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Abstract

For a graph H, a graph G is H-saturated if it contains no copy of H as a (not necessarily

induced) subgraph, but the addition of any edge missing from G creates a copy of H in the

resultant graph. The saturation number sat(n,H) is defined as the minimum number of

edges in H-saturated graphs on n vertices. Let Pk and Sk be path and star on k vertices,

respectively. In this paper we consider the (Pk ∪ S`)-saturated graphs on n vertices and

focus on the determination of sat(n, Pk∪S`). We prove the upper bounds of sat(n, Pk∪S`)

for k ≥ 6 and ` ≥ 4. Moreover, we get sat(n, Pk ∪ S`) = n − bn−3(`−4)
ak

c on certain

conditions and sat(n, Pk ∪S4) = n−b n
ak
c for k ≥ 6, where ak is the order of the minimum

Pk-saturated tree. We also give a conjecture about the exact value of sat(n, Pk ∪ S`) if ` is

not less than some positive integer.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G = (V (G), E(G))

be a graph, as usual, denote by V (G), E(G), |G|, m(G) and G the vertex set, edge set, the

number of vertices, the number of edges and the complement of G, respectively. For any

v ∈ V (G), let dG(v) and NG(v) denote the degree and the set of neighbors of v in G, respectively.

As usual, let ∆(G) be the maximum degree of graph G. Denote by Kn, Pn, Cn and Sn the

complete graph, path, cycle and the star graph on n vertices, respectively. For a vertex

u ∈ V (G), denote by Su the star subgraph of G with central vertex u. Let T be a tree with

u ∈ V (T ), we write by Tu the subtree of T consisting of root vertex u and all descendants of u

in the tree T . For a path P with n vertices, denote by uPv, uP and Pv the path P starting

at u and ending at v, the path P starting at u and the path P ending at v, respectively.

The distance dG(x, y) of two vertices x, y is the length of a shortest (x, y)-path in G. The

∗The work is partially supported by NNSF of China (Grant No. 12271251).
†Corresponding author. Email addresses: kexxu1221@126.com (K. Xu), yuyingli1205@163.com (Y. Li).
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diameter of G, denoted by diam(G), is the greatest distance between any two vertices in G.

The eccentricity eccG(v) of a vertex v in a graph G is max{d(u, v) | u ∈ V (G)}. For brevity,

we write [t] = {1, 2, . . . , t} for positive integer t.

For A ⊆ V (G), let G[A] be the subgraph of G induced by A. For any edge e ∈ E(G),

we write by G + e the graph obtained from G by adding the new edge e. For any graph H

and any positive integer t > 1, let tH be the graph composed of t vertex-disjoint copies of H.

Given any two vertex-disjoint graphs G and H, their union G ∪H is the graph with vertex

set V (G) ∪ V (H) and edge set E(G) ∪ E(H), and their join G ∨H is the graph with vertex

set V (G) ∪ V (H) and edge set E(G) ∪ E(H) ∪ {gh|g ∈ V (G), h ∈ V (H)}.
Given a graph H, a graph G is H-free if G does not contain H as a (not necessarily

induced) subgraph. A graph G is H-saturated if G is H-free, but the addition of any edge

missing from G creates a copy of H in the resultant graph. The saturation number sat(n,H)

is defined as the minimum number of edges in H-saturated graphs on n vertices. This can

be viewed as the dual of the celebrated Turán number ex(n,H), the maximum number of

edges in H-saturated graphs on n vertices. Let G be an H-free graph and e be a non-edge

of G, we say e is an H-saturating edge of G if G + e contains a copy of H. A graph G is

H-oversaturated if for any non-edge e of G, G + e contains a copy of H with e ∈ E(H) (Note

that an H-oversaturated graph is not necessarily H-free). For a graph G, let e be a non-edge

of G, we say e is an H-oversaturating edge of G if G + e contains a copy of H with e ∈ E(H).

Saturation number was first studied by P. Erdős, A. Hajnal and J. Moon [12], who proved

that sat(n,Kp) = (p− 2)(n− p− 2) +

(
p− 2

2

)
with the extremal graphs Kp−2 ∨Kn−p+2. L.

Kászonyi and Z. Tuza in [23] considered sat(n,H) for H ∈ {Sk,mK2, Pm} and determined the

extremal graphs, respectively. As a generalization, R. Faudree, M. Ferrara, R. Gould and M.

Jacobson [17] proved sat(n, tKp) = (t−1)

(
p + 1

2

)
+

(
p− 2

2

)
+(p−2)(n−p+2) and constructed

the extremal graphs Kp−2 ∨
(
(t − 1)Kp+1 ∪ Kn−pt−t+3

)
. Moreover, they also determined

sat(n,Kp ∪ Kq) and sat(n, Ft,p,`) with the extremal graphs, where Ft,p,` is the generalized

friendship graph composed of t copies of Kp intersecting in a common K` for positive integers t,

p and `. F. Chen and X. Yuan [6] proved sat(n,Kp ∪ (t− 1)Kq) = (t− 1)

(
q + 1

2

)
+

(
p− 2

2

)
+

(p−2)(n−p+2) with 2 ≤ p < q and the extremal graphs were determined when t = 3. Moreover,

they also determined sat(n,Kp∪Kq ∪Kr) =

(
r + 1

2

)
+

(
q + 1

2

)
+

(
p− 2

2

)
+(p−2)(n−p+2)

with 2 ≤ p ≤ q ≤ r − 2 and the corresponding extremal graphs.

