Minimizing the number of edges in (P, U Sy)-saturated graphs *

Yuying Li ¢* , Kexiang Xu % T

% School of Mathematics, Nanjing University of Aeronautics & Astronautics,
Nanjing, Jiangsu 210016, PR China
b MIIT Key Laboratory of Mathematical Modelling and High Performance
Computing of Air Vehicles, Nanjing 210016, China

Abstract

For a graph H, a graph G is H-saturated if it contains no copy of H as a (not necessarily
induced) subgraph, but the addition of any edge missing from G creates a copy of H in the
resultant graph. The saturation number sat(n, H) is defined as the minimum number of
edges in H-saturated graphs on n vertices. Let Py and S be path and star on k vertices,
respectively. In this paper we consider the (P U Sy)-saturated graphs on n vertices and
focus on the determination of sat(n, P, US). We prove the upper bounds of sat(n, P, US)
for k > 6 and £ > 4. Moreover, we get sat(n, P, USy) = n — | 229 | on certain

ag
conditions and sat(n, Py USy) = n— [ -] for k > 6, where ay, is the order of the minimum

Py-saturated tree. We also give a conjecture about the exact value of sat(n, P, USy) if £ is
not less than some positive integer.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple. Let G = (V(G), E(G))
be a graph, as usual, denote by V(G), E(G), |G|, m(G) and G the vertex set, edge set, the
number of vertices, the number of edges and the complement of G, respectively. For any
v € V(G), let dg(v) and Ng(v) denote the degree and the set of neighbors of v in G, respectively.
As usual, let A(G) be the maximum degree of graph G. Denote by K,,, P,, C, and S,, the
complete graph, path, cycle and the star graph on n vertices, respectively. For a vertex
u € V(G), denote by S, the star subgraph of G with central vertex u. Let T' be a tree with
u € V(T), we write by T, the subtree of T consisting of root vertex u and all descendants of u
in the tree T. For a path P with n vertices, denote by uwPv, uP and Pv the path P starting
at v and ending at v, the path P starting at u and the path P ending at v, respectively.
The distance dg(x,y) of two vertices x, y is the length of a shortest (z,y)-path in G. The
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diameter of G, denoted by diam(G), is the greatest distance between any two vertices in G.
The eccentricity eccg(v) of a vertex v in a graph G is max{d(u,v) | u € V(G)}. For brevity,
we write [t] = {1,2,...,t} for positive integer ¢.

For A C V(G), let G[A] be the subgraph of G induced by A. For any edge e € E(G),
we write by G + e the graph obtained from G by adding the new edge e. For any graph H
and any positive integer ¢ > 1, let tH be the graph composed of ¢ vertex-disjoint copies of H.
Given any two vertex-disjoint graphs G and H, their union G U H is the graph with vertex
set V(G)UV(H) and edge set E(G)U E(H), and their join GV H is the graph with vertex
set V(G)UV(H) and edge set E(G)UE(H)U{ghlg € V(G),h € V(H)}.

Given a graph H, a graph G is H-free if G does not contain H as a (not necessarily
induced) subgraph. A graph G is H-saturated if G is H-free, but the addition of any edge
missing from G creates a copy of H in the resultant graph. The saturation number sat(n, H)
is defined as the minimum number of edges in H-saturated graphs on n vertices. This can
be viewed as the dual of the celebrated Turdn number ex(n, H), the maximum number of
edges in H-saturated graphs on n vertices. Let G be an H-free graph and e be a non-edge
of G, we say e is an H-saturating edge of G if G + e contains a copy of H. A graph G is
H -oversaturated if for any non-edge e of G, G + e contains a copy of H with e € E(H) (Note
that an H-oversaturated graph is not necessarily H-free). For a graph G, let e be a non-edge
of G, we say e is an H-oversaturating edge of G if G + e contains a copy of H with e € E(H).

Saturation number was first studied by P. Erdés, A. Hajnal and J. Moon [12], who proved

that sat(n, Kp) =(p—2)(n—p—2)+ L
Készonyi and Z. Tuza in [23] considered sat(n, H) for H € {Sk, mKs, Py} and determined the
extremal graphs, respectively. As a generalization, R. Faudree, M. Ferrara, R. Gould and M.

1 -2
Jacobson [17] proved sat(n,tK,) = (t—1) <p—;— >+ (p 9 ) +(p—2)(n—p+2) and constructed

the extremal graphs K, V ((t — 1)Kp41 U Ky—pt—13). Moreover, they also determined

2 -
) with the extremal graphs K, oV K, 2. L.

sat(n, K, U K,) and sat(n, Fy ) with the extremal graphs, where F ,, is the generalized
friendship graph composed of ¢ copies of K, intersecting in a common K, for positive integers ¢,

1 -2
p and £. F. Chen and X. Yuan [6] proved sat(n, K, U (t —1)K,) = (t—1) <q—2F > + (p 5 ) +

(p—2)(n—p+2) with 2 < p < ¢q and the extremal graphs were determined when ¢ = 3. Moreover,

1 1 -2
they also determined sat(n, K, UK,UK,) = (T;L > + (q—; > + <p 9 ) +(p—2)(n—p+2)

with 2 < p < ¢ <7 — 2 and the corresponding extremal graphs.

