(W (Zq)} (3.3)

for q = 0, 1, 2, . . ., where

Op−1(Zq) = ∆{W (Zq),W (Zq+1), · · · ,W (Zq+p−1)}
≤ max{W (Zq),W (Zq+1), · · · ,W (Zq+p−1)} ≤ W (Zq). (3.4)

Now, considering the equation (3.3), we get

lim
q→∞

F[W (Zq+p) + ψ(W (Zq+p))] < lim
q→∞

F{W (Zq)) + ψ(W (Zq))}

⇒ F(a) < F(a) .

Which is a contradiction .
Thus a = 0. Hence , limq→∞W (Zq)+ψ(W (Zq)) = 0 implies limq→∞W (Zq) = 0 . Therefore

we infer W (Zq) → 0 as q → ∞. Therefore, by Definition 2.1 (vii), Z∞ =
⋂∞

q=0 Zq is nonempty,
convex and closed . Also, the set Z∞ under the operator H is invariant and Z∞ ∈ kerW . Thus
, by Schauder’s theorem ( Theorem 2.2 ), H has at least one fixed point in V . □
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Corollary 3.3. Suppose V be a NBCCS of G and H : V → V be a continuous mapping with

F[W (HpZ) + ψ(W (HpZ))] ≤ α[F{(Op−1Z) + ψ(Op−1Z)}] (3.5)

where

Op−1(Z) = max{W (Z),W (HZ), ......,W (Hp−1Z)}
for each Z ⊂ V and W be an arbitrary MNC and F ∈ F̄, α ∈ ᾱ and ψ ∈ ψ̄. Then there

exists at least one fixed point for H in V.

Proof. Putting ∆(t1, t2, ......., tp) = max{t1, t2, ......., tp} in the equation (3.2) of the Theorem
(3.2) , we can get the above result . □

Corollary 3.4. Suppose V be a NBCCS of G and H : V → V be a continuous mapping with

F[W (HpZ) + ψ(W (HpZ))] ≤ α[F{(Op−1Z) + ψ(Op−1Z)}] (3.6)

where

Op−1(Z) =
1

p
{W (Z) +W (HZ) + ......+W (Hp−1Z)}

for each Z ⊂ V and W be an arbitrary MNC and F ∈ F̄, α ∈ ᾱ and ψ ∈ ψ̄. Then there
exists at least one fixed point for H in V.

Proof. Putting ∆(t1, t2, ......., tp) =
1
p
{t1 + t2 + .......+ tp} in the equation (3.2) of the Theorem

(3.2) , we can get the above result . □

Corollary 3.5. Suppose V be a NBCCS of G and H : V → V be a continuous mapping with

W (HpZ) ≤ α(Op−1Z) (3.7)

where

Op−1(Z) = ∆(W (Z),W (HZ), ......,W (Hp−1Z))

for each Z ⊂ V and W be an arbitrary MNC ,α ∈ ᾱ and ∆ ∈ ∆̄. Then there exists at least
one fixed point for H in V.

Proof. Putting F(t) = t : ψ(t) = 0 in the equation (3.2) of the Theorem (3.2) , we can get the
above result . □

Corollary 3.6. Suppose V be a NBCCS of G and H : V → V be a continuous mapping with

W (HZ) ≤ M̂ W (Z) , M̂ ∈ [0, 1) (3.8)

for each Z ⊂ V and W be an arbitrary MNC . Then there exists at least one fixed point
for H in V.