For the path, L. Kászonyi and Z. Tuza in [23] found sat(n, Pm) = n − b n
am
c where

am = 3 · 2k−1 − 2 if m = 2k and am = 2k+1 − 2 if m = 2k + 1, and they also characterized

the family of extremal graphs. M. Frick and J. Singleton [18] proved sat(n, Pn) = d3n−22 e for

n ≥ 54 and several small order cases. For t ≥ 2, let F = Pk1 ∪ Pk2 ∪ · · · ∪ Pkt be a linear

forest with k1 ≥ k2 ≥ · · · ≥ kt. G. Chen, J. Faudree, R. Faudree, G. Gould and C. Magnant

[7] investigated the saturation numbers for forests and provided the upper and lower bounds

on sat(n,H) with H ∈ {F, tPk, Pk ∪ P`}. Furthermore, they obtained the exact values of

sat(n, Pm ∪ tP2) with m ∈ {3, 4, 5}. S. Cao and H. Lei et al. [5] improved the lower bound

on sat(n, tP3) in [7] and determined the exact values of sat(n, tP3) for t = 4, n ≥ 3t + 2
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and t = 5, n ≥ 3t + 1. Moreover, they gave some counterexamples for the conjecture in [7]

for k ∈ {4, 5}. Z. He, M. Lu and Z. Lv [22] improved the lower bound on sat(n, tP3) for

t ≥ 1 and n ≥ 10t in [7] and presented reasons to support the conjectures in [7]. Moreover,

they gave some tP3-saturated graphs that attained the upper bound in [7]. Q. Fan and

C. Wang [14] proved that sat(n, P5 ∪ tP2) = min{d5n−46 e, 3t + 12} for n ≥ 3t + 8 with the

extremal graphs K6 ∪ (t− 1)K3 ∪Kn−3t−3 for n > 18t+76
5 . Recently J. Yan [29] showed that

sat(n, P6 ∪ tP2) = min{n− b n10c, 3t + 18} with the extremal graphs K7 ∪ (t− 1)K3 ∪Kn−3t−4
for n > 10

3 t+20. The known results about Ck-saturated graphs are mainly for small values of k.

Please refer to [8, 12, 26, 27] for the exact values of sat(n,Ck) with k ≤ 5 and sat(n,Cn). For

k ≥ 6, some lower bounds and upper bounds on sat(n,Ck) are established in [1, 19, 20, 24, 30].

Please see an informative survey [11] for some detailed results in graph saturation.

By now there are some results on sat(n,H1∪H2) if H1 and H2 have a same type such as the

above cases when they are both paths or complete graphs. But for all we know, there are few

results on sat(n,H1 ∪H2) when H1 and H2 are of distinct types. In [25] we proved the bounds

on connected saturation number sat′(n, Pk ∪K3) and gave the exact values of sat′(n, Pk ∪K3)

with k ∈ {2, 3, 4}. In this paper we consider the (Pk ∪ S`)-saturated graphs on n vertices and

prove the bounds on sat(n, Pk ∪ S`). The paper is organized as follows. In Section 2 we prove

the upper bounds on sat(n, Pk ∪S`) for k ≥ 6 and ` ≥ 4. In Section 3 we discuss the structural

properties of minimum (Pk ∪ S`)-saturated graph and get sat(n, Pk ∪ S`) = n− bn−3(`−4)ak
c on

certain conditions. Moreover, we give a conjecture about the exact value of sat(n, Pk ∪ S`) if `

is not less than some positive integer. In Section 4 we determine the value of sat(n, Pk ∪ S4)

for k ≥ 6.

2. Upper bounds on sat(n, Pk ∪ S`) with k ≥ 6, ` ≥ 4

Firstly, we recall the Pk-saturated trees described in [23]. If k ≥ 5, let Tk be a rooted (or

double rooted) tree with bk2c levels in which every vertex has degree 3, except for the lowest

level, and the highest level contains k + 1− 2bk2c vertices. (see Figure 1 for k = 6, 7). Then

|Tk| = ak = (3 + i)2b
k
2
c−1 − 2, k ≡ i (mod 2), i ∈ {0, 1}.

Figure 1 : T6 (left) and T7 (right).

In the following we denote ak as the order of Tk.

Theorem 2.1 ([23]). If T is a Pk-saturated tree, then Tk ⊂ T .
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Moreover, every Pk-saturated tree can be obtained from Tk by multiplying some branches

or by adding more pendant vertices to the neighbors of leaves or by adding a single pendant

vertex to other vertices of degree at least 3 as pointed out in [23].

Theorem 2.2 ([23]). If n ≥ ak and k ≥ 6, then sat(n, Pk) = n− b n
ak
c and every minimum

Pk-saturated graph on n vertices consists of a forest with b n
ak
c components each of which is

Pk-saturated tree containing Tk as a subgraph.

Let T̂k be a rooted tree with root p and bk2c − 1 levels when k ≥ 8. If k = 8 or 9 and

k = 10 or 11, let T̂k be the trees shown in Figure 2. For k ≥ 12, the structure of T̂k is as

follows: Let T̂k be the tree obtained by attaching a pendant edge to the leaves in the lowest

level of T̂k−2 and attaching a pendant edge to the vertices with degree 2 in the penultimate

level of T̂k−2. Moreover, if k = 8m or 8m + 1, we also need to attach a P4 to each leaf in the

penultimate level of T̂k−2 in which the leaf is a central vertex of P4.

p p p

Figure 2 : T̂k with k = 8 or 9 (left), k = 10 or 11 (center) and k = 16 or 17 (right).

Proposition 2.1. For any non-edge e = xy of T̂k with p /∈ {x, y} and 1 ≤ dT̂k
(x), dT̂k

(y) ≤ 2,

the order of a longest path in T̂k + e containing e = xy and p as an endpoint is at least bk2c.

Proof. Let P be a longest path of T̂k with an endpoint p and P ′ be a path in T̂k + e containing

e = xy and p as an endpoint, which such that (V (P ) ∪ V (P ′))\(V (P ) ∩ V (P ′)) ⊂ V (C) for a

cycle C in T̂k + e. Then |V (P )| = bk2c − 1 since T̂k is a rooted tree with root p and bk2c − 1

levels. Moreover, V (P ) ∩ V (C) form an inferior arc and V (P ′) ∩ V (C) form a superior arc of

cycle C. Thus |V (P ′)| > |V (P )| = bk2c − 1, our result follows immediately.

