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Abstract. In this paper, we consider the problem of representing any polynomial in
terms of the ordered Bell and degenerate ordered Bell polynomials, and more generally
of the higher-order ordered Bell and higher-order degenerate ordered Bell polynomials.
We derive explicit formulas with the help of umbral calculus and illustrate our results
with some examples.

1. Introduction and preliminaries

The ordered Bell numbers (also called Fubini numbers) bn arise from number theory
and various counting problems in enumerative combinatorics (see [5,14]). The ordered
Bell numbers bn appeared already in 1859 work of Cayley [3], who used them to count
certain plane trees with n + 1 totally ordered leaves. While the (unordered) Bell
numbers Beln given by e(e

t−1) =
∑∞

n=0Beln
tn

n!
count partitions of [n] = {1, 2, . . . , n}

into nonempty disjoint subsets, the ordered Bell numbers count ordered partitions
of [n]. Equivalently, the ordered Bell numbers bn count either the number of weak
orderings on a set of n elements or the mappings from [n] to itself whose image is
[ℓ], 1 ≤ ℓ ≤ n. They also count formulas in Fubini’s theorem when rearranging the
order of summation in multiple sums. We let the reader refer to [19], for details on the
numerous uses of the ordered Bell numbers in counting problems.

Let p(x) ∈ C[x], with deg p(x) = n. Write p(x) =
∑n

k=0 akBk(x), where Bn(x) are the
Bernoulli polynomials (see (1.3)). Then it is known (see [12]) that

(1.1) a0 =

∫ 1

0

p(t)dt, ak =
1

k!
(p(k−1)(1)− p(k−1)(0)), for k = 1, 2, . . . , n.

Applying the formulas in (1.1) to the polynomial p(x) =
∑n−1

k=1
1

k(n−k)
Bk(x)Bn−k(x), we

can obtain an identity (see [12,16]) which yields, afer slight modification, the following
identity:

n−1∑
k=1

1

2k (2n− 2k)
B2k (x)B2n−2k (x) +

2

2n− 1
B1 (x)B2n−1 (x)(1.2)

=
1

n

n∑
k=1

1

2k

(
2n

2k

)
B2kB2n−2k (x) +

1

n
H2n−1B2n (x) +

2

2n− 1
B1 (x)B2n−1,

2000 Mathematics Subject Classification. 05A19; 05A40; 11B68; 11B83.
Key words and phrases. ordered Bell polynomial; degenerate ordered Bellpolynomial; higher-order

ordered Bell polynomial; higher-order degenerate ordered Bell polynomial; umbral calculus.
1

6 Oct 2021 20:59:30 PDT
211006-TaekyunKim Version 1 - Submitted to Rocky Mountain J. Math.
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where n ≥ 2, and Hn = 1 + 1
2
+ · · · + 1

n
. Letting x = 0 and x = 1

2
in (1.2) respec-

tively give a slight variant of the Miki’s identity and the Faber-Pandharipande-Zagier
(FPZ) identity. Here it should be emphasized that the other proofs of Miki’s (see
[8,17,21]) and FPZ identities (see [6,7]) are quite involved, while our proofs of Miki’s
and FPZ identities follow from the simple formulas in (1.1) involving only derivatives
and integrals of the given polynomials.

Analogous formulas to Remark 3.2 can be obtained for the representations by Bernoulli,
Euler and Genocchi polynomials. Many interesting identities have been derived by
using these formulas (see [10,12,13]). The list in the References are far from being
exhaustive. However, the interested reader can easily find more related papers in the
literature. Also, we should mention here that there are other ways of obtaining the
same result as the one in (1.2). One of them is to use Fourier series expansion of the
function obtained by extending by periodicity 1 of the polynomial function restricted
to the interval [0, 1) (see [15,16]).

The aim of this paper is to derive formulas (see Theorem 3.1) expressing any polynomial
in terms of the degenerate ordered Bell polynomials (see [11]) with the help of umbral
calculus (see [4,20,22]) and to illustrate our results with some examples (see Chapter
5). This is generalized to the higher-order degenerate ordered Bell polynomials. In-
deed, we deduce formulas of representing any polynomial in terms of the higher-order
degenerate ordered Bell polynomials (see Theorems 4.1) again by using umbral calculus
and illustrate them with some examples (see Chapter 6). Letting λ → 0, we obtain
formulas of expressing any polynomial in terms of ordered Bell and higher-order or-
dered Bell polynomials. These formulas are also illustrated in Chapters 5 and 6. The
contribution of this paper is the derivation of such formulas which have many potential
applications.

The outline of this paper is as follows. In Section 1, we recall some necessary facts
that are needed throughout this paper. In Section 2, we go over umbral calculus
briefly. In Section 3, we derive formulas expressing any polynomial in terms of the
degenerate ordered Bell polynomials. In Section 4, we derive formulas representing
any polynomial in terms of the higher-order degenerate ordered Bell polynomials. In
Section 5, we illustrate our results for representations by ordered Bell and higher-order
ordered Bell polynomials with some examples. In Section 6, we illustrate our results for
representations by degenerate ordered Bell and higher-order degenerate ordered Bell
polynomials with some examples. Finally, we conclude our paper in Section 7.

The Bernoulli polynomials Bn(x) are defined by

(1.3)
t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n!
.