For the path, L. Kdszonyi and Z. Tuza in [23] found sat(n,Py) = n — || where
am = 3-2F"1 —2if m = 2k and a,, = 2¥*1 — 2 if m = 2k + 1, and they also characterized
the family of extremal graphs. M. Frick and J. Singleton [18] proved sat(n, P,) = [22-2] for
n > 54 and several small order cases. For ¢t > 2, let F' = Py, U Py, U---U Py, be a linear
forest with k1 > ko > --- > k. G. Chen, J. Faudree, R. Faudree, G. Gould and C. Magnant
[7] investigated the saturation numbers for forests and provided the upper and lower bounds
on sat(n, H) with H € {F,tPy, P, U P;}. Furthermore, they obtained the exact values of
sat(n, Py, UtPy) with m € {3,4,5}. S. Cao and H. Lei et al. [5] improved the lower bound

on sat(n,tPs) in [7] and determined the exact values of sat(n,tPs) for t = 4, n > 3t + 2
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and t =5, n > 3t + 1. Moreover, they gave some counterexamples for the conjecture in [7]
for k € {4,5}. Z. He, M. Lu and Z. Lv [22] improved the lower bound on sat(n,tPs;) for
t > 1 and n > 10¢ in [7] and presented reasons to support the conjectures in [7]. Moreover,
they gave some tPs-saturated graphs that attained the upper bound in [7]. Q. Fan and
C. Wang [14] proved that sat(n, P5 UtPs) = min{[?%4], 3t 4+ 12} for n > 3t + 8 with the
extremal graphs Kg U (t — 1) K3 U K,,_3;_3 for n > w. Recently J. Yan [29] showed that
sat(n, Ps UtPy) = min{n — | {5, 3t + 18} with the extremal graphs K7 U (t — 1)K3U K3t 4
for n > 13—0t—|—20. The known results about C-saturated graphs are mainly for small values of k.
Please refer to [8, 12, 26, 27] for the exact values of sat(n,Cy) with k <5 and sat(n,Cy,). For
k > 6, some lower bounds and upper bounds on sat(n, Cy) are established in [1, 19, 20, 24, 30].

Please see an informative survey [11] for some detailed results in graph saturation.

By now there are some results on sat(n, HyUHs) if H; and Hs have a same type such as the
above cases when they are both paths or complete graphs. But for all we know, there are few
results on sat(n, H; U Hy) when Hy and Hy are of distinct types. In [25] we proved the bounds
on connected saturation number sat’(n, P, U K3) and gave the exact values of sat’(n, P, U K3)
with k& € {2,3,4}. In this paper we consider the (Py U Sy)-saturated graphs on n vertices and
prove the bounds on sat(n, P, U Sy). The paper is organized as follows. In Section 2 we prove
the upper bounds on sat(n, P, USy) for k > 6 and ¢ > 4. In Section 3 we discuss the structural
properties of minimum (P U Sy)-saturated graph and get sat(n, P, U Sy) =n — L%ﬁ%” on
certain conditions. Moreover, we give a conjecture about the exact value of sat(n, P, U Sy) if £
is not less than some positive integer. In Section 4 we determine the value of sat(n, P, U Sy)
for k > 6.

2. Upper bounds on sat(n, P, U S,) with k > 6, £ > 4

Firstly, we recall the Py-saturated trees described in [23]. If k£ > 5, let T}, be a rooted (or
double rooted) tree with ng levels in which every vertex has degree 3, except for the lowest
level, and the highest level contains k¥ 4+ 1 — 2L§j vertices. (see Figure 1 for k = 6,7). Then

Tyl = ax = 3+4)2107 =2, k=i (mod 2), i€{0,1}.

Figure 1 : Ty (left) and T7 (right).
In the following we denote aj as the order of Tj.

Theorem 2.1 ([23]). If T is a Py-saturated tree, then T, C T'.
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Moreover, every Pj-saturated tree can be obtained from 7} by multiplying some branches
or by adding more pendant vertices to the neighbors of leaves or by adding a single pendant
vertex to other vertices of degree at least 3 as pointed out in [23].

Theorem 2.2 ([23]). If n > ay and k > 6, then sat(n, Py) =n — [ ;-] and every minimum
Py.-saturated graph on n vertices consists of a forest with L%J components each of which is

Py.-saturated tree containing Ty as a subgraph.

Let T} be a rooted tree with root p and |£] — 1 levels when k > 8. If k = 8 or 9 and
k =10 or 11, let T, be the trees shown in Figure 2. For k > 12, the structure of T}, is as
follows: Let T be the tree obtained by attaching a pendant edge to the leaves in the lowest
level of T,_» and attaching a pendant edge to the vertices with degree 2 in the penultimate
level of Tk_g. Moreover, if £ = 8m or 8n + 1, we also need to attach a P, to each leaf in the
penultimate level of Tk_g in which the leaf is a central vertex of Pj.