Here we construct a rooted tree T 5
k ⊂ Tk with root v and dk2e levels for k ≥ 6. The

structures of T 5
6 and T 5

7 are as follows:

4
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v v

Figure 3 : T 5
6 (left) and T 5

7 (right).

For k ≥ 8, if k is even, let T 5
k be the tree obtained by attaching a T̂k to each leaf of star S4. If

k is odd, let T 5
k be the tree obtained by attaching a T̂k to each of two leaves of star S4 and

attaching a T̂k+1 to the third leaf of star S4. (see Figure 4 for k = 15, 16).

v v

Figure 4 : T 5
15 (left) and T 5

16 (right).

By the construction of T 5
k and calculation, for k ≥ 8 and m = bk8c, we can get

|T 5
k | = bk =

{
[33 + 2(d i2e+ 2b i2c)]2

m−1 − 20, if k = 8m + i, i ∈ {0, 1, 2, 3, 4, 5, 6},
56 · 2m−1 − 20, if k = 8m + 7.

Lemma 2.1. Any non-edge e of T 5
k is a Pk-saturating edge or S5-saturating edge in it.

Proof. Firstly T 5
k is Pk-free and S5-free since diam(T 5

k ) = k − 2 and ∆(T 5
k ) = 3. This result is

evident by routine verification for k = 6 or 7. For k ≥ 8, let NT 5
k
(v) = {v1, v2, v3} with root

v of T 5
k . We can see Tvi = T̂k for i ∈ [3] if k is even, without loss of generality, we assume

Tvi = T̂k for i = 1, 2 and Tv3 = T̂k+1 if k is odd. For any non-edge e = xy of T 5
k , we divide

into three cases based on the position of e and the symmetry of x and y.
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Case 1. There is an endpoint of e, say x, with degree 3.

Clearly, e is a S5-saturating edge of T 5
k with S5 = Sx in T 5

k + e since dT 5
k
(x) = 3.

In the following we assume 1 ≤ dT 5
k
(x), dT 5

k
(y) ≤ 2.

Case 2. x and y both belong to the same Tvi for i ∈ [3].

Without loss of generality, we say {x, y} ⊂ Tv1 . Let P 1 be a longest path in Tv1 + e with

an endpoint v1 and e ∈ P 1, then |P 1| ≥ bk2c by Proposition 2.1. Let P 2 be a longest path

in Tv3 with an endpoint v3, then P 2 has k−1
2 vertices if k is odd or has k

2 − 1 vertices if k is

even by the construction of T 5
k . Thus e is a Pk-saturating edge of T 5

k with Pk ⊂ P 1v1vv3P
2 in

T 5
k + e.

Similarly as above, we can also get that e is a Pk-saturating edge of T 5
k if {x, y} ⊂ Tv2 or

{x, y} ⊂ Tv3 .

Case 3. x and y belong to different Tvi for i ∈ [3].

Without loss of generality, we say x ∈ Tv1 and y ∈ Tv2 . Let P 3 be a longest path in Tv1 with

x and v1 as endpoints , P 4 be a longest path in Tv1 with an endpoint x and v1 /∈ P 4, P 3′ be a

longest path in Tv2 with y and v2 as endpoints, P 4′ be a longest path in Tv2 with an endpoint

y and v2 /∈ P 4′ . Then we can know max{|V (P 3)|+ |V (P 4′)|, |V (P 3′)|+ |V (P 4)|} ≥ bk2c+ 2

since |V (P 3)| + |V (P 4)| ≥ bk2c + 2 and |V (P 3′)| + |V (P 4′)| ≥ bk2c + 2. Without loss of

generality, we assume |V (P 3)|+ |V (P 4′)| ≥ bk2c+ 2. Thus e is a Pk-saturating edge of T 5
k with

Pk ⊂ P 4′yxP 3v1vv3P
2 in T 5

k + e.

Similarly as above, we can also get that e is a Pk-saturating edge of T 5
k if x ∈ Tv1 and

y ∈ Tv3 or x ∈ Tv2 and y ∈ Tv3 .

Let T ∗ be the following tree on 5 vertices.

Figure 5 : T ∗.

Here we construct a rooted tree T ′k ⊂ Tk with root u and dk2e levels for k ≥ 9. If k is odd, let

T ′k be the tree obtained by attaching T̂k to each leaf of T ∗. If k is even, let T ′k be the tree

obtained by attaching T̂k to the leaf in the penultimate level of T ∗ and attaching T̂k−1 to the

other two leaves of T ∗. (see Figure 6 for k = 16, 17).

6
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u u

Figure 6 : T ′16 (left) and T ′17 (right).

Lemma 2.2. Any non-edge e of T ′k with u /∈ e is Pk-saturating or S5-saturating in it.

Proof. Let NT ′k(u)
= {u1, u2} with root u of T ′k and NT ′k

(u2) = {w1, w2}. T ′k is Pk-free and

S5-free since diam(T ′k) = k − 2 and ∆(T ′k) = 3. We can see Tu1 = T̂k and Twi = T̂k−1 for

i = 1, 2 if k is even; Tu1 = Twi = T̂k for i = 1, 2 if k is odd. For any non-edge e = xy with

u /∈ e, we divide into three cases based on the position of e and the symmetry of x and y.

Case 1. There is an endpoint of e, say x, with degree 3.

Clearly, e is a S5-saturating edge of T ′k with S5 = Sx in T ′k + e since dT ′k(x) = 3.

In the following we assume 1 ≤ dT ′k(x), dT ′k(y) ≤ 2.

Case 2. x and y both belong to Tu1 or Tw1 or Tw2 .