When x = 0, Bn = Bn(0) are called the Bernoulli numbers. We observe that Bn(x) =∑n
j=0

(
n
j

)
Bn−jx

j, d
dx
Bn(x) = nBn−1(x), Bn(x+1)−Bn(x) = nxn−1. The first few terms

of Bn are given by:

B0 = 1, B1 = −1

2
, B2 =

1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
,

B12 = − 691

2730
, . . . ;B2k+1 = 0, (k ≥ 1).
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The Euler polynomials En(x) are defined by

(1.4)
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
.

When x = 0, En = En(0) are called the Euler numbers. We observe that En(x) =∑n
j=0

(
n
j

)
En−jx

j, d
dx
En(x) = nEn−1(x), En(x + 1) + En(x) = 2xn. The first few terms

of En are given by:

E0 = 1, E1 = −1

2
, E3 =

1

4
, E5 = −1

2
, E7 =

17

8
, E9 = −31

2
, . . . ;

E2k = 0, (k ≥ 1).

The Genocchi polynomials Gn(x) are defined by

(1.5)
2t

et + 1
ext =

∞∑
n=0

Gn(x)
tn

n!
.

When x = 0, Gn = Gn(0) are called the Genocchi numbers. We observe that Gn(x) =∑n
j=0

(
n
j

)
Gn−jx

j, d
dx
Gn(x) = nGn−1(x), Gn(x+1)+Gn(x) = 2nxn−1, and degGn(x) =

n− 1, for n ≥ 1. Note that G0(x) = 0. The first few terms of Gn are given by:

G0 = 0, G1 = 1, G2 = −1, G4 = 1, G6 = −3, G8 = 17, G10 = −155

G12 = 2073, . . . ;G2k+1 = 0, (k ≥ 1).

The ordered Bell polynomials bn(x) are defined by

(1.6)
1

2− et
ext =

∞∑
n=0

bn(x)
tn

n!
.

When x = 0, bn = bn(0) are called the ordered Bell numbers. We observe that bn(x) =∑n
j=0

(
n
j

)
bn−jx

j, d
dx
bn(x) = nbn−1(x), 2bn(x) − bn(x + 1) = xn. The first few terms of

bn are given by:

b0 = 1, b1 = 1, b2 = 3, b3 = 13, b4 = 75, b5 = 541, b6 = 4683, b7 = 47293 . . . .

More generally, for any nonnegative integer r, the ordered Bell polynomials b
(r)
n (x) of

order r are given by

(1.7)

(
1

2− et

)r

ext =
∞∑
n=0

b(r)n (x)
tn

n!
.

For any nonzero real number λ, the degenerate exponentials are given by

exλ(t) = (1 + λt)
x
λ =

∞∑
n=0

(x)n,λ
tn

n!
,(1.8)

eλ(t) = e1λ(t) = (1 + λt)
1
λ =

∞∑
n=0

(1)n,λ
tn

n!
.

6 Oct 2021 20:59:30 PDT
211006-TaekyunKim Version 1 - Submitted to Rocky Mountain J. Math.



4 DAE SAN KIM AND TAEKYUN KIM

In [11], in the spirit of [1] and as a degenerate version of them, the degenerate ordered
Bell polynomials bn,λ(x) are introduced, which are given by

(1.9)
1

2− eλ(t)
exλ(t) =

∞∑
n=0

bn,λ(x)
tn

n!
.

For x = 0, bn,λ = bn,λ(0) are called the degenerate ordered Bell numbers.

More generally, for any nonnegative integer r, the degenerate ordered Bell polynomials

b
(r)
n,λ(x) of order r are given by

(1.10)

(
1

2− eλ(t)

)r

exλ(t) =
∞∑
n=0

b
(r)
n,λ(x)

tn

n!
.

We remark that bn,λ(x) → bn(x), and b
(r)
n,λ(x) → b

(r)
n (x), as λ tends to 0.

We recall some notations and facts about forward differences. Let f be any complex-
valued function of the real variable x. Then, for any real number a, the forward
difference ∆a is given by

(1.11) ∆af(x) = f(x+ a)− f(x).

If a = 1, then we let

(1.12) ∆f(x) = ∆1f(x) = f(x+ 1)− f(x).

In general, the nth oder forward differences are given by

(1.13) ∆n
af(x) =

n∑
i=0

(
n

i

)
(−1)n−if(x+ ia).

For a = 1, we have

(1.14) ∆nf(x) =
n∑

i=0

(
n

i

)
(−1)n−if(x+ i).

Finally, we recall that the Stirling numbers of the second kind S2(n, k) can be given
by means of

(1.15)
1

k!
(et − 1)k =

∞∑
n=k

S2(n, k)
tn

n!
.

2. Review of umbral calculus

Here we will briefly go over very basic facts about umbral calculus. For more details
on this, we recommend the reader to refer to [4,20,22]. Let C be the field of complex
numbers. Then F denotes the algebra of formal power series in t over C, given by

F =

{
f(t) =

∞∑
k=0

ak
tk

k!

∣∣∣∣ ak ∈ C
}
,

and P = C[x] indicates the algebra of polynomials in x with coefficients in C.
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ORDERED BELL AND DEGENERATE ORDERED BELL POLYNOMIALS 5

Let P∗ be the vector space of all linear functionals on P. If ⟨L|p(x)⟩ denotes the action
of the linear functional L on the polynomial p(x), then the vector space operations on
P∗ are defined by

⟨L+M |p(x)⟩ = ⟨L|p(x)⟩+ ⟨M |p(x)⟩, ⟨cL|p(x)⟩ = c⟨L|p(x)⟩,

where c is a complex number.