Figure 2 : T}, with k =8 or 9 (left), k = 10 or 11 (center) and k = 16 or 17 (right).

Proposition 2.1. For any non-edge e = xy of Ty, with p ¢ {x,y} and 1 < dy, (x),dz (y) <2,

the order of a longest path in Ty + e containing e = xy and p as an endpoint is at least L%j

Proof. Let P be a longest path of T}, with an endpoint p and P’ be a path in Ty +e containing
e = zy and p as an endpoint, which such that (V(P) UV (P)\(V(P)NV(P")) Cc V(C) for a
cycle C in T}, + e. Then |V (P)| = L%J — 1 since T}, is a rooted tree with root p and LgJ -1
levels. Moreover, V(P) NV (C) form an inferior arc and V(P’) N V(C) form a superior arc of
cycle C. Thus |V(P')| > |V(P)| = L%j — 1, our result follows immediately. O

Here we construct a rooted tree Ty C Ty with root v and [%} levels for £ > 6. The
structures of Tg and T? are as follows:
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Figure 3 : T9 (left) and T? (right).

For k > 8, if k is even, let Tk5 be the tree obtained by attaching a T} to each leaf of star Sy. If
k is odd, let T,? be the tree obtained by attaching a T}, to each of two leaves of star Sy and
attaching a Tk+1 to the third leaf of star Sy. (see Figure 4 for k = 15, 16).

Figure 4 : Ty (left) and Ty (right).
By the construction of 7P and calculation, for k > 8 and m = L%j, we can get

T8 = [B3+2([4] +2[5])]2m 1 —20, ifk=8m+i,i€{0,1,2,3,4,5,6},
pr— k pr—
g 56 - 2m—1 _ 20, ik =8m+T.

Lemma 2.1. Any non-edge e of T,? 1 a Py-saturating edge or Ss-saturating edge in it.

Proof. Firstly T} is Py-free and Ss-free since diam(T}?) = k — 2 and A(TP) = 3. This result is
evident by routine verification for k = 6 or 7. For k > 8, let Nys (v) = {v1,v2,v3} with root
v of T,f . We can see T;,, = Tk for ¢ € [3] if k is even, without loss of generality, we assume
Ty, = Ty, for i = 1,2 and T, = Tk+1 if £ is odd. For any non-edge e = xy of T,g’, we divide
into three cases based on the position of e and the symmetry of x and y.
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Case 1. There is an endpoint of e, say =, with degree 3.

Clearly, e is a Ss-saturating edge of T with S5 = S, in T} + e since dT/f (x) = 3.

In the following we assume 1 < dps (z), drs (y) <2.

Case 2. z and y both belong to the same Ty, for i € [3].

Without loss of generality, we say {z,y} C T,,. Let P! be a longest path in T,, + e with
an endpoint v; and e € P! then |P!| > L%J by Proposition 2.1. Let P? be a longest path
in T}, with an endpoint v3, then P? has % vertices if k is odd or has % — 1 vertices if k is
even by the construction of T,?. Thus e is a Py-saturating edge of T; ,? with P, C PlvjvuzP? in
T,? + e.

Similarly as above, we can also get that e is a Pg-saturating edge of T,? if {z,y} C T, or
{z,y} C T,

Case 3. x and y belong to different T;, for i € [3].

Without loss of generality, we say « € Ty, and y € T,,. Let P3 be a longest path in T}, with
x and v1 as endpoints , P? be a longest path in 7}, with an endpoint = and v; ¢ P, P¥ be a
longest path in T;, with y and v as endpoints, PY be a longest path in 73, with an endpoint
y and vy ¢ P, Then we can know max{|V(P?)| + [V(PY)|,|V(P?)| + [V (PY)[} > | %] +2
since [V(P?)| + [V(PY| > 5] + 2 and [V(P¥)| + |[V(PY)] > [£] + 2. Without loss of
generality, we assume [V (P3)| + |V (PY)| > |5] +2. Thus e is a Pj-saturating edge of 7} with
P, C P4/y$P3v1vng2 in T,? + e.

Similarly as above, we can also get that e is a Py-saturating edge of T, k5 ifz € T,,, and
y€ Ty, orx €Ty, and y € T,. O

Let T* be the following tree on 5 vertices.

Figure 5 : T™.

Here we construct a rooted tree T} C T}, with root u and [£] levels for k > 9. If k is odd, let
T} be the tree obtained by attaching T}, to each leaf of T*. If k is even, let T} be the tree
obtained by attaching T}, to the leaf in the penultimate level of T* and attaching Ty_1 to the
other two leaves of T™. (see Figure 6 for k = 16, 17).
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Figure 6 : T}y (left) and 77, (right).
Lemma 2.2. Any non-edge e of T}, with u ¢ e is Py-saturating or Ss-saturating in it.

Proof. Let Nry () = {u1,u2} with root u of Ty and Nyy(uz) = {w1,wa}. Ty is Py-free and
Ss-free since diam(T}) = k — 2 and A(T}) = 3. We can see Ty, = T, and Tw, = Ty for
t=1,21if kis even; T,,, =Ty, = Ty, for i = 1,2 if k is odd. For any non-edge e = xy with
u ¢ e, we divide into three cases based on the position of e and the symmetry of = and y.