Without loss of generality, we assume {x, y} ⊂ Tu1 . Let P 1 be a longest path in Tu1 + e

with an endpoint u1 and e ∈ P 1, then |P 1| ≥ bk2c by Proposition 2.1. Let P 2 is a longest path

in Tu2 with an endpoint u2, then P 2 has k−1
2 vertices if k is odd or has k

2 − 1 vertices if k is

even by the construction of T ′k. Thus e is a Pk-saturating edge of T ′k with Pk ⊂ P 1u1uu2P
2 in

T ′k + e.

Similarly as above, we can also get that e is a Pk-saturating edge of T ′k if {x, y} ⊂ Tw1 or

{x, y} ⊂ Tw2 .

Case 3. x and y belong to different trees in Tu1 , Tw1 and Tw2 .

Without loss of generality, we assume x ∈ Tu1 and y ∈ Tw1 . Let P 3 be a longest path in Tu1

with x and u1 as endpoints, P 4 be a longest path in Tu1 with an endpoint x and u1 /∈ P 4, P 3′ be

a longest path in Tw1 with y and w1 as endpoints, P 4′ be a longest path in Tw1 with an endpoint

y and w1 /∈ P 4′ . Then we can know max{|V (P 3)|+|V (P 4′)|, |V (P 3′)|+|V (P 4)|} ≥ bk2c+1 since

|V (P 3)|+|V (P 4)| ≥ bk2c+2 and |V (P 3′)|+|V (P 4′)| ≥ bk2c+2 if k is odd, |V (P 3′)|+|V (P 4′)| ≥
bk2c+ 1 if k is even. Without loss of generality, we assume |V (P 3′)|+ |V (P 4)| ≥ bk2c+ 1. Let
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P 5 be a longest path in Tw2 with an endpoint w2, then P 5 has bk2c − 1 vertices if k is odd or

has k
2 − 2 vertices if k is even by the construction of T ′k. Thus T ′k + e has Pk as a subgraph

with Pk ⊂ P 4xyP 3′w1u2w2P
5, which means that e is a Pk-saturating edge of T ′k.

Similarly as above, we can also get that e is a Pk-saturating edge of T ′k if x ∈ Tu1 and

y ∈ Tw2 or x ∈ Tw1 and y ∈ Tw2 .

Let T̃ be the following tree on 8 vertices. Denote by Tk,5 the rooted tree with root vertices

{u, v} obtained by attaching T ′k to each leaf ui and vi, i ∈ [3] of T̃ for k ≥ 9 and |Tk,5| = ck.

u1 u2 u3 v1 v2 v3

u v

Figure 7 : T̃ .

Theorem 2.3. For k ≥ 9, Tk,5 is a (Pk ∪ S5)-saturated tree.

Proof. Firstly Tk,5 is (Pk ∪ S5)-free since V (Pk) ∩ V (S`) 6= ∅ for any subgraphs Pk and S` in

Tk,5. Let Tk,5 − uv = T ′u ∪ T ′v with u ∈ T ′u and v ∈ T ′v, we can see that Tui and Tvi are Pk-free

for i ∈ [3], T ′u and T ′v have Pk as a subgraph. For any non-edge e of a subgraph T ′k in Tk,5,

Tk,5 + e has Pk ∪S5 as a subgraph by Lemma 2.2 and the structure of Tk,5. For any non-edge e

of Tk,5 with u ∈ e or v ∈ e, say u ∈ e, we can get that Tk,5 + e has Pk ∪ S5 as a subgraph with

e ∈ S5 ⊂ Su and Pk ⊂ T ′v. Therefore, for any non-edge e = xy of Tk,5, it suffices to consider

the case that x and y belong to two different subgraphs T ′k of Tk,5, denoted T
′1
k and T

′2
k .

Case 1. T
′1
k and T

′2
k both are subgraphs of T ′u or T ′v.

Without loss of generality, we assume T
′1
k , T

′2
k ⊂ T ′u, x ∈ T

′1
k = Tu1 and y ∈ T

′2
k = Tu2 . If

there is an endpoint of e with degree 3, then Tk,5 + e has Pk ∪ S5 as a subgraph with e ∈ S5

and Pk ⊂ T ′v. If neither endpoint of e has degree 3, we can see that (Tu1 ∪ Tu2) + e has Pk as a

subgraph since eccTu1
(x) > dk2e and eccTu2

(y) > dk2e. Then Tk,5 + e has Pk ∪ S5 as a subgraph

with e ∈ Pk and S5 = Sv.

Case 2. T
′1
k ⊂ T ′u and T

′2
k ⊂ T ′v.

Without loss of generality, we assume x ∈ T
′1
k = Tu1 and y ∈ T

′2
k = Tv1 .

If there is an endpoint of e, say x, with degree 3, then Tk,5 + e has Pk ∪ S5 as a subgraph

with e ∈ S5 = Sx and Pk ⊂ T ′v. If neither endpoint of e has degree 3, then (Tu1 ∪Tv1) + e must

have a Pk as a subgraph with u1 /∈ Pk or v1 /∈ Pk by Lemma 2.2. Without loss of generality, we

assume u1 /∈ Pk. Therefore, Tk,5 + e has Pk ∪ S5 as a subgraph with e ∈ Pk and S5 = Su.

Lemma 2.3. ck < ak for k ≥ 14.

Proof. By the construction of Tk,5 and calculation, for k ≥ 9 and m = bk8c,

|Tk,5| = ck =

{
84 · 2m − 112, if k = 8m,

[99 + 6(d j−12 e+ 2b j−12 c)]2
m − 112, if k = 8m + j, j ∈ {1, 2, 3, 4, 5, 6, 7}.
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And |Tk| = ak = (3 + i)2b
k
2
c−1 − 2, where k ≡ i (mod 2), i ∈ {0, 1}. We can know ck < ak for

k ≥ 14 by calculation.