For f(t) ∈ F with f(t) =
∞∑
k=0

ak
tk

k!
, we define the linear functional on P by

(2.1) ⟨f(t)|xk⟩ = ak.

From (2.1), we note that

⟨tk|xn⟩ = n!δn,k, (n, k ≥ 0),

where δn,k is the Kronecker’s symbol.

Some remarkable linear functionals are as follows:

⟨eyt|p(x)⟩ = p(y),

⟨eyt − 1|p(x)⟩ = p(y)− p(0),(2.2) 〈
eyt − 1

t

∣∣∣∣p(x)〉 =

∫ y

0

p(u)du.

Let

(2.3) fL(t) =
∞∑
k=0

⟨L|xk⟩ t
k

k!
.

Then, by (2.1) and (2.3), we get

⟨fL(t)|xn⟩ = ⟨L|xn⟩.

That is, fL(t) = L. Additionally, the map L 7−→ fL(t) is a vector space isomorphism
from P∗ onto F .

Henceforth, F denotes both the algebra of formal power series in t and the vector space
of all linear functionals on P. F is called the umbral algebra and the umbral calculus is
the study of umbral algebra. For each nonnegative integer k, the differential operator
tk on P is defined by

(2.4) tkxn =

{
(n)kx

n−k, if k ≤ n,
0, if k > n.

Extending (2.4) linearly, any power series

f(t) =
∞∑
k=0

ak
k!
tk ∈ F

gives the differential operator on P defined by

(2.5) f(t)xn =
n∑

k=0

(
n

k

)
akx

n−k, (n ≥ 0).
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It should be observed that, for any formal power series f(t) and any polynomial p(x),
we have

(2.6) ⟨f(t)|p(x)⟩ = ⟨1|f(t)p(x)⟩ = f(t)p(x)|x=0.

Here we note that an element f(t) of F is a formal power series, a linear functional
and a differential operator. Some notable differential operators are as follows:

eytp(x) = p(x+ y),

(eyt − 1)p(x) = p(x+ y)− p(x),(2.7)

eyt − 1

t
p(x) =

∫ x+y

x

p(u)du.

The order o(f(t)) of the power series f(t)(̸= 0) is the smallest integer for which ak does
not vanish. If o(f(t)) = 0, then f(t) is called an invertible series. If o(f(t)) = 1, then
f(t) is called a delta series.

For f(t), g(t) ∈ F with o(f(t)) = 1 and o(g(t)) = 0, there exists a unique sequence
sn(x) (deg sn(x) = n) of polynomials such that

(2.8)
〈
g(t)f(t)k|sn(x)

〉
= n!δn,k, (n, k ≥ 0).

The sequence sn(x) is said to be the Sheffer sequence for (g(t), f(t)), which is denoted
by sn(x) ∼ (g(t), f(t)). We observe from (2.8) that

(2.9) sn(x) =
1

g(t)
pn(x),

where pn(x) = g(t)sn(x) ∼ (1, f(t)).

In particular, if sn(x) ∼ (g(t), t), then pn(x) = xn, and hence

(2.10) sn(x) =
1

g(t)
xn.

It is well known that sn(x) ∼ (g(t), f(t)) if and only if

(2.11)
1

g
(
f(t)

)exf(t) = ∞∑
k=0

sk(x)

k!
tk,

for all x ∈ C, where f(t) is the compositional inverse of f(t) such that f(f(t)) =
f(f(t)) = t.

The following equations (2.12), (2.13), and (2.14) are equivalent to the fact that sn (x)
is Sheffer for (g (t) , f (t)), for some invertible g(t):

f (t) sn (x) = nsn−1 (x) , (n ≥ 0) ,(2.12)

sn (x+ y) =
n∑

j=0

(
n

j

)
sj (x) pn−j (y) ,(2.13)

with pn (x) = g (t) sn (x) ,

(2.14) sn (x) =
n∑

j=0

1

j!

〈
g
(
f (t)

)−1
f (t)j

∣∣xn
〉
xj.
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For sn(x) ∼ (g(t), f(t)), and rn(x) ∼ (h(t), l(t)), we have

(2.15) sn (x) =
n∑

k=0

Cn,krk (x) , (n ≥ 0) ,

where

(2.16) Cn,k =
1

k!

〈
h
(
f (t)

)
g
(
f (t)

) l (f (t)
)k∣∣∣xn

〉
.

3. Representation by degenerate ordered Bell polynomials

Our interest here is to derive formulas expressing any polynomial in terms of the
degenerate ordered Bell polynomials.

From (1.9) and (2.11), we first observe that

bn,λ(x) ∼
(
g(t) = 2− et, f(t) =

1

λ
(eλt − 1)

)
,(3.1)

(x)n,λ ∼ (1, f(t) =
1

λ
(eλt − 1)).(3.2)

From (1.11), (2.7), (2.12), (3.1) and (3.2), we note that

f(t)bn,λ(x) = nbn−1,λ(x) =
1

λ
(eλt − 1)bn(x) =

1

λ
∆λbn(x),(3.3)

f(t)(x)n,λ = n(x)n−1,λ.(3.4)

It is immediate to see from (1.9) and (1.12) that

2bn,λ(x)− bn,λ(x+ 1) = bn,λ(x)−∆bn,λ(x) = (I −∆)bn,λ(x) = (x)n,λ,(3.5)

where I is the identity operator.