Case 1. There is an endpoint of e, say x, with degree 3.

Clearly, e is a Ss-saturating edge of T}, with S5 =S, in T} + e since dry (z) = 3.

In the following we assume 1 < dr (z), dry (y) < 2.

Case 2. z and y both belong to Ty, or Ty, or Ty,.

Without loss of generality, we assume {x,y} C T,,. Let P! be a longest path in T, + e
with an endpoint u; and e € P!, then |P!| > ng by Proposition 2.1. Let P? is a longest path

in T,, with an endpoint ug, then P? has % vertices if k is odd or has % — 1 vertices if k is
even by the construction of 7}. Thus e is a Py-saturating edge of T}, with P, C Plujuus P? in
T} +e.

Similarly as above, we can also get that e is a Py-saturating edge of T}, if {z,y} C T, or
{z,y} C T,.

Case 3. z and y belong to different trees in Ty, Tiy, and Ty,.

Without loss of generality, we assume x € T3, and y € T}, . Let P3 be a longest path in T,
with z and u; as endpoints, P* be a longest path in Ty, with an endpoint x and u; ¢ P4 P be
a longest path in T}, with y and w; as endpoints, PY bea longest path in T},, with an endpoint
y and wy ¢ PY. Then we can know maz{|V (P3)|+[V(P¥)[, |V (P¥)|+|V(P")[} > |4]+1 since
V(P3| +|V (P > 5] +2 and [V (P¥)|+ [V (PY)| > [§]+2if kis odd, [V (P¥)|+ |V (PY)] >
| 5]+ 1if k is even. Without loss of generality, we assume [V (P¥)| + [V/(P*)| > |5] + 1. Let
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P5 be a longest path in T}, with an endpoint ws, then P° has LgJ — 1 vertices if k is odd or
has % — 2 vertices if k is even by the construction of T}. Thus T} + e has P as a subgraph
with P, C P4:cyP3/w1uzw2P5, which means that e is a Pj-saturating edge of 7T}.

Similarly as above, we can also get that e is a Py-saturating edge of 7} if z € T, and
y € Ty, or x €Ty, and y € T)y,. O

Let T be the following tree on 8 vertices. Denote by 7] k.5 the rooted tree with root vertices
{u,v} obtained by attaching T}, to each leaf u; and v;, i € [3] of T for k > 9 and [T} 5| = c.

U U

(73] ug us V1 (%) V3
Figure 7 : T.

Theorem 2.3. For k > 9, Tj, 5 is a (P U Ss)-saturated tree.

Proof. Firstly T}, 5 is (P U Ss)-free since V(Py) NV (S;) # @ for any subgraphs P, and Sy in
Ty 5. Let Ty 5 —uv =T, U T, with v € T, and v € T}, we can see that T,,, and T,, are Pj-free
for i € [3], T, and T, have P as a subgraph. For any non-edge e of a subgraph 7} in T}, 5,
T 5+ e has P, U S5 as a subgraph by Lemma 2.2 and the structure of T}, 5. For any non-edge e
of Tj, 5 with u € e or v € e, say u € e, we can get that T}, 5 + e has P, U S5 as a subgraph with
e € S5 C Sy and P, C T;. Therefore, for any non-edge e = zy of T, 5, it suffices to consider
the case that = and y belong to two different subgraphs T}, of T} 5, denoted T,;l and T, ,;2.

Case 1. T,! and T}? both are subgraphs of T, or T7.

Without loss of generality, we assume T,;l, T,;Q cT, ze T,;l =T, and y € T,;2 =T, If
there is an endpoint of e with degree 3, then T} 5 + e has P, U S5 as a subgraph with e € S5
and P, C T,. If neither endpoint of e has degree 3, we can see that (T, UT,,) + e has Py as a
subgraph since eccr, (z) > (%7 and ecer,, (y) > [57. Then Ty 5 + e has P, U S5 as a subgraph
with e € P, and S5 = S,.

Case 2. T}! C T, and T}? C T?.

Without loss of generality, we assume x € T,;l =T, and y € T, 2 — Ty, -

If there is an endpoint of e, say x, with degree 3, then T}, 5 + e has P, U S5 as a subgraph
with e € S5 = S, and P, C 7). If neither endpoint of e has degree 3, then (T3, UT,,) + € must
have a P} as a subgraph with u; ¢ Py or v1 ¢ Py, by Lemma 2.2. Without loss of generality, we
assume uy ¢ Py. Therefore, T}, 5 + e has P, U S5 as a subgraph with e € P, and S5 = S,,. O

Lemma 2.3. ¢, < ai for k > 14.