Let r ≥ `− 4 be an integer and ` ≥ 5, we denote Tk,r,` as the tree obtained by adding r

pendant vertices to the lowest level of Tk and there are at least `− 4 newly-added pendant

vertices which have a common neighbour in Tk,r,`. It is not difficult to see that Tk,r,` is a

Pk-saturated tree.

Theorem 2.4. (1). For n ≥ ak and k ≥ 9 or n ≥ 2ak and k = 6, 7, 8,

sat(n, Pk ∪ S4) ≤ n− b n
ak
c.

(2). For k ≥ 6, ` ≥ 5 and n ≥ 3(ak + `− 4),

sat(n, Pk ∪ S`) ≤ n− bn− 3(`− 4)

ak
c.

(3). For k ≥ 6 and n ≥ max{3(ak + 1), ck},

sat(n, Pk ∪ S5) ≤

{
n− n−ck

bk
− 1, if n = ck + abk, a ≥ 0 and k ≥ 14,

n− bn−3ak
c, otherwise.

Proof. (1). It is not difficult to verify that every minimum Pk-saturated graph on n vertices

is also (Pk ∪ S4)-saturated for n ≥ ak and k ≥ 9 or n ≥ 2ak and k = 6, 7, 8. Therefore,

sat(n, Pk ∪ S4) ≤ sat(n, Pk) = n− b n
ak
c by Theorem 2.2.

(2). For k ≥ 6, ` ≥ 5 and n ≥ 3(ak + ` − 4), let G∗ be a minimum Pk-saturated graph

on n vertices in which there are at least three tree components containing Tk,`−4,`, which is

Tk,r,` for r = `− 4, as a subtree. Thus we can get m(G∗) = n− bn−3(`−4)ak
c by Theorem 2.1. It

suffices to show that G∗ is (Pk ∪ S`)-saturated. Firstly G∗ is (Pk ∪ S`)-free since G∗ is Pk-free.

For any non-edge e of G∗, G∗ + e has Pk as a subgraph with e ∈ Pk since G∗ is Pk-saturated.

Moreover, by the construction of G∗, we can get that there exists at least one subgraph S`

which has no common vertex with Pk in G∗ + e. Therefore, G∗ is (Pk ∪ S`)-saturated, which

means sat(n, Pk ∪ S`) ≤ m(G∗) = n− bn−3(`−4)ak
c.

(3). For a ≥ 0, let G̃ = Tk,5 ∪ aT 5
k on ck + abk vertices. We can verify that G̃ is (Pk ∪ S5)-

saturated by Lemma 2.1 and Theorem 2.3. Moreover, m(G̃) = n− n−ck
bk
− 1 < n− bn−3ak

c for

k ≥ 14 and n = ck + abk by Lemma 2.3 and bk < ak. Thus we can improve the upper bound

of sat(n, Pk ∪ S5) in (2) by sat(n, Pk ∪ S5) ≤ n− n−ck
bk
− 1 for n = ck + abk and k ≥ 14.

3. The structure of minimum (Pk ∪ S`)-saturated graph

For k ≥ 6 and ` ≥ 5, let G be a minimum (Pk ∪ S`)-saturated graph on n ≥ 3(ak + `− 4)

vertices. We can say m(G) = n− p with p ≥ bn−3(`−4)ak
c ≥ 3 by Theorem 2.4. Then there are

at least p tree components in G. Moreover, there is exactly one tree component which is either

K1 or P2 if K1 or P2 is a component of G. Denote by T = {T 1, T 2, T 3, . . . , T t} the set of tree

components of G which are not K1 or P2, then t ≥ p− 1 ≥ 2 .
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Proposition 3.1. A graph G is S`-saturated if and only if dG(u) ≤ `− 2 for every u ∈ V (G)

and xy ∈ E(G) for max{dG(x), dG(y)} ≤ `− 3.

Proof. The necessity can be given by the definition of S`-saturated graph. For a graph

G, if dG(u) ≤ ` − 2 for every u ∈ V (G), then G is S`-free. Moreover, xy ∈ E(G) for

max{dG(x), dG(y)} ≤ `−3 is equivalent to the fact that dG(x) ≥ `−2 or dG(y) ≥ `−2 if xy is

a non-edge in G, then G + xy contains S` as a subgraph. Thus G is a S`-saturated graph.

Theorem 3.1. Let G be a minimum (Pk ∪ S`)-saturated graph on n ≥ 3(ak + `− 4) vertices

with k ≥ 6 and ` ≥ 5, T = {T 1, T 2, T 3, . . . , T t} (t ≥ 2) be the set of tree components of G

which are not K1 or P2. Then T satisfies one of the following properties:

(1). There exists a tree component, say T 1, which contains S` and Pk as subgraphs and is

(Pk ∪ S`)-saturated; T i is S`-free and Pk-free for i 6= 1.

(2). There exists a tree component, say T 1, which contains S` as a subgraph and is Pk-

saturated; there exists a tree component, say T 2, which is S`-free and Pk-saturated; T i is

Pk-saturated for i 6= 1, 2.

(3). There exists a tree component, say T 1, which is S`-free and Pk-saturated; T i is

Pk-saturated for i 6= 1.

(4). T i is S`-free and Pk-free for i ∈ [t].

(5). There exists a tree component, say T 1, which contains S` as a subgraph and is

Pk-saturated; T i is Pk-saturated for i 6= 1.

Proof. Firstly T i is not S`-saturated for i ∈ [t] by Proposition 3.1. For any non-edge e of G,

we have e ∈ Pk or e ∈ S` in G + e since G is (Pk ∪ S`)-saturated. We can claim that there has

no tree component in T which is S`-free and has Pk as a subgraph. Otherwise, let T 1 ∈ T
be a S`-free tree with Pk ⊂ T 1. Then G is S`-free since G is (Pk ∪ S`)-free. For any two

nonadjacent leaves x and y of T 1, we can know that xy ∈ Pk in T 1 + xy since xy is not a

S`-saturating edge of T 1. Thus G + xy has no Pk ∪ S` as a subgraph since xy ∈ Pk and G

is S`-free, a contradiction. Therefore, for a tree component, say T 1, in T , T 1 is Pk-free and

S`-free or is Pk-free and has S` as a subgraph or has Pk and S` as subgraphs.