Now, we assume that p(x) ∈ C[x] has degree n, and write p(x) =
∑n

k=0 akbk,λ(x). Let
h(x) = 2p(x)− p(x+ 1). Then, from (3.5), we have

h(x) =
n∑

k=0

ak(2bk,λ(x)− bk,λ(x+ 1))(3.6)

=
n∑

k=0

ak(x)k,λ.

For k ≥ 0, from (3.4) and (3.6) we obtain

(f(t))kh(x) = (f(t))k
n∑

l=0

al(x)l,λ(3.7)

=
n∑

l=k

l(l − 1) · · · (l − k + 1)al(x)l−k,λ.

Letting x = 0 in (3.7), we finally get

(3.8) ak =
1

k!
(f(t))kh(x)|x=0 =

1

k!
⟨(f(t))k|h(x)⟩, (k ≥ 0).
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An alternative expression of (3.8) is given by

ak =
1

k!λk
∆k

λh(x)|x=0

=
1

k!λk
(2∆k

λp(x)−∆k
λp(x+ 1))|x=0(3.9)

=
1

k!λk
(2∆k

λp(0)−∆k
λp(1)),

as f(t)h(x) = 1
λ
(eλt − 1)h(x) = 1

λ
∆λh(x).

From (1.13), we have another alternative expression of (3.8) which is given by

ak =
1

k!λk
∆k

λh(x)|x=0

=
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j(h(x+ jλ)|x=0(3.10)

=
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j

(
2p(x+ jλ)− p(x+ 1 + jλ)

)
|x=0

=
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j

(
2p(jλ)− p(1 + kλ)

)
.

By using (1.15), we obtain yet another expression of (3.8) that is given by

ak =
1

k!
⟨(f(t))k|h(x)⟩

=
1

λk

〈
1

k!
(eλt − 1)k

∣∣∣∣h(x)〉(3.11)

=
1

λk

〈 ∞∑
l=k

S2(l, k)
λltl

l!

∣∣∣∣h(x)〉

=
n∑

l=k

S2(l, k)
λl−k

l!

(
2p(l)(0)− p(l)(1)

)
,

where p(l)(x) = ( d
dx
)lp(x).

Finally, from (3.8)–(3.11), we get the following theorem.

Theorem 3.1. Let p(x) ∈ C[x], deg p(x) = n. Let f(t) = 1
λ
(eλt − 1). Then we have

p(x) =
∑n

k=0 akbk,λ(x),
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ORDERED BELL AND DEGENERATE ORDERED BELL POLYNOMIALS 9

where

ak =
1

k!
(f(t))k(2p(x)− p(x+ 1))|x=0

=
1

k!
⟨(f(t))k|2p(x)− p(x+ 1)⟩

=
1

k!λk

〈(
eλt − 1

)k∣∣2p(x)− p(x+ 1)
〉

=
1

k!λk
(2∆k

λp(x)−∆k
λp(x+ 1))|x=0

=
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j

(
2p(jλ)− p(1 + jλ)

)
=

n∑
l=k

S2(l, k)
λl−k

l!

(
2p(l)(0)− p(l)(1)

)
, for k = 0, 1, . . . , n.

Remark 3.2. Let p(x) ∈ C[x], with deg p(x) = n. Write p(x) =
∑n

k=0 akbk(x). As λ
tends to 0, f(t) → t. Thus we obtain the following result:

ak =
1

k!
(2p(k)(0)− p(k)(1)), for k = 0, 1, . . . , n.(3.12)

Remark 3.3. Formulas similar to (3.12) for Bernoulli, Euler and Genocchi polyno-
mials have been applied to many polynomials in oder to obtain interesting identities for
certain special polynomials and numbers (see [10,12,13]). Some of the polynomials that
have been considered are as follows:

(a) ∑
Bi1(x) · · ·Bir(x)Ej1(x) · · ·Ejs(x)Gk1+1(x) · · ·Gkt+1(x)x

l,

where the sum is over all nonnegative integers i1, · · · , ir, j1, · · · , js, k1, · · · , kt, l such
that i1 + · · · + ir + j1 + · · · + js + k1 + · · · + kt + l = n, and r, s, t, l are nonnegative
integers with r + s+ t ≥ 1.
(b) ∑ Bi1(x) · · ·Bir(x)Ej1(x) · · ·Ejs(x)Gk1+1(x) · · ·Gkt+1(x)x

l

i1! · · · ir!j1! · · · js!(k1 + 1)! · · · (kt + 1)!l!
,

where the sum is over all nonnegative integers i1, · · · , ir, j1, · · · , js, k1, · · · , kt, l such
that i1 + · · · + ir + j1 + · · · + js + k1 + · · · + kt + l = n, and r, s, t, l are nonnegative
integers with r + s+ t ≥ 1.
(c) ∑ Bi1(x) · · ·Bir(x)Ej1(x) · · ·Ejs(x)Gk1+1(x) · · ·Gkt+1(x)x

l

i1 · · · irj1 · · · js(k1 + 1) · · · (kt + 1)l
,

where the sum is over all positive integers i1, · · · , ir, j1, · · · , js, l and nonnegative inte-
gers k1, · · · , kt such that i1 + · · ·+ ir + j1 + · · ·+ js + k1 + · · ·+ kt + l = n, and r, s, t, l
are nonnegative integers with r + s+ t ≥ 1.
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4. Representation by higher-order degenerate ordered Bell
polynomials

Our interest here is to derive formulas expressing any polynomial in terms of the higher-
order degenerate ordered Bell polynomials.