Proof. Putting p = 1 ; α(t) = M̂ t , M̂ ∈ [0, 1) in the equation (3.7) of the Corollary (3.5) ,
we can get the above result which is known as Darbo’s FPT . □

Theorem 3.7. Suppose V be a NBCCS of G and H : V → V a continuous mapping such that

δ(W (HpZ)) ≤ δ(Op−1(Z))− µ(Op−1(Z)), (3.9)

where

Op−1(Z) = ∆(W (Z),W (HZ), · · · ,W (Hp−1Z)),

for each ∅ ≠ Z ⊆ V, where W be an arbitrary MNC , ∆ ∈ ∆̄ and functions δ, µ : R+ → R+,
such that δ is increasing and continuous and µ is decreasing and lower semicontinuous on R+.
Also, µ(0) = 0 and µ(t

′
) > 0 for t

′
> 0.Then there exists at least one fixed point for H in V.
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Proof. Take Z0 = V , Zq+p = conv(HpZq), for q = 0, 1, 2, . . ..
Evidently, {Zq}q∈N is a NBCCS such that

Z0 ⊇ Z1 ⊇ · · · ⊇ Zq ⊇ · · · ⊇ Zq+p.

If for an integer q0 ∈ N one has W (Zq0) = 0, then Zq0 is relatively compact and by Schauder
Theorem we can say that H has a fixed point .

So, we can take W (Zq) > 0 for all q ∈ N ∪ {0}.
Since W is monotone, hence the sequence W (Zq) is nonnegative and nonincreasing, and we

deduce that W (Zq) → a1 when q → ∞ , where a1 ≥ 0 is a real number.
Now we cliam that a1 = 0. For this purpose from 3.9 we have

δ(W (Zq+p)) = δ(W (conv(HpZq)))

= δ(W (HpZq))

≤ δ(Op−1(Zq))− µ(Op−1(Zn))

≤ δ(W (Zq))− µ(W (Zq))) (3.10)

for q = 0, 1, 2, . . ., where

Op−1(Zq) = ∆(W (Zq),W (Zq+1), · · · ,W (Zq+p−1)}
≤ max{W (Zq),W (Zq+1), · · · ,W (Zq+p−1}
≤ W (Zq).

Then from (3.10), we get

lim
q→∞

δ(W (Zq+p)) ≤ lim
q→∞

δ[W (Zq)]− lim
q→∞

µ[(W (Zq)].

This yields δ(a1) ≤ δ(a1) − µ(a1). Consequently µ(a1) = 0 so a1 = 0. Therefore we infer
W (Zq) → 0 as q → ∞. Therefore, by Definition 2.1 (vii), Z∞ =

⋂∞
q=0 Zq is nonempty, convex

and closed. Also, the set Z∞ under the operator H is invariant and Z∞ ∈ kerW . Thus , the
proof is complete by using Theorem 2.2. □

Theorem 3.8. Suppose V be a NBCCS of G and the mapping H : V → V be continuous so
that satisfies in the following condition

W (HpZ) ≤ γ(Op−1(Z))

where

Op−1(Z) = ∆(W (Z),W (HZ), · · · ,W (Hp−1Z)),

for each ∅ ̸= Z ⊆ V, where W is an arbitrary MNC , ∆ ∈ ∆̄ and γ ∈ γ̄. Then there exists at
least one fixed point for H in V.

Proof. Just like the proof of the previous theorem, we consider the sequences {Zq} by induction,

where Z0 = V , Zq+p = conv(HpZq), for q = 0, 1, . . . . Also, we can take W (Zq) > 0 for all
q = 0, 1, . . . . In addition, according to our assumptions, for m = 0, 1, . . . , p− 1 and each r ∈ N
one has

W (Zm+rp) = W
(
Zm+(r−1)p+p

)
= W

(
conv

(
Hp
(
Zm+(r−1)p

)))
= W (Hp

(
Zm+(r−1)p

)
)

≤ γ
(
Op−1

(
Zm+(r−1)p

))
,

where
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Op−1

(
Zm+(r−1)p

)
= ∆

(
W
(
Zm+(r−1)p

)
,W

(
Zm+(r−1)p+1

)
, · · · ,W (Zm+rp−1)

)
≤ max{W

(
Zm+(r−1)p

)
,W

(
Zm+(r−1)p+1

)
, · · · ,W (Zm+rp−1)}

≤ W
(
Zm+(r−1)p

)
.