Proof. By the construction of T} 5 and calculation, for k > 9 and m = L%J,

84.9m _ 112, if k = 8m,
[T 5| = cp =

99 + 6([452] + 2| 452 )2 — 112, if k=8m +j, j € {1,2,3,4,5,6,7}.
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And |Ti| = ap = (3+ i)2L§J_1 — 2, where k =i (mod 2), i € {0,1}. We can know ¢ < ay, for
k > 14 by calculation. O

Let r > £ — 4 be an integer and ¢ > 5, we denote T}, , ¢ as the tree obtained by adding r
pendant vertices to the lowest level of T} and there are at least £ — 4 newly-added pendant
vertices which have a common neighbour in T}, ,. It is not difficult to see that T} ,, is a
Pi.-saturated tree.

Theorem 2.4. (1). Forn > ay and k > 9 orn > 2a; and k =6,7,8,

n

sat(n, P, USy) <n—|—].
ag
(2). Fork>6,¢>5 andn > 3(ar + ¢ —4),
—3(0—-14
sat(n, P, U Sp) <n— Lngcg)J
k

(3). For k> 6 and n > max{3(ax + 1), cx},

n—"gkc’“ —1, ifn=c+abg, a>0 and k > 14,

—3
ol

otherwise.

sat(n, P, US;5) < {
n—|[

Proof. (1). It is not difficult to verify that every minimum Pj-saturated graph on n vertices
is also (Py U Sy)-saturated for n > a; and k > 9 or n > 2a; and k = 6,7,8. Therefore,
sat(n, Py U Sy) < sat(n, Py) =n — [ -] by Theorem 2.2.

(2). For k > 6, ¢>5and n > 3(ax + ¢ — 4), let G* be a minimum Pj-saturated graph
on n vertices in which there are at least three tree components containing 7T}, ¢4 ¢, which is
Ty e for r = £ — 4, as a subtree. Thus we can get m(G*) =n — L%J by Theorem 2.1. It
suffices to show that G* is (Py U Sy)-saturated. Firstly G* is (P U Sy)-free since G* is Py-free.
For any non-edge e of G*, G* + e has P as a subgraph with e € Py since G* is Pj-saturated.
Moreover, by the construction of G*, we can get that there exists at least one subgraph Sy
which has no common vertex with Py in G* + e. Therefore, G* is (P, U Sy)-saturated, which
means sat(n, Py U Sy) <m(G*) =n — L%J.

(3). For a > 0, let G= Tj 5 U aT,? on ¢, + aby, vertices. We can verify that G is (P U Sp)-
saturated by Lemma 2.1 and Theorem 2.3. Moreover, m(G) = n — GE-1l<n-— L”a—fj for
k > 14 and n = ¢t + abg by Lemma 2.3 and by < ag. Thus we can improve the upper bound

of sat(n, Py U S5) in (2) by sat(n, P USs) <n—"3% —1for n = ¢, +aby and k> 14. O

3. The structure of minimum (P, U Sy)-saturated graph

For k > 6 and ¢ > 5, let G be a minimum (P U Sy)-saturated graph on n > 3(ax + ¢ — 4)
vertices. We can say m(G) =n — p with p > L%}f*@j > 3 by Theorem 2.4. Then there are
at least p tree components in G. Moreover, there is exactly one tree component which is either
Ki or Py if K or P, is a component of G. Denote by T = {T*, T2 T3, ... T} the set of tree
components of G which are not K7 or Py, thent>p—1>2.
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Proposition 3.1. A graph G is Sg-saturated if and only if dg(u) < € —2 for every u € V(Q)
and xy € E(GQ) for max{dg(x),dg(y)} < ¢ —3.

Proof. The necessity can be given by the definition of Sp-saturated graph. For a graph
G, if dg(u) < £ — 2 for every u € V(G), then G is Sy-free. Moreover, zy € E(G) for
max{dg(z),da(y)} < £—3is equivalent to the fact that dg(x) > (—2or dg(y) > (—2if zy is
a non-edge in G, then G + xy contains Sy as a subgraph. Thus G is a Sy-saturated graph. [

Theorem 3.1. Let G be a minimum (Py U Sy)-saturated graph on n > 3(ay + £ — 4) vertices
with k > 6 and £ > 5, T = {T1, T2, T3,...,T'} (t > 2) be the set of tree components of G
which are not K1 or Py. Then T satisfies one of the following properties:

(1). There exists a tree component, say T', which contains Sy and Pj, as subgraphs and is
(Py U Sy)-saturated; T* is Sy-free and Py-free for i # 1.

(2). There exists a tree component, say T, which contains Sy as a subgraph and is Py-
saturated; there exists a tree component, say T2, which is Se-free and Py-saturated; T is
Py-saturated fori # 1,2.

(3). There emists a tree component, say TV, which is Sy-free and Pj-saturated; T® is
Py-saturated for i # 1.

(4). T* is Sy-free and Py-free fori € [t].

(5). There ewists a tree component, say T', which contains S; as a subgraph and is
Py-saturated; T' is Py-saturated for i # 1.