Case 1. T 1 has Pk and S` as subgraphs.

In this case, we can claim that T 1 is (Pk∪S`)-saturated. Otherwise, T 1 contains a non-edge

e such that T 1 + e has no Pk ∪S` as a subgraph and G+ e has Pk ∪S` as a subgraph. Without

loss of generality, we assume e ∈ Pk in T 1 + e, then G− T 1 contains S` as a subgraph. Thus

G contains Pk ∪ S` since Pk ⊂ T 1, which contradicts that G is (Pk ∪ S`)-free. Moreover, T i is

Pk-free and S`-free for i 6= 1. Thus T satisfies the property (1).

Case 2. T 1 is Pk-free and S`-free.

For any two nonadjacent leaves x and y of T 1, xy ∈ Pk ⊂ T 1 + xy in G + xy. Then there

exists a component, say G1, in G−T 1 with S` ⊂ G1 since T 1 is S`-free and G+xy has Pk ∪S`

as a subgraph. Thus G−G1 is Pk-free.

Subcase 2.1. G1 ∈ T − T 1.

We say G1 = T 2 ∈ T − T 1 with S` ⊂ T 2. If T 2 has Pk as a subgraph, similarly as the

proof of Case 1, we can get that T 2 is (Pk ∪ S`)-saturated and T satisfies the property (1). If

T 2 is Pk-free, then G is Pk-free. We can claim that T i is Pk-saturated for i ∈ [t]. If not, there
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exists a T i with a S`-oversaturating edge e which is not a Pk-saturating edge, then G + e has

no Pk ∪ S` since e ∈ S` and G is Pk-free, a contradiction. Thus T satisfies the property (2).

Subcase 2.2. G1 ∈ G− T .

Clearly G1 is not K1 or P2 since S` ⊂ G1, then G1 is a non-tree component of G. If G1 is

Pk-free, then G is Pk-free. Similarly as the proof of Subcase 2.1, T i is Pk-saturated for i ∈ [t].

Thus T satisfies the property (3). If G1 has Pk as a subgraph, then T i is Pk-free and S`-free

for i ∈ [t] since G is (Pk ∪ S`)-free. Thus T satisfies the property (4).

Case 3. T 1 is Pk-free and has S` as a subgraph.

G is Pk-free since S` ⊂ T 1 and G is (Pk ∪ S`)-free. By a similar reasoning as that in the

proof of Subcase 2.1, we can know that T i is Pk-saturated for i ∈ [t]. Thus T satisfies the

property (5).

Theorem 3.2. Let G be a minimum (Pk ∪ S`)-saturated graph on n ≥ 3(ak + `− 4) vertices

with k ≥ 8 and ` ≥ 6. If T satisfies the property (2) or (3) or (5) of Theorem 3.1, then

sat(n, Pk ∪ S`) = n− bn−3(`−4)ak
c.

Proof. If T satisfies the property (2) or (3) or (5) of Theorem 3.1, then T i is Pk-saturated

for i ∈ [t]. By Theorem 2.1, Tk ⊂ T i for i ∈ [t]. We claim that there is no K1 or P2 as

a tree component of G. If not, without loss of generality, we denote T0 = P2 as a tree

component of G. For any subgraph Tk ⊂ T i ∈ T , i ∈ [t] and t ≥ 2, let x ∈ V (T0) and y

be any vertex from the highest level to the third lowest level of Tk. We consider G + xy,

then xy ∈ S` in G + xy since diam((T i ∪ T0) + xy) ≤ k − 2. Thus there exists a non-tree

component G1 with Pk ⊂ G1 of G since G+xy has Pk ∪S` as a subgraph and T ∪T0 is Pk-free.

Moreover, we can get dG(y) = `− 2 ≥ 4 for ` ≥ 6 since G is (Pk ∪ S`)-free. Therefore, we have

n ≥
∑t

i=1 |T i|+ |P2|+ |G1| > (t + 1)ak + 3(` − 4) for k ≥ 8 and ` ≥ 6 by calculation, then

m(G) ≥ n− (t+ 1) > n−bn−3(`−4)ak
c, which contradicts to sat(n, Pk ∪S`) ≤ n−bn−3(`−4)ak

c by

Theorem 2.4. Thus all tree components of G are Pk-saturated. Moreover, G contains at least

three S` as subgraphs with different central vertices since G is a minimum (Pk ∪ S`)-saturated

graph. Therefore e(G) = n− p with p ≤ bn−3(`−4)ak
c, which means e(G) ≥ n− bn−3(`−4)ak

c. By

the result (2) in Theorem 2.4, we have sat(n, Pk ∪ S`) = n− bn−3(`−4)ak
c.

Let T be a rooted tree which satisfies the property of T i, i 6= 1 in the property (1) and

T i, i ∈ [t] in the property (5) of Theorem 3.1, which means that T is a Pk-free and S`-free

tree on n vertices such that any non-edge e of T is a Pk-saturating edge or S`-saturating

edge of T . If e is a Pk-saturating edge for any non-edge e of T , then T is a Pk-saturated

tree. By Theorem 2.1, we can know |T | ≥ ak. Here we consider that T contains a non-edge

e = xy which is a S`-saturating edge but not a Pk-saturating edge of T . Thus dT (x) = `− 2

or dT (y) = `− 2. Now we consider the vertex with degree 2 in T .