Hence, by using the mathematical induction method, we obtain

W (Zm+rp) ≤ γ(W (Zm+(r−1)p))

≤ γ2(W (Zm+(r−2)p))

...

≤ γr(W (Zm)).

Now, from the fact that γr(W (Zm)) → 0, as r → ∞, we conclude that W (Zm+rp) → 0 as
r → ∞. On the other hand, for each q ∈ N, by the division algorithm, we can write n = km+p,
where p = 0, 1, . . . ,m − 1. This shows that W (Zq) → 0 as q → ∞. By Definition 2.1 (vii),
Z∞ =

⋂∞
q=0 Zq is a nonempty, convex and closed subset of Z. Also, the set Z∞ under the

operator H is invariant and Z∞ ∈ kerW . Thus , the proof is complete by using Theorem
2.2. □

Theorem 3.9. Suppose V be a NBBCS of G and H : V → V a continuous mapping such that

λ(φ(W (HpZ))) ≤ λ(φ(Op−1(Z)))

λ(φ(σ(Op−1(Z))))
(3.11)

where

Op−1(Z) = ∆(W (Z),W (HZ), · · · ,W (Hp−1Z)},

for each ∅ ≠ Z ⊆ V, where W be an arbitrary MNC ,λ ∈ Λ , ∆ ∈ ∆̄ and functions φ, σ : R+ →
R+, such that φ is increasing and continuous and σ is decreasing and lower semicontinuous on
R+. Also, σ(0) = 0 and σ(t) > 0 for t > 0. Then there exists at least one fixed point for H in
V.

Proof. Just like the proof of Theorem 3.7, we define sequence {Zq} by induction. Moreover,
from (3.11) we have

λ(φ(W (Zq+p))) = λ(φ(W (conv(HqZq))))

= λ(φ(W (HqZq)))

≤ λ(φ(Op−1(Zq)))

λ(φ(σ(Op−1(Zq))))
(3.12)

where

Op−1(Zq) = ∆(W (Zq),W (HZq), · · · ,W (Hp−1Zq)),

for q = 0, 1, 2, . . .. Since the sequence {W (Zq)} is nonnegative and nonincreasing, we deduce
thatW (Zq) → a2 when q → ∞ , where a2 ≥ 0 is a real number. On the other hand, considering
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Equation (3.12), we get

λ(φ(a2)) = lim
q→∞

λ(φ(W (Zq+p)))

≤ lim
q→∞

λ(φ(Op−1(Zq)))

λ(φ(σ(Op−1(Zq))))

≤ λ(φ(a))

λ(φ(limq→∞ σ(Op−1(Zq))))

≤ λ(φ(a))

λ(φ(limq→∞ σ(Op−1(Zq))))

≤ λ(φ(a))

λ(φ(σ(limq→∞Op−1(Zq))))
,

where

Op−1(Zq) = ∆(W (Zq),W (Zq+1), · · · ,W (Zq+p−1))

≤ max{W (Zq),W (Zq+1), · · · ,W (Zq+p−1)}
≤ W (Zq) → a2 (as q → ∞).

This yields λ(φ(a2)) ≤ λ(φ(a2)

λ(φ(σ(a2)))
. Consequently λ(φ(σ(a2))) = 1 then φ(σ(a2)) = 0 and

σ(a2) = 0 so a2 = 0. Therefore we infer W (Zq) → 0 as q → ∞. Now, considering that
Zq+1 ⊂ Zq, therefore, by Definition 2.1 (vii), Z∞ =

⋂∞
q=0 Zq is nonempty , convex and closed

. Also , the set Z∞ under the operator H is invariant and Z∞ ∈ kerW . Thus , the proof is
complete by using Theorem 2.2 . □

4. Measure of noncompactness on C([0, L]) :

Assume that the space G = C(T ) is the collection of all real valued continuous operators
on T = [0, L]. Then , G is a Banach space with the norm

∥ E ∥= sup {|E(s)| : s ∈ T} , E ∈ G.