With g(t) = 2− et, f(t) = 1
λ
(eλt − 1), and from (1.10) and (2.11), we note that

(4.1) b
(r)
n,λ(x) ∼ (g(t)r, f(t)).

Also, from (4.1) and (2.12), we have

(4.2) f(t)b
(r)
n,λ(x) = nb

(r)
n−1,λ(x),

and from (1.10), it is immediate to see that

(4.3) g(t)b
(r)
n,λ(x) = 2b

(r)
n,λ(x)− b

(r)
n,λ(x+ 1) = b

(r−1)
n,λ (x).

Thus, from (4.3) we have g(t)rb
(r)
n,λ(x) = b

(0)
n,λ(x) = (x)n,λ.

Now, we assume that p(x) ∈ C[x] has degree n, and write p(x) =
∑n

k=0 akb
(r)
k,λ(x). Then

we have

(4.4) g(t)rp(x) =
n∑

l=0

al g(t)
rb

(r)
l,λ(x) =

n∑
l=0

al(x)l,λ.

By using (3.4) and (4.4), we observe that

f(t)kg(t)rp(x) =
n∑

l=0

alf(t)
k(x)l,λ(4.5)

=
n∑

l=k

al l(l − 1) · · · (l − k + 1)(x)l−k,λ.

By evaluating (4.5) at x = 0, we obtain

(4.6) ak =
1

k!
f(t)kg(t)rp(x)|x=0 =

1

k!
⟨f(t)kg(t)r|p(x)⟩.

This also follows from the observation ⟨g(t)rf(t)k|b(r)l,λ(x)⟩ = l! δl,k.

We would like to find more explicit expressions for (4.6).

For this purpose, we first observe that

g(t)rp(x) = (I −∆)rp(x) = 2r
r∑

j=0

(
r

j

)(
− 1

2

)j
p(x+ j).(4.7)
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Several alternative expressions of (4.6) follow from (4.7) and (1.13), which are given
by

ak =
1

k!
g(t)rf(t)kp(x)|x=0

=
1

k!λk
(I −∆)r∆k

λp(x)|x=0(4.8)

=
1

k!λk
(I −∆)r−1∆k

λ(2p(x)− p(x+ 1))|x=0

=
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
p(j + lλ), (0 ≤ k ≤ n).

Next, from (1.15) we observe that

f(t)kp(x) =
k!

λk

1

k!
(eλt − 1)kp(x) =

k!

λk

n∑
l=k

S2(l, k)
λl

l!
tlp(x),(4.9)

Combining (4.7) and (4.9), we see that

ak =
1

k!
f(t)kg(t)rp(x)|x=0

=
1

λk

n∑
l=k

S2(l, k)
λl

l!
tlg(t)rp(x)|x=0(4.10)

=
1

λk

n∑
l=k

S2(l, k)
λl

l!
tl2r

r∑
j=0

(
r

j

)(
− 1

2

)j
p(x+ j)|x=0

=
2r

λk

n∑
l=k

r∑
j=0

(
r

j

)
(−1

2
)j
λl

l!
S2(l, k)p

(l)(j).

Now, from (4.8) and (4.10), we finally arrive at the following theorem.

Theorem 4.1. Let p(x) ∈ C[x], deg p(x) = n. Let g(t) = 2 − et, f(t) = 1
λ
(eλt − 1).

Then we have p(x) =
∑n

k=0 akb
(r)
k,λ(x), where

ak =
1

k!
f(t)kg(t)rp(x)|x=0

=
1

k!
⟨f(t)kg(t)r|p(x)⟩

=
1

k!λk
(I −∆)r∆k

λp(x)|x=0

=
1

k!λk
(I −∆)r−1∆k

λ(2p(x)− p(x+ 1))|x=0

=
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
p(j + lλ)

= 2r
n∑

l=k

r∑
j=0

(
r

j

)
(−1

2
)j
λl−k

l!
S2(l, k)p

(l)(j), (0 ≤ k ≤ n).
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12 DAE SAN KIM AND TAEKYUN KIM

Remark 4.2. Let p(x) ∈ C[x], with deg p(x) = n. Write p(x) =
∑n

k=0 akb
(r)
k (x). As λ

tends to 0, f(t) → t. Thus, from Theorem 4.1, we have the following result:

ak =
1

k!
f(t)kg(t)rp(x)|x=0

=
2r

k!

r∑
j=0

(
r

j

)
(−1

2
)jp(k)(j)

=
1

k!
(I −∆)rp(k)(x)|x=0

=
1

k!

r∑
j=0

(
r

j

)
(−1)j∆jp(k)(x)|x=0(4.11)

=
1

k!
(I −∆)r−1

(
2p(k)(x)− p(k)(x+ 1)

)
|x=0

=
1

k!

r−1∑
j=0

(
r − 1

j

)
(−1)j

(
2∆jp(k)(x)−∆jp(k)(x+ 1)

)
|x=0,

where g(t) = 2− et, f(t) = t.

5. Examples on representations by ordered Bell polynomials

Here we illustrate our formulas in Remarks 3.2 and 4.2 with some examples.