If there exists a vertex u with degree 2 in T , NT (u) = {u1, u2} and T has no two adjacent

vertices with degree 2, then we have dT (u1) = ` − 2 or dT (u2) = ` − 2. Otherwise, we

consider T + u1u2 but T + u1u2 has no Pk or S` as subgraph since dT (u1), dT (u2) ≤ ` − 3

and dT (u) = 2, a contradiction. Therefore, there are three consecutive vertices with degree

sequence {`− 2, 2, a} and 3 ≤ a ≤ `− 2 or {`− 2, 2, 1}.
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If there exist two adjacent vertices u and v with degree 2 in T , NT (u) = {u1, v} and

NT (v) = {v1, u}, then we can claim dT (u1) = `− 2 and dT (v1) = `− 2. Otherwise, we assume

dT (u1) < `−2 and consider T +u1v, then u1v ∈ Pk in T +u1v since dT (u1), dT (v) ≤ `−3. Thus

we can get that T has Pk as a subgraph by replacing u1v in Pk of T +u1v with a P3 = u1uv, a

contradiction. Moreover, we can get that there has no vertex in NT (u1)∪NT (u2) with degree 1.

Otherwise, we assume w ∈ NT (u1) and dT (w) = 1. We consider T +wv and wv ∈ Pk in T +wv

since dT (w), dT (v) ≤ `− 3. Thus we can get that T has Pk as a subgraph by replacing vwu1 in

Pk of T +wv with vuu1 or replacing wvuu1 in Pk of T +wv with v1vuu1, a contradiction. For

2 ≤ b, c ≤ `− 3, if there exist w1 ∈ NT (u1) and w2 ∈ NT (v1) with dT (w1) = b and dT (w2) = c,

we consider T + uw2 and T + vw1. Then there have Pk ⊂ P 1w2uvv1P
2 in T + uw2 and

Pk ⊂ P 3w1vuu1P
4 in T + vw1, where P 1 is a longest path with an endpoint w2 and v1 /∈ P 1,

P 2 is a longest path with an endpoint v1 and {v, w2} /∈ P 2, P 3 is a longest path with an

endpoint w1 and u1 /∈ P 3, P 4 is a longest path with an endpoint u1 and {u,w1} /∈ P 4. Thus

|P 1|+|P 2|+2 ≥ k and |P 3|+|P 4|+2 ≥ k. Since T is Pk-free, we can know |P 1|+|P 3|+4 ≤ k−1,

then |P 1| < |P 4|−2. Thus k ≤ |P 1|+|P 2|+2 < |P 4|−2+|P 2|+2 = |P 2|+|P 4| < |P 2|+|P 4|+2,

which means that there has Pk ⊂ P 2v1vuu1P
4 in T , a contradiction. Therefore, there are six

consecutive vertices with degree sequence {`− 2, `− 2, 2, 2, `− 2, b} and 2 ≤ b ≤ `− 2.

If there exist at least three consecutive vertices u, v and w with degree 2 in T and

NT (v) = {u,w}, we consider T + uw and uw ∈ Pk in T + uw since dT (u) = dT (w) = 2. Thus

we can get that T has Pk as a subgraph by replacing uw in Pk of T + uw with a P3 = uvw, a

contradiction.

Here we write the number in curly braces as the degree of vertices in the level of figures.

For k ≥ 6, ` ≥ 5 and 3 ≤ a ≤ `− 2, let Ṫ `
k be a rooted tree with dk2e levels and root v. If k

is even, the degree sequence of vertices from the highest level to the penultimate level of Ṫ `
k is

{`− 2, 2, a, 2, `− 2, 2, a, 2, `− 2, 2 · · · } and NṪ `
k
(v) = {v1, v2, . . . , v`−2}. If k is odd, let Ṫ `

k be

the tree obtained from Ṫ `
k+1 by deleting the vertices in the lowest level of Tvi , i = 2, 3, . . . , `−2.

(see Figure 8 for k = 13, 14). We can verify that Ṫ `
k is Pk-free, S`-free and any non-edge of Ṫ `

k

is Pk-saturating or S`-saturating in it. Moreover, we have |Ṫ `
k | > ak for ` ≥ 11 by calculation.

{`− 2}

{a}

v1 v2 v`−2

v

{`− 2}

{a}

v1 v2 v`−2

v
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Figure 8 : Ṫ `
13 (left) and Ṫ `

14 (right).

For k ≥ 6, ` ≥ 5 and 3 ≤ a ≤ ` − 2, let T̂ `
k be a rooted tree with dk2e levels and root v.

If k is even, the degree sequence of vertices from the highest level to the penultimate level

of T̂ `
k is {` − 2, 2, a, a, a · · · } and NT̂ `

k
(v) = {v1, v2, . . . , v`−2}. If k is odd, let T̂ `

k be the tree

obtained from T̂ `
k+1 by deleting the vertices in the lowest level of Tvi , i = 2, 3, . . . , `− 2. (see

Figure 9 for k = 10, 11). We can verify that T̂ `
k is Pk-free, S`-free and any non-edge of T̂ `

k is

Pk-saturating or S`-saturating in it. Moreover, we have |T̂ `
k | > ak for ` ≥ 9 by calculation.

v1 v2 v`−2

v

v1 v2 v`−2

v

Figure 9 : T̂ `
10 (left) and T̂ `

11 (right).

For ` ≥ 5, 2 ≤ a ≤ `− 2 and k = 12 + 8b + c with b ≥ 0, c ∈ {0, 1, 2}, let T̃ `
k be a rooted

tree with dk2e levels and root v. If k is even (i.e.c = 0, 2), the degree sequence of vertices

from the highest level to the penultimate level of T̃ `
k is {`− 2, 2, 2, `− 2, `− 2, 2, 2, `− 2 · · · }

and NT̃ `
k
(v) = {v1, v2, . . . , v`−2}. If k is odd (i.e.c = 1), let T̃ `

k be the tree obtained from

T̃ `
k+1 by deleting the vertices in the lowest level of Tvi , i = 2, 3, . . . , `− 2. (see Figure 10 for

k = 12, 14). We can verify that T̃ `
k is Pk-free, S`-free and any non-edge of T̃ `

k is Pk-saturating

or S`-saturating in it. Moreover, we have |T̃ `
k | > ak for ` ≥ 7 by calculation.