Let Ω(̸= ∅) ⊆ G be bounded. For E ∈ C(T ) with ϖ > 0, the modulus of the continuity of E is
denote by β(E , ϖ) i.e.,

β(E , ϖ) = sup {|E(s1)− E(s2)| : s1, s2 ∈ T, |s2 − s1| ≤ ϖ} .
In addition, we define

β(Ω, ϖ) = sup {β(E , ϖ) : E ∈ Ω} ; β0(Ω) = lim
ϖ→0

β(Ω, ϖ).

where , the function β0 is known as a MNC in G and the Hausdorff MNC £ is define as
£(Ω) = 1

2
β0(Ω) (see [5]).

5. Solvability of integro-differential equation

In this portion , first we consider the following notations and definitions ( see [22, 26] ) :

Definition 5.1. The Riemann-Liouville (RL) fractional derivative of order ξ > 0 of continuous
fuction H : R+ → R is defined as

Dξ H(s) =
1

Γ(n− ξ)

(
d

ds

)n ∫ s

0

(s− t)n−ξ−1H(t) dt , n− 1 < ξ < n, (5.1)

where , n = [ξ] + 1 ,[ξ] is the integral part of a real number ξ , whenever the right-hand side is
point-wise defined on R+ , where the gamma function Γ is defined as Γ(ξ) =

∫∞
0
e−ssξ−1ds.
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Definition 5.2. The RL fractional integral of order ζ > 0 of continuous fuction H : R+ → R
is defined by

Iζ H(s) =
1

Γ(ζ)

∫ s

0

(s− t)ζ−1H(t) dt , (5.2)

whenever the right-hand side is point-wise defined on R+.

Lemma 5.3. [22] Let ξ > 0. Then for U ∈ C[0, J ] ∩ L[0, J ] we have

IξDξ U(η) = U(η)−
n∑

i=1

(In−ξ U)(n−i)(0)

Γ(ξ − i+ 1)
ηξ−i , (5.3)

where n− 1 < ξ < n.

Lemma 5.4. [40] Suppose that 0 < ξ ≤ 1 and functions Q,G,K satisfy the equation (1.1) .
Then the unique solution of the fractional integro-differential equation (1.1) is given by

U(η) =
G(η,U(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ , η ∈ T. (5.4)

Proof. Applying the Riemann-Liouville fractional integral of order ξ to both sides of (1.1) and
using Lemma 5.3 , we have[

U(η)− IζK(η,U(η))
G(η,U(η))

]
− ηξ−1

Γ(ξ)
I1−ξ

[
U(η)− IζK(η,U(η))

G(η,U(η))

]
η=0

= Iξ Q(η,U(η)).

Since , U(0) = 0,K(0, 0) = 0 and G(0, 0) ̸= 0 , it follows that

U(η) =
G(η,U(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ , η ∈ T. (5.5)

Thus (5.4) holds. The proof is completed. □

Now, we discuss how our results can be applied to find the solution of an integro-differential
equation (IDE) in the C([0, L]) space.

Take the following IDE : Dξ

[
U(η)− Iζ Y(η,U(η))

G(η,U(η))

]
= Q(η,U(η)) , η ∈ T = [0, L]

U(0) = 0 ,

(5.6)

where Dξ is the Riemann-Liouville (RL) fractional derivative of order ξ, 0 ≤ ξ ≤ 1 , Iζ is
the Riemann-Liouville (RL) fractional integral of order ζ, ζ > 0. Also from the Lemma 5.4,
we can say that the above integro-differential equation (5.6) is equivalent to the following (FIE)

U(η) =
G(η,U(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 Y( Z,U(Z) ) dZ. (5.7)
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Let

Xb0 = {U ∈ G : ∥ U ∥≤ b0} .