Proof. Firstly T is not Sy-saturated for i € [t] by Proposition 3.1. For any non-edge e of G,
we have e € Py or e € Sy in G + e since G is (P U Sp)-saturated. We can claim that there has
no tree component in 7 which is S,-free and has P, as a subgraph. Otherwise, let T € T
be a Sy-free tree with P, C T'. Then G is Si-free since G is (Py U Sy)-free. For any two
nonadjacent leaves x and y of T', we can know that zy € P, in T' + xy since zy is not a
Sp-saturating edge of T'. Thus G + xy has no P, U S; as a subgraph since zy € P, and G
is Sy-free, a contradiction. Therefore, for a tree component, say T, in 7, T is Pj,-free and
Sp-free or is Py-free and has Sy as a subgraph or has P, and S, as subgraphs.

Case 1. T! has P, and S; as subgraphs.

In this case, we can claim that T is (P, USy)-saturated. Otherwise, T contains a non-edge
e such that T + e has no P, U Sy as a subgraph and G + e has P, U S, as a subgraph. Without
loss of generality, we assume e € Py in T + ¢, then G — T contains Sy as a subgraph. Thus
G contains P, U Sy since P, C T, which contradicts that G is (P, U Sy)-free. Moreover, 1" is
Py-free and Sy-free for i # 1. Thus T satisfies the property (1).

Case 2. T' is P-free and S;-free.

For any two nonadjacent leaves  and y of T', zy € P, C T' + 2y in G + xy. Then there
exists a component, say G1, in G —T" with S; C G since T is Sy-free and G + zy has P, U S,
as a subgraph. Thus G — G is Py-free.

Subcase 2.1. G, € T — T

We say G; = T? € T — T" with S, C T?. If T? has P} as a subgraph, similarly as the
proof of Case 1, we can get that T2 is (P, U Sy)-saturated and 7 satisfies the property (1). If
T? is Py-free, then G is Py-free. We can claim that 7% is Pg-saturated for i € [t]. If not, there
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exists a T? with a Sy-oversaturating edge e which is not a Pj-saturating edge, then G + e has
no P, U Sy since e € Sy and G is Py-free, a contradiction. Thus 7 satisfies the property (2).

Subcase 2.2. G ¢ G- T.

Clearly G is not K or Ps since Sy C G, then G is a non-tree component of G. If Gy is
Py-free, then G is Py-free. Similarly as the proof of Subcase 2.1, T* is Pj-saturated for i € [t].
Thus 7T satisfies the property (3). If G; has Py as a subgraph, then T¢ is Pj-free and Sj-free
for i € [t] since G is (P, U Sy)-free. Thus T satisfies the property (4).

Case 3. T! is P,-free and has Sy as a subgraph.

G is Py-free since S; C T! and G is (P, U Sy)-free. By a similar reasoning as that in the
proof of Subcase 2.1, we can know that T is Py-saturated for ¢ € [t]. Thus T satisfies the
property (5). O

Theorem 3.2. Let G be a minimum (Py U Sy)-saturated graph on n > 3(ay + £ — 4) vertices
with k > 8 and ¢ > 6. If T satisfies the property (2) or (3) or (5) of Theorem 3.1, then
sat(n, Py U Sy) =n — | 2238 |

ag

Proof. If T satisfies the property (2) or (3) or (5) of Theorem 3.1, then 7% is Pj-saturated
for i € [t]. By Theorem 2.1, T, C T° for i € [t]. We claim that there is no K or P as
a tree component of G. If not, without loss of generality, we denote Ty = P» as a tree
component of G. For any subgraph Ty, C T € T, i € [t] and t > 2, let z € V(Tp) and y
be any vertex from the highest level to the third lowest level of T,. We consider G + zy,
then zy € Sy in G + zy since diam((T* U Tp) + xy) < k — 2. Thus there exists a non-tree
component G with P, C G of G since G + xy has P, U Sy as a subgraph and 7 UTj is Py-free.
Moreover, we can get dg(y) = ¢ —2 > 4 for £ > 6 since G is (P U Sy)-free. Therefore, we have
n >3t T + |Py| 4 |G1| > (t + 1)ag + 3(¢ — 4) for k > 8 and £ > 6 by calculation, then

m(G) >n—(t+1)>n— L%J, which contradicts to sat(n, P, USp) <n— L%}?@J by

k
Theorem 2.4. Thus all tree components of G are Pg-saturated. Moreover, G contains at least

three Sy as subgraphs with different central vertices since G is a minimum (Pj U Sy)-saturated
i}f%”, which means e(G) > n — |2=2=2 | By

a ag

the result (2) in Theorem 2.4, we have sat(n, P, U Sy) =n — LMJ. O

ag

graph. Therefore e(G) =n —p with p < |

Let T be a rooted tree which satisfies the property of 7%, i # 1 in the property (1) and
T, i € [t] in the property (5) of Theorem 3.1, which means that T is a Py-free and Sj-free
tree on n vertices such that any non-edge e of T is a Pg-saturating edge or Sy-saturating
edge of T. If e is a Py-saturating edge for any non-edge e of T', then T is a Pi-saturated
tree. By Theorem 2.1, we can know |T'| > ai. Here we consider that T' contains a non-edge
e = xy which is a Sy-saturating edge but not a Py-saturating edge of 7. Thus dp(z) = ¢ — 2
or dr(y) = ¢ — 2. Now we consider the vertex with degree 2 in 7.