{`− 2}

{`− 2}

v1 v2 v`−2

v

{`− 2}

{`− 2}

v1 v2 v`−2

v
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Figure 10 : T̃ `
12 (left) and T̃ `

14 (right).

For k ≥ 6 and ` ≥ 5, let Ṫ `′
k , T̂ `′

k and T̃ `′
k be trees obtained by Ṫ `

k , T̂ `
k and T̃ `

k changing the

degree of the root vertex to `− 3, respectively. Let Ṫ be the following tree on 2`− 2 vertices.

Denote by Tk,` the tree obtained by attaching Ṫ `′
k or T̂ `′

k or T̃ `′
k to each leaf ui and vi, i ∈ [`−2]

of Ṫ for k, ` ≥ 6. We can verify that Tk,` is (Pk ∪ S`)-saturated and |Tk,`| > ak + 3(`− 4) by

calculation.

u1 u2 u`−2 v1 v2 v`−2

u v

Figure 11 : Ṫ .

Conjecture 3.1. Let T be a tree in which each non-edge e is a Pk-saturating edge or S`-

saturating edge of T , T ′ be a (Pk ∪ S`)-saturated tree. For k ≥ 6, there exists a positive integer

`0 such that |T | ≥ ak and |T ′| > ak + 3(`− 4) for ` ≥ `0.

Conjecture 3.2. There exists a positive integer `0 such that sat(n, Pk ∪ S`) = n− bn−3(`−4)ak
c

for ` ≥ `0 and k ≥ 6.

4. sat(n, Pk ∪ S4) with k ≥ 6

Let G be a minimum (Pk ∪ S4)-saturated graph with n ≥ 2ak vertices and k ≥ 6, we say

e(G) = n− p since sat(n, Pk ∪ S4) ≤ n− b n
ak
c, then there are at least p tree components of

G and p ≥ b n
ak
c ≥ 2. We can easily verify that e(G) = n− b n

ak
c if p = 2, since n ≥ 2ak and

e(G) ≤ n− b n
ak
c. In the following result we focus on determining the structure of each tree

component of G.

Theorem 4.1. For n ≥ 2ak and k ≥ 6, let G be a minimum (Pk ∪ S4)-saturated graph on n

vertices and there are at least three tree components in G. Then T is Pk-saturated for any tree

component T of G.

Proof. It is clear that there is exactly one tree component which is either K1 or P2 if K1 or P2

is a component of G. Let T = {T 1, T 2, T 3, . . . , T t} be the set of tree components of G which

are not K1 or P2, then t ≥ 2. Similarly as the proof of Theorem 3.1, we can know that T
satisfies one of the following properties:

(1). There exists a tree component, say T 1, which contains S4 and Pk as subgraphs and is

(Pk ∪ S4)-saturated; T i is Pk-free and S4-free for i 6= 1.

(2). There exists a tree component, say T 1, which contains S4 as a subgraph and is

Pk-saturated; there exists a tree component, say T 2, which is S4-free and Pk-saturated; T i is

Pk-saturated for i 6= 1, 2.

(3). There exists a tree component, say T 1, which is S4-free and Pk-saturated; T i is

Pk-saturated for i 6= 1.
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(4). T i is S4-free and Pk-free for i ∈ [t].

(5). There exists a tree component, say T 1, which contains S4 as a subgraph and is

Pk-saturated; T i is Pk-saturated for i 6= 1.

But the properties (2) and (3) cannot happen since a Pk-saturated tree contains S4 as

a subgraph by Theorem 2.1. We can verify that the properties (1) and (4) cannot happen.

Otherwise, there exists a Pk-free and S4-free tree T 2 in G since t ≥ 2. Then dT 2(x) ≤ 2 for

every x ∈ V (T 2), which means that T 2 is a Pk-free path. Let x and y be the endpoints of T 2,

we consider G + xy. But xy /∈ Pk and xy /∈ S4 in G + xy, then G + xy has no Pk ∪ S4 as a

subgraph, a contradiction. Thus T i is Pk-saturated for i ∈ [t]. Moreover, there is no K1 or P2

as a tree component of G. If not, we denote T0 as the tree component of G which is K1 or P2.

Let x be a vertex in T0 and y be a root vertex of Tk ⊂ T i for some i ∈ [t]. We consider G+xy,

then xy ∈ S` in G+ xy since diam((T i ∪ T0) + xy) ≤ k− 2. Thus there exists a component G1

with Pk ⊂ G1 of G− (T ∪ T0) since G + xy has Pk ∪ S` as a subgraph and T ∪ T0 is Pk-free.

Then G has Pk ∪ S4 as a subgraph since S4 ⊂ Tk ⊂ T i ∈ T for i ∈ [t], which contradicts to

that G is (Pk ∪ S4)-free. Therefore, T is Pk-saturated for any tree component T of G.

Theorem 4.2. sat(n, Pk ∪ S4) = n− b n
ak
c with n ≥ 2ak and k ≥ 6.

Proof. Let G be a minimum (Pk ∪ S4)-saturated graph with n ≥ 2ak vertices and k ≥ 6, then

we can say e(G) = n− p since sat(n, Pk ∪ S4) ≤ n− b n
ak
c and e(G) = n− b n

ak
c if p = 2. For

p ≥ 3, we can get that any tree component T of G is Pk-saturated by Theorem 4.1, then

Tk ⊂ T and |T | ≥ ak by Theorem 2.1. Therefore p ≤ b n
ak
c and e(G) ≥ n− b n

ak
c. Our result

follows immediately by Theorem 2.4.
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