Assume that

(I) G : T × R → R\{0} be continuous and ∃ constant G1 ≥ 0 satisfying

|G(η,U(η))− G(η,U ′(η))| ≤ G1 |U(η)− U ′(η)| ,

for η ∈ T and U ,U ′ ∈ R.
Also,

Ĝ = sup
η∈T

G(η, 0).

(II) Q : T × R → R be continuous and ∃ constant Q1 ≥ 0 satisfying

|Q(η,U(η))−Q(η,U ′(η))| ≤ Q1 |U(η)− U ′(η)| ,

for η ∈ T and U ,U ′ ∈ R.
Also,

Q(η, 0) = 0.

(III) K : T × R → R be continuous and ∃ constant K1 ≥ 0 satisfying

|K(η,U(η))−K(η,U ′(η))| ≤ K1 |U(η)− U ′(η)| ,

for η ∈ T and U ,U ′ ∈ R.
Also,

K(η, 0) = 0.

(IV) ∃ a positive number b0 such that

(G1 b0 + Ĝ) Q1

Γ(ξ + 1)
Lξ +

K1

Γ(ζ + 1)
Lζ ≤ 1. (5.8)

Theorem 5.5. There exists a solution of equation (5.7) in G whenever conditions (I)-(IV) are
satisfied .

Proof. We take the operator F : G→ G which is defined as given below :

(FU)(η) = G(η,U(η))
Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ.

Step (1): Here , we will prove that the operator F maps from Xb0 into Xb0 . Let U ∈ Xb0 .17 Sep 2023 21:45:42 PDT
230508-DasAnupam Version 3 - Submitted to Rocky Mountain J. Math.
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Now ,we have ,

|(FU)(η))|

≤
∣∣∣∣G(η,U(η))Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ
∣∣∣∣+ ∣∣∣∣ 1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ
∣∣∣∣

≤ (|G(η,U(η))− G(η, 0)|+ |G(η, 0)|)
Γ(ξ)

∫ η

0

(η − Z)ξ−1 (|Q(Z,U(Z))−Q(Z, 0)|+ |Q(Z, 0)|) dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 (|K( Z,U(Z))−K( Z, 0)|+ |K( Z, 0)|) dZ

≤ G1(U)
Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q1(U) dZ+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K1(U) dZ

≤ (G1(U) + Ĝ)Q1(U)
Γ(ξ) ξ

[
−(η − Z)ξ

]η
0
+

K1(U)
Γ(ζ) ζ

[
−(η − Z)ζ

]η
0

≤ (G1(U) + Ĝ)Q1(U)
Γ(ξ + 1)

ηξ +
K1(U)
Γ(ζ + 1)

ηζ

≤ (G1(U) + Ĝ)Q1(U)
Γ(ξ + 1)

Lξ +
K1(U)
Γ(ζ + 1)

Lζ .

Hence ∥ U ∥≤ b0 gives

∥ FU ∥ ≤ (G1 b0 + Ĝ) Q1 b0
Γ(ξ + 1)

Lξ +
K1 b0

Γ(ζ + 1)
Lζ ≤ b0

≤ (G1 b0 + Ĝ) Q1

Γ(ξ + 1)
Lξ +

K1

Γ(ζ + 1)
Lζ ≤ 1.

Due to the assumption (IV) , F maps Xb0 to Xb0 .
Step (2): Now , we will show that F is continuous on Xb0 . Let ϖ > 0 and U ,U1 ∈ Xb0 such

that ∥ U − U1 ∥< ϖ , for all η ∈ [0, L].
17 Sep 2023 21:45:42 PDT
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Now ,we have ,

|(FU)(η)− (FU1)(η)|

≤
∣∣∣G(η,U(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ

− G(η,U1(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U1(Z) ) dZ
∣∣∣

+
∣∣∣ 1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U(Z) ) dZ

− 1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K( Z,U1(Z) ) dZ
∣∣∣

≤ |G(η,U(η))− G(η,U1(η))|
Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q( Z,U(Z) ) dZ