If there exists a vertex u with degree 2 in T', Np(u) = {u1,u2} and T has no two adjacent
vertices with degree 2, then we have dr(u;) = ¢ — 2 or dr(ug) = £ — 2. Otherwise, we
consider T' + ujug but T+ ujug has no Py or Sy as subgraph since dp(uy),dr(ug) < € —3
and dr(u) = 2, a contradiction. Therefore, there are three consecutive vertices with degree
sequence {¢{ —2,2,a} and 3 <a<{¢—2or {{—2,21}.
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If there exist two adjacent vertices v and v with degree 2 in T', Np(u) = {u1,v} and
Np(v) = {v1,u}, then we can claim dp(u;) =€ — 2 and dp(vy) = £ — 2. Otherwise, we assume
dp(uy) < £—2 and consider T'+uqv, then ujv € Py in T+uqv since dp(uq ), dr(v) < £—3. Thus
we can get that T has Py as a subgraph by replacing uiv in Py of T 4+ ujv with a P3 = ujuv, a
contradiction. Moreover, we can get that there has no vertex in Np(u1)UNr(ug2) with degree 1.
Otherwise, we assume w € Np(u1) and dp(w) = 1. We consider T'+wv and wv € Py in T +wv
since dr(w), dr(v) < £ —3. Thus we can get that 7" has P} as a subgraph by replacing vwu, in
Py of T + wv with vuuy or replacing wvuuy in Py of T 4+ wv with vivuui, a contradiction. For
2 <b,c < ¢ -3, if there exist w1 € Np(u1) and wy € Np(vy) with dp(wy) = b and dp(ws) = ¢,
we consider T + uwwy and T + vw;. Then there have P, C Plwsuvvi P? in T + uwy and
P, C P3wivuu P* in T + vw;, where P! is a longest path with an endpoint wy and v, ¢ Pt
P? is a longest path with an endpoint v; and {v,ws} ¢ P2, P3 is a longest path with an
endpoint wy and u; ¢ P3, P* is a longest path with an endpoint u; and {u,w;} ¢ P*. Thus
|PY+|P?|+2 > k and | P3|+|P%+2 > k. Since T is Py-free, we can know |P1|+|P3|+4 < k—1,
then |P!| < |P4—2. Thus k < |PY+|P?|+2 < |P4|—2+|P?|+2 = |P%|+|P*| < |P?|+|P*+2,
which means that there has P, C P?vivuu; P* in T, a contradiction. Therefore, there are six
consecutive vertices with degree sequence {¢£ — 2,0 —2,2,2 ¢ — 2, b} and 2 < b < { — 2.

If there exist at least three consecutive vertices u, v and w with degree 2 in T and
Nr(v) = {u,w}, we consider T' + vw and vw € Py in T + uw since dr(u) = dr(w) = 2. Thus
we can get that T has Py as a subgraph by replacing uw in Py of T + uw with a P3 = uvw, a
contradiction.

Here we write the number in curly braces as the degree of vertices in the level of figures.

For k> 6,¢>5and 3 <a</{—2,let T} be a rooted tree with [%1 levels and root v. If k
is even, the degree sequence of vertices from the highest level to the penultimate level of T ,f is
{0-22,a,2,0-2,2,0,2,0-2,2} and Njy(v) = {v1,v2,...,v2}. If k is 0dd, let T} be
the tree obtained from T,f 41 by deleting the vertices in the lowest level of T, ¢ = 2,3,...,£—2.
(see Figure 8 for k = 13,14). We can verify that T ,f is Py-free, Sy-free and any non-edge of T,f
is Pp-saturating or Sp-saturating in it. Moreover, we have |T,f| > ay, for £ > 11 by calculation.

U1 U2

{a}

=20 ..
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Figure 8 : 775 (left) and T%, (right).

For k>6,¢{>5and 3 <a</{-2, let T,f be a rooted tree with [%1 levels and root v.

If k is even, the degree sequence of vertices from the highest level to the penultimate level

of T,f is {{ —2,2,a,a,a---} and Njs(v) = {v1,v2,...,v.2}. If k is odd, let T,f be the tree
k

obtained from 7, ,f 41 by deleting the vertices in the lowest level of Ty, 1 = 2,3,...,£ — 2. (see

Figure 9 for £ = 10,11). We can verify that T ,f is Py-free, Sy-free and any non-edge of T,f is

Py-saturating or Sy-saturating in it. Moreover, we have |T ,f| > ay, for £ > 9 by calculation.

Figure 9 : TV, (left) and T}, (right).

For{>52<a</{—2and k=12+8b+ c with b >0, c € {0,1,2}, let T,f be a rooted
tree with [%1 levels and root v. If k is even (i.e.c = 0,2), the degree sequence of vertices
from the highest level to the penultimate level of T,f is{¢—2,2,20—-2/0—-222/(—-2---}
and NT}f(U) = {v1,v2,...,v9}. If kis odd (i.e.c = 1), let T} be the tree obtained from

Tlf+1 by deleting the vertices in the lowest level of T,,, i = 2,3,...,¢ — 2. (see Figure 10 for
k =12,14). We can verify that ’f’,f is Pj-free, Sy-free and any non-edge of T,f is Pp-saturating
or Sy-saturating in it. Moreover, we have ]T,f] > ay for £ > 7 by calculation.