(a) Let p(x) = Bn(x) =
∑n

k=0 akbk(x). Then, noting that Bn(1)−Bn = δn,1 from (1.3),
we have

ak =
1

k!
(2p(k)(0)− p(k)(1)) =

(
n

k

)
(2Bn−k −Bn−k(1))

=

(
n

k

)(
Bn−k − (Bn−k(1)−Bn−k)

)
=

(
n

k

)
(Bn−k − δn−k,1).

Thus Bn(x) =
∑n

k=0

(
n
k

)
(Bn−k − δn−k,1)bk(x).

Now, we let Bn(x) =
∑n

k=0 ckb
(r)
k (x). Then we obtain the following:

ck =
2r

k!

r∑
j=0

(
r

j

)(
− 1

2

)j
p(k)(j)

= 2r
(
n

k

) r∑
j=0

(
r

j

)
(−1

2
)jBn−k(j).

Hence Bn(x) = 2r
∑n

k=0

∑r
j=0

(
n
k

)(
r
j

)(
− 1

2

)j
Bn−k(j) b

(r)
k (x).

These results on representations of Bn(x) by bk(x) and b
(r)
k (x) also follow from (2.16).
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(b) Let p(x) =
∑n−1

k=1
1

k(n−k)
Bk(x)Bn−k(x), (n ≥ 2). For this, we first recall from [12]

that

(5.1) p(x) =
2

n

n−2∑
l=0

1

n− l

(
n

l

)
Bn−lBl(x) +

2

n
Hn−1Bn(x),

where Hn = 1+ 1
2
+ · · ·+ 1

n
is the harmonic number. A slight modification of (5.1) gives

the Miki’s and FPZ identities. Let p(x) =
∑n

k=0 akbk(x). Then, for 0 ≤ k ≤ n− 2, we
have

k!ak = 2p(k)(0)− p(k)(1)

=
2

n

n−2∑
l=k

1

n− l

(
n

l

)
Bn−l(l)k(Bl−k − δl−k,1) +

2

n
Hn−1(n)kBn−k;

For k = n− 1 or k = n, we have

k!ak =
2

n
Hn−1(n)k(Bn−k − δn−k,1).

Hence we get

n−1∑
k=1

1

k(n− k)
Bk(x)Bn−k(x)

=
n−2∑
k=0

{
2

n

n−2∑
l=k

1

n− l

(
n

l

)(
l

k

)
Bn−l(Bl−k − δl−k,1) +

2

n

(
n

k

)
Hn−1Bn−k

}
bk(x)

− 3Hn−1bn−1(x) +
2

n
Hn−1bn(x).

(c) Let Ωl =
∑s

a=1

(
s
a

)
2a(−1)s−a

∑
i1+···+ia=l

∏a
j=1 bij −

∑
i1+···+is=l

∏s
j=1 bij . Let p(x) =∑

i1+···+is=n

∏s
j=1 bij(x). Then, from Theorems 2 and 3 in [5], it is immediate to see

that

p(x) =
1

n+ s

n∑
j=0

(
n+ s

j

)
Ωn−j+1Bj(x).

Let p(x) =
∑n

k=0 akbk(x). Then, for 0 ≤ k ≤ n, we have

k!ak = 2p(k)(0)− p(k)(1) =
1

n+ s

n∑
j=k

(
n+ s

j

)
Ωn−j+1(j)k(Bj−k − δj−k,1).

Thus we obtain

∑
i1+···+is=n

s∏
j=1

bij(x) =
1

n+ s

n∑
k=0

{ n∑
j=k

(
n+ s

j

)(
j

k

)
Ωn−j+1(Bj−k − δj−k,1)

}
bk(x).
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(d) In [16], it is proved that the following identity is valid for n ≥ 2:

(5.2)
n−1∑
k=1

1

k(n− k)
Gk(x)Gn−k(x) = − 4

n

n−2∑
k=0

(
n

k

)
Gn−k

n− k
Bk(x).

Write p(x) =
∑n−1

k=1
1

k(n−k)
Gk(x)Gn−k(x) =

∑n−2
k=0 akb

(r)
k (x).

ak =
2r

k!

r∑
j=0

(
r

j

)(
− 1

2

)j
p(k)(j)

= −2r+2

n

r∑
j=0

n−2∑
l=k

(
− 1

2

)j(r
j

)(
n

l

)(
l

k

)
Gn−l

n− l
Bl−k(j).

Therefore we obtain the following result:

n−1∑
k=1

1

k(n− k)
Gk(x)Gn−k(x)

= −2r+2

n

n−2∑
k=0

{ r∑
j=0

n−2∑
l=k

(−1

2
)j
(
r

j

)(
n

l

)(
l

k

)
Gn−l

n− l
Bl−k(j)

}
b
(r)
k (x).

(e) Nielsen [18,2] represented products of two Euler polynomials in terms of Bernoulli
polynomials as follows:

Em(x)En(x) = −2
m∑
i=1

(
m

i

)
Ei

Bm+n−i+1(x)

m+ n− i+ 1

− 2
n∑

j=1

(
n

j

)
Ej

Bm+n−j+1(x)

m+ n− j + 1

+ 2(−1)n+1 m!n!

(m+ n+ 1)!
Em+n+1.