+
G(η,U1(η))

Γ(ξ)

∫ η

0

(η − Z)ξ−1 |Q( Z,U(Z) )−Q( Z,U1(Z) )| dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 |K( Z,U(Z) )−K( Z,U1(Z) )| dZ

≤ G1|U(η)− U1(η)|
Γ(ξ)

∫ η

0

(η − Z)ξ−1 (|Q( Z,U(Z) )−Q( Z, 0 )|+ |Q( Z, 0)|) dZ

+
(|G(η,U1(η))− G(η, 0)|+ |G(η, 0)|)

Γ(ξ)

∫ η

0

(η − Z)ξ−1 Q1|U(Z) )− U1(Z)| dZ

+
1

Γ(ζ)

∫ η

0

(η − Z)ζ−1 K1|U(Z) )− U1(Z)| dZ

≤ G1|U(η)− U1(η)| Q1(U)
Γ(ξ + 1)

Lξ +
(G1(U1) + Ĝ) Q1|U(Z) )− U1(Z)|

Γ(ξ + 1)
Lξ +

K1|U(Z) )− U1(Z)|
Γ(ζ + 1)

Lζ .

Hence , ∥ U − U1 ∥< ϖ gives ,

|(FU)(η)− (FU1)(η)| <
G1(ϖ) Q1(U)

Γ(ξ + 1)
Lξ +

(G1(U1) + Ĝ) Q1(ϖ)

Γ(ξ + 1)
Lξ +

K1(ϖ)

Γ(ζ + 1)
Lζ

i.e. As ϖ → 0 we get |(FU)(η)− (FU1)(η)| → 0.
Then, F is continuous on Xb0 .

Step (3): An estimate of F with respect to β0. Taking ℧( ̸= ∅) ⊆ Xb0 . Let ϖ > 0 be
arbitrary and choosing U ∈ ℧ and η1, η2 ∈ [0, L] such as |η2 − η1| ≤ ϖ with η2 ≥ η1.17 Sep 2023 21:45:42 PDT
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We have,

|(FU)(η2)− (FU)(η1)|

=
∣∣∣G(η2,U(η2))

Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 Q( Z,U(Z) ) dZ+
1

Γ(ζ)

∫ η2

0

(η2 − Z)ζ−1 K( Z,U(Z) ) dZ

− G(η1,U(η1))
Γ(ξ)

∫ η1

0

(η1 − Z)ξ−1 Q( Z,U(Z) ) dZ− 1

Γ(ζ)

∫ η1

0

(η1 − Z)ζ−1 K( Z,U(Z) ) dZ
∣∣∣

≤
∣∣∣G(η2,U(η2))

Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 Q( Z,U(Z) ) dZ− G(η1,U(η1))
Γ(ξ)

∫ η1

0

(η1 − Z)ξ−1 Q( Z,U(Z) ) dZ
∣∣∣

+
∣∣∣ 1

Γ(ζ)

∫ η2

0

(η2 − Z)ζ−1 K( Z,U(Z) ) dZ− 1

Γ(ζ)

∫ η1

0

(η1 − Z)ζ−1 K( Z,U(Z) ) dZ
∣∣∣

≤ J1(η2, η1) + J2(η2, η1) (5.9)

where ,

J1(η2, η1)

=
∣∣∣G(η2,U(η2))

Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 Q( Z,U(Z) ) dZ

− G(η1,U(η1))
Γ(ξ)

∫ η1

0

(η1 − Z)ξ−1 Q( Z,U(Z) ) dZ
∣∣∣

≤ |G(η2,U(η2))− G(η1,U(η1))|
Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 |Q( Z,U(Z) )| dZ

+
|G(η1,U(η1))|

Γ(ξ)