U1 U2

{t-2
=2y ..
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Figure 10 : T{, (left) and TY, (right).

For k > 6 and ¢ > 5, let T, T,fl and T, ,fl be trees obtained by T7, T,f and T,f changing the
degree of the root vertex to £ — 3, respectively. Let T' be the following tree on 2¢ — 2 vertices.
Denote by T} ¢ the tree obtained by attaching T,fl or T,f/ or T,f’ to each leaf u; and v;, i € [( —2]
of T for k,¢ > 6. We can verify that Tj ¢ is (Py U Sp)-saturated and [T} ¢| > aj + 3(€ — 4) by

calculation.
2 v
up Suy C Sug—s v Twg T P
Figure 11 : T.

Conjecture 3.1. Let T be a tree in which each non-edge e is a Py-saturating edge or Sg-
saturating edge of T, T' be a (Px U Sy)-saturated tree. For k > 6, there exists a positive integer
by such that |T| > ap and |T'| > ap + 3(£ — 4) for £ > 4.

n—3(f—4)J

Conjecture 3.2. There exists a positive integer Lo such that sat(n, P, U Se) =n — [ =3,

for £ > 4£y and k > 6.

4. sat(n, P, U S,) with kK > 6

Let G be a minimum (P U Sy)-saturated graph with n > 2ay, vertices and k > 6, we say
e(G) = n — p since sat(n, P, U Sy) < n — | ;-] then there are at least p tree components of
G and p > -] > 2. We can easily verify that e(G) =n — | ;-] if p =2, since n > 2a;, and
e(G) <n-— L&J In the following result we focus on determining the structure of each tree

component of G.

Theorem 4.1. Forn > 2ay and k > 6, let G be a minimum (P U Sy)-saturated graph on n
vertices and there are at least three tree components in G. Then T is Py-saturated for any tree

component T of G.

Proof. 1t is clear that there is exactly one tree component which is either K7 or P, if K or P
is a component of G. Let T = {T',T2,T3,...,T'} be the set of tree components of G which
are not Ky or P, then ¢t > 2. Similarly as the proof of Theorem 3.1, we can know that 7T
satisfies one of the following properties:

(1). There exists a tree component, say 7', which contains Sy and P as subgraphs and is
(P, U Sy)-saturated; T" is Pj-free and Sy-free for i # 1.

(2). There exists a tree component, say T', which contains S; as a subgraph and is
P,-saturated; there exists a tree component, say 72, which is S;-free and Pjy-saturated; 177 is
Py-saturated for ¢ #£ 1, 2.

(3). There exists a tree component, say T, which is Ss-free and Py-saturated; T is
Py-saturated for ¢ # 1.
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(4). T' is Sy-free and Py-free for i € [t].

(5). There exists a tree component, say T', which contains S; as a subgraph and is
P,-saturated; T" is Pj-saturated for i # 1.

But the properties (2) and (3) cannot happen since a Pj-saturated tree contains Sy as
a subgraph by Theorem 2.1. We can verify that the properties (1) and (4) cannot happen.
Otherwise, there exists a Py-free and Sy-free tree T2 in G since t > 2. Then dp2(z) < 2 for
every x € V(T?), which means that T2 is a Py-free path. Let 2 and y be the endpoints of T2,
we consider G + xy. But zy ¢ Py, and zy ¢ Sy in G + zy, then G + zy has no P, U S, as a
subgraph, a contradiction. Thus 7% is Pg-saturated for i € [t]. Moreover, there is no Kj or Ps
as a tree component of G. If not, we denote T as the tree component of G which is K; or Ps.
Let z be a vertex in Ty and y be a root vertex of T}, C T" for some i € [t]. We consider G + zy,
then zy € Sy in G + xy since diam ((T* UTy) + xy) < k — 2. Thus there exists a component G
with P, C Gy of G — (T UTp) since G + xy has P, U Sy as a subgraph and 7 U Tj is Py-free.
Then G has P, U S, as a subgraph since Sy C T, C T% € T for i € [t], which contradicts to
that G is (P U Sy)-free. Therefore, T is Py-saturated for any tree component 7' of G. O

Theorem 4.2. sat(n, P, USy) =n — [ -] withn > 2ay, and k > 6.

Proof. Let G be a minimum (P U Sy)-saturated graph with n > 2ay, vertices and k > 6, then
we can say e(G) =n — p since sat(n, Py USy) <n— ;-] and e(G) =n — [ -] if p=2. For
p > 3, we can get that any tree component T of G is Pg-saturated by Theorem 4.1, then
Ty C T and |T'| > aj, by Theorem 2.1. Therefore p < [ ] and e(G) > n — [-]. Our result

a

follows immediately by Theorem 2.4. O
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