Write p(x) = Em(x)En(x) =
∑m+n

k=0 akb
(r)
k (x). We now observe that

ak =
2r

k!

r∑
j=0

(
r

j

)(
− 1

2

)j
p(k)(j)

=
2r

k!

r∑
j=0

∑
a+b=k

(
r

j

)(
k

a, b

)(
− 1

2

)j
(Em(x))

(a)(En(x))
(b)|x=j,
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where (En(x))
(a) = ( d

dx
)aEn(x), and

(
k
a,b

)
= k!

a!b!
. Thus we obtain the following:

−2
m∑
i=1

(
m

i

)
Ei

Bm+n−i+1(x)

m+ n− i+ 1
− 2

n∑
j=1

(
n

j

)
Ej

Bm+n−j+1(x)

m+ n− j + 1

+ 2(−1)n+1 m!n!

(m+ n+ 1)!
Em+n+1

=
m+n∑
k=0

2r

k!

{ r∑
j=0

∑
a+b=k

(
r

j

)(
k

a, b

)
(−1

2
)j(Em(x))

(a)(En(x))
(b)|x=j

}
b
(r)
k (x).

6. Examples on representations by degenerate ordered Bell
polynomials

Here we illustrate our formulas in Theorems 3.1 and 4.1 with some examples.

(a) Let p(x) = En(x) =
∑n

k=0 akbk,λ(x). Then, noting En(1) + En = 2δn,0, we have

ak =
1

k!λk
(2∆k

λEn(x)−∆k
λEn(x+ 1))|x=0

=
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j

(
2En(jλ)− En(1 + jλ)

)
=

n∑
l=k

(
n

l

)
λl−kS2(l, k)

(
3En−l − 2δn,l

)
.

Hence we obtain

En(x) =
n∑

k=0

1

k!λk

(
(2∆k

λEn(x)−∆k
λEn(x+ 1))|x=0

)
bk,λ(x)

=
n∑

k=0

1

k!λk

{ k∑
j=0

(
k

j

)
(−1)k−j

(
2En(jλ)− En(1 + jλ)

)}
bk,λ(x)

=
n∑

k=0

{ n∑
l=k

(
n

l

)
λl−kS2(l, k)

(
3En−l − 2δn,l

)}
bk,λ(x).

Now, we let p(x) = En(x) =
∑n

k=0 ckb
(r)
k,λ(x). Recalling that En(x+ 1) + En(x) = 2xn,

we get

ck =
1

k!λk
(I −∆)r∆k

λEn(x)|x=0

=
1

k!λk
(I −∆)r−1∆k

λ(3En(x)− 2xn)|x=0
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=
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
En(j + lλ)

=
2r

λk

n∑
l=k

r∑
j=0

(
r

j

)(
n

l

)
(−1

2
)jλlS2(l, k)En−l(j).

This shows the following:

En(x) =
n∑

k=0

1

k!λk

(
(I −∆)r∆k

λEn(x)|x=0

)
b
(r)
k,λ(x)

=
n∑

k=0

1

k!λk

(
(I −∆)r−1∆k

λ(3En(x)− 2xn)|x=0

)
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
En(j + lλ)

}
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

λk

n∑
l=k

r∑
j=0

(
r

j

)(
n

l

)
(−1

2
)jλlS2(l, k)En−l(j)

}
b
(r)
k,λ(x).

These results on representations of En(x) by bk,λ(x) and b
(r)
k,λ(x) also follow from (2.16).

(b) Working similarly to (a) and recalling that 2bn(x)− bn(x+ 1) = xn, we have

bn(x) =
n∑

k=0

{
1

k!λk
(2∆k

λbn(x)−∆k
λbn(x+ 1))|x=0

}
bk,λ(x)

=
n∑

k=0

{
1

k!λk

k∑
j=0

(
k

j

)
(−1)k−j

(
2bn(jλ)− bn(1 + jλ)

)}
bk,λ(x)

=
n∑

k=0

S2(n, k)λ
n−kbk,λ(x).

More generally, we also have

bn(x) =
n∑

k=0

{
1

k!λk
(I −∆)r∆k

λbn(x)|x=0

}
b
(r)
k,λ(x)

=
n∑

k=0

{
1

k!λk
(I −∆)r−1∆k

λ(2bn(x)− bn(x+ 1))|x=0

}
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
bn(j + lλ)

}
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

λk

n∑
l=k

r∑
j=0

(
r

j

)(
n

l

)
(−1

2
)jλlS2(l, k)bn−l(j)

}
b
(r)
k,λ(x).

(c) As we mentioned earlier in (4.11), the following identity holds:
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∑
i1+···+is=n

s∏
j=1

bij(x) =
1

n+ s

n∑
i=0

(
n+ s

i

)
Ωn−i+1Bi(x),

where Ωl =
∑s

a=1

(
s
a

)
2a(−1)s−a

∑
i1+···+ia=l

∏a
j=1 bij −

∑
i1+···+is=l

∏s
j=1 bij .