(∣∣∣∣∫ η2

0

(η2 − Z)ξ−1 Q( Z,U(Z) ) dZ−
∫ η1

0

(η1 − Z)ξ−1 Q( Z,U(Z) ) dZ
∣∣∣∣)

≤ |G(η2,U(η2))− G(η2,U(η1))|+ |G(η2,U(η1))− G(η1,U(η1))|
Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 |Q( Z,U(Z) )| dZ

+
|G(η1,U(η1))− G(η1, 0)|+ |G(η1, 0)|

Γ(ξ)

(∣∣∣ ∫ η1

0

(η2 − Z)ξ−1 |Q( Z,U(Z) )| dZ

+

∫ η2

η1

(η2 − Z)ξ−1 Q( Z,U(Z) ) dZ−
∫ η1

0

(η1 − Z)ξ−1 Q( Z,U(Z) ) dZ
∣∣∣)

≤ G1|U(η2)− U(η1)|+ βG(b0, ϖ)

Γ(ξ)

∫ η2

0

(η2 − Z)ξ−1 (|Q( Z,U(Z) )−Q( Z, 0)|+ |Q( Z, 0)|) dZ
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+
G1 ||U(η1)||+ Ĝ

Γ(ξ)

(∫ η2

η1

(η2 − Z)ξ−1 (|Q( Z,U(Z) )−Q( Z, 0)|+ |Q( Z, 0)|) dZ

+

∫ η1

0

[
(η2 − Z)ξ−1 − (η1 − Z)ξ−1

]
(|Q( Z,U(Z) )−Q( Z, 0)|+ |Q( Z, 0)|) dZ

)
≤ (G1 β(U , ϖ) + βG(b0, ϖ)) Q1||U||

Γ(ξ + 1)
ηξ2

+
(G1 ||U||+ Ĝ) Q1||U||

Γ(ξ + 1)

(
(η2 − η1)

ξ + (ηξ2 − ηξ1 − (η2 − η1)
ξ)
)

≤ (G1 β(U , ϖ) + βG(b0, ϖ)) Q1||U||
Γ(ξ + 1)

ηξ2 +
(G1 ||U||+ Ĝ) Q1||U||

Γ(ξ + 1)

(
ηξ2 − ηξ1

)

where

βG(b0, ϖ) = sup {|G(η2,U)− G(η1,U)| : |η2 − η1| ≤ ϖ, η1, η2 ∈ T, ∥ U ∥≤ b0} ,

and ,

β(U , ϖ) = sup {|U(η2)− U(η1)| ≤ ϖ; |η2 − η1| ≤ ϖ; η1, η2 ∈ T}

Again ,

J2(η2, η1)

=
∣∣∣ 1

Γ(ζ)

∫ η2

0

(η2 − Z)ζ−1 K( Z,U(Z) ) dZ− 1

Γ(ζ)

∫ η1

0

(η1 − Z)ζ−1 K( Z,U(Z) ) dZ
∣∣∣

≤ 1

Γ(ζ)

(∫ η1

0

(η2 − Z)ζ−1 |K( Z,U(Z) )| dZ+

∫ η2

η1

(η2 − Z)ζ−1 |K( Z,U(Z) )| dZ

−
∫ η1

0

(η1 − Z)ζ−1 |K( Z,U(Z) )| dZ
)

≤ 1

Γ(ζ)

(∫ η2

η1

(η2 − Z)ζ−1 (|K( Z,U(Z) )−K( Z, 0)|+ |K( Z, 0)|) dZ

+

∫ η1

0

((η2 − Z)ζ−1 − (η1 − Z)ζ−1) (|K( Z,U(Z) )−K( Z, 0)|+ |K( Z, 0)|) dZ
)

≤ K1||U||
Γ(ζ + 1)

(
(η2 − η1)

ζ + (ηζ2 − ηζ1 − (η2 − η1)
ζ)
)

≤ K1||U||
Γ(ζ + 1)

(
ηζ2 − ηζ1

)
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As ϖ → 0, then η2 → η1 , so we get

lim
ϖ→0

J1(η2, η1) →
(G1 β(U , ϖ) + βG(b0, ϖ)) Q1||U||

Γ(ξ + 1)
ηξ2

and ,
lim
ϖ→0

J2(η2, η1) → 0

Hence, from the equation (5.9) , we get

|(FU)(η2)− (FU)(η1)| ≤
(G1 β(U , ϖ) + βG(b0, ϖ)) Q1||U||

Γ(ξ + 1)
ηξ2

i.e

β(FU , ϖ) ≤ (G1 β(U , ϖ) + βG(b0, ϖ)) Q1||U||
Γ(ξ + 1)

Lξ [since, η2 ∈ T = [0, L]]

Since ||U|| ≤ b0 , we get

β(FU , ϖ) ≤ (G1 β(U , ϖ) + βG(b0, ϖ)) Q1||b0||
Γ(ξ + 1)

Lξ

By uniform continuty of G on T × [−b0, b0] , we have lim
ϖ→0

βG(b0, ϖ) → 0 as ϖ → 0 . Taking

supU∈℧ and ϖ → 0 , we get

β0(F ℧) ≤ G1 Q1 b0 L
ξ

Γ(ξ + 1)
β0(℧)

Thus
β0(F ℧) ≤ M̄ β0(℧)

Where , M̄ =
G1 Q1 b0 L

ξ

Γ(ξ + 1)
< 1

(
Since ,

(G1 b0 + Ĝ) Q1

Γ(ξ + 1)
Lξ +

K1

Γ(ζ + 1)
Lζ ≤ 1

)
From Corollary 3.6 , F has a fixed point for in ℧ ⊆ Xb0

i,e the equation (5.7) has a solution in G.
Thus , we can say that the equation (5.6) has a solution in G.

□

Now , we take an example to illustrate the theorem 5.5.

Example 5.6. Taking the following IDE:
D

1
5

U(η)− I 1
7

U(η)
17+η

U(η) + 1

19 + η

 =
U(η)
21 + η

,

U(0) = 0 ,

(5.10)

for η ∈ [0, 1] = T,

which is a particular case of equation (5.6).
Here,

ξ =
1

5
, ζ =

1

7
;

K(η,U(η)) = U(η)
17 + η

;
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G(η,U(η)) = U(η) + 1

19 + η
;

Q(η,U(η)) = U(η)
21 + η

;

and
L = 1.

Also, it is obvious that K,G and Q are contineous satisfying

|K(η,U(η))−K(η,U1(η)| ≤
|U − U1|

17
;

|G(η,U(η))− G(η,U1(η)| ≤
|U − U1|

19
;

and

|Q(η,U(η))−Q(η,U1(η)| ≤
|U − U1|

21
;

Therefore , K1 =
1

17
, G1 =

1

19
, Q1 =

1

21
.

And

Ĝ = sup
η∈T

G(η, 0)

=
1

19

Now , putting these values , the inequality of assumption (IV) becomes ,

( b0
19

+ 1
19
)× 1

21

Γ(1
5
+ 1)

1
1
5 +

1
17

Γ(1
7
+ 1)

1
1
7 ≤ 1

=⇒ b0 + 1

19× 21× Γ(6
5
)
≤

17 Γ(8
7
)− 1

17 Γ(8
7
)

=⇒ b0 ≤
(17 Γ(8

7
)− 1)× 19× 21× Γ(6

5
)

17 Γ(8
7
)

− 1.

However, assumption (IV) is also satisfied for b0 =

[
(17 Γ(8

7
)− 1)× 19× 21× Γ(6

5
)
]
− 17 Γ(8

7
)

17 Γ(8
7
)

.

Thus , we have achieved all of the assumptions from (I) to (IV ) in Theorem 5.5 .
From Theorem 5.5 , we can say that The equation (5.10) have solutions in G = C(T ).
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