Then, by proceeding similarly to (a), we have∑
i1+···+is=n

s∏
j=1

bij(x)

=
n∑

k=0

{
1

k!λk

1

n+ s

n∑
i=0

(
n+ s

i

)
Ωn−i+1(I −∆)r∆k

λBi(x)|x=0

}
b
(r)
k,λ(x)

=
n∑

k=0

{
1

n+ s

1

k!λk

n∑
i=0

(
n+ s

i

)
Ωn−i+1(I −∆)r−1∆k

λ(Bi(x)− jxj−1)|x=0

}
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

k!λk

1

n+ s

k∑
l=0

r∑
j=0

n∑
i=0

(−1)k+j−l

(
k

l

)(
r

j

)(
n+ s

i

)
1

2j
Ωn−i+1Bi(j + lλ)

}
b
(r)
k,λ(x)

=
n∑

k=0

{
2r

λk

1

n+ s

n∑
l=k

r∑
j=0

n∑
i=l

(
r

j

)(
i

l

)(
n+ s

i

)
(−1

2
)jλlS2(l, k)Ωn−i+1Bi−l(j)

}
b
(r)
k,λ(x)

(d) Nielsen [18,2] expressed products of two Bernoulli polynomials in terms of Bernoulli
polynomials. Namely, for positive integers m and n, with m+ n ≥ 2,

Bm(x)Bn(x) =
∑
r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2rBm+n−2r(x)

m+ n− 2r
+ (−1)m+1Bm+n(

m+n
m

) .
Then, by proceeding analogously to (a), we get∑

r

{(
m

2r

)
n+

(
n

2r

)
m

}
B2rBm+n−2r(x)

m+ n− 2r
+ (−1)m+1Bm+n(

m+n
m

)
=

m+n∑
k=0

{
1

k!λk
(I −∆)r∆k

λ

(
Bm(x)Bn(x)

)
|x=0

}
b
(r)
k,λ(x)

=
m+n∑
k=0

{
1

k!λk
(I −∆)r−1∆k

λ

(
2Bm(x)Bn(x)−Bm(x+ 1)Bn(x+ 1)

)
|x=0

}
b
(r)
k,λ(x)

=
m+n∑
k=0

{
2r

k!λk

k∑
l=0

r∑
j=0

(−1)k+j−l

(
k

l

)(
r

j

)
1

2j
Bm(j + lλ)Bn(j + lλ)

}
b
(r)
k,λ(x)

=
m+n∑
k=0

{
2r

λk

n∑
l=k

r∑
j=0

∑
a+b=l

(
r

j

)(
l

a, b

)
(−1

2
)j
λl

l!
S2(l, k)

(
Bm(x)

)(a)(
Bn(x)

)(b)|x=j

}
b
(r)
k,λ(x),

where (Bn(x))
(a) = ( d

dx
)aBn(x).
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(e) In (4.20) of [9], it is shown that the following identity holds for n ≥ s:∑
i1+···+is=n
i1,...,is≥1

Gi1(x) . . . Gis(x)

=
1

n+ s

s∑
l=1

(
s

l

)
(−2)l−1

∑
i0+i1+···+is−l=n+1−l

i0,i1,...,is−l≥1

(
n+ s

i0

)
Gi1 · · ·GisGi0(x).

Then, proceeding similarly to (b), we can show that

∑
i1+···+is=n
i1,...,is≥1

Gi1(x) . . . Gis(x) =
n−s∑
k=0

{
1

k!λk

1

n+ s

s∑
l=1

(
s

l

)
(−2)l−1

×
∑

i0+i1+···+is−l=n+1−l
i0,i1,...,is−l≥1

(
n+ s

i0

)
Gi1 · · ·Gis(I −∆)r∆k

λGi0(x)|x=0

}
b
(r)
k,λ(x)

=
n−s∑
k=0

{
1

k!λk

1

n+ s

s∑
l=1

(
s

l

)
(−2)l−1

∑
i0+i1+···+is−l=n+1−l

i0,i1,...,is−l≥1

(
n+ s

i0

)
Gi1 · · ·Gis

× (I −∆)r−1∆k
λ

(
3Gi0(x)− 2i0x

i0−1
)
|x=0

}
b
(r)
k,λ(x)

=
n−s∑
k=0

{
2r

k!λk

1

n+ s

k∑
a=0

r∑
j=0

s∑
l=1

(−1)k+j+a+l−1

(
k

a

)(
r

j

)(
s

l

)
2l−j−1

×
∑

i0+i1+···+is−l=n+1−l
i0,i1,...,is−l≥1

(
n+ s

i0

)
Gi1 · · ·GisGi0(j + aλ)

}
b
(r)
k,λ(x)

=
n−s∑
k=0

{
2r

λk

1

n+ s

n∑
a=k

r∑
j=0

s∑
l=1

(
r

j

)(
s

l

)(
i0
a

)
(−2)l−j−1λaS2(a, k)

×
∑

i0+i1+···+is−l=n+1−l
i1,...,is−l≥1, i0≥a+1

(
n+ s

i0

)
Gi1 · · ·GisGi0−a(j)

}
b
(r)
k,λ(x).

7. Conclusion

In this paper, we were interested in representing any polynomial in terms of the ordered
Bell and degenerate ordered Bell polynomials, and more generally of the higher-order
ordered Bell and higher-order degenerate ordered Bell polynomials. We were able to
derive formulas for such representations with the help of umbral calculus. Further, we
illustrated the formulas with some examples.

Even though the method adopted in this paper is elementary, they are very useful
and powerful. Indeed, as we mentioned in the Section 1, both a variant of Miki’s
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identity and Faber-Pandharipande-Zagier (FPZ) identity follow from the one identity
(see (1.2)) that can be derived from a formula (see (1.1)) involving only derivatives
and integrals of the given polynomial, while all the other proofs are quite involved. We
recall here that the FPZ identity was a conjectural relations between Hodge integrals
in Gromov-Witten theory.

It is one of our future research projects to continue to find formulas representing poly-
nomials in terms of some specific special polynomials and to apply those in discovering
some interesting identities.
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