
SOME RESULTS FROM A GASPER AND RAHMAN’S QUADRATIC
SUMMATION

CHANG XU AND XIAOXIA WANG∗

Abstract. Applying Gasper and Rahman’s quadratic summation, we verify two q-
supercongruences conjectured by Guo and refine a q-supercongruence of Guo. Moreover,
we get some new supercongruences modulo p2 or p3, including: for 0 < r < d ≤ 2r and
any prime p ≡ −1 (mod 2d),

p−1∑
k=0

(3dk + r)

(
r
d

)
k

(
d−r
d

)
k

(
r
2d

)2
k

(
1
2

)
k

k!4
(
d+2r
2d

)
k

≡ 0 (mod p3),

where (x)n = x(x + 1) · · · (x + n− 1) is the rising-factorial.

1. Introduction

In 2017, employing the p-adic Gamma function and a 7F6 summation of Gessel and S-
tanton [2], He [7] established some supercongruences, including: for primes p ≡ 3 (mod 4),

p−1∑
k=0

(6k + 1)

(
1
2

)3
k

(
1
4

)2
k

k!5
≡ 0 (mod p2). (1.1)

Also, He [7] conjectured that (1.1) is true modulo p3. This conjecture was later proved
by Liu [9] through another 7F6 summation in [2]. Here and throughout the paper, p is a
prime and the rising-factorial is given by

(a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1) for n ∈ Z+.

In addition, we introduce some necessary definitions. Let q be an indeterminate. The
q-integer is defined as

[n] = [n]q = 1 + q + · · ·+ qn−1 for n ∈ Z+.

When |q| < 1, the q-shifted factorial is given by

(a; q)∞ =
∞∏
k=0

(
1− aqk

)
and (a; q)n =

(a; q)∞
(aqn; q)∞

for n ∈ Z.
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2 CHANG XU AND XIAOXIA WANG∗

For brevity, the multiple q-shifted factorial can be directly written as

(a1, a2, . . . , ar; q)n = (a1; q)n(a2; q)n · · · (ar; q)n.
Moreover, the n-th cyclotomic polynomial in q is represented by Φn(q):

Φn(q) =
∏

16k6n
gcd(n,k)=1

(
q − ζk

)
,

where ζ is an n-th primitive root of unity.
In recent years, q-supercongruences have attracted many experts’ attention and some

progress has been made. The reader who has an interest may be referred to [3, 4, 8, 10–
14, 16]. Particularly, Wei [15] established a q-analogue of (1.1) modulo p3 as follows: for
any positive integer n ≡ 3 (mod 4), modulo [n]Φn(q)2,

n−1∑
k=0

[6k + 1]
(q; q2)

2
k (q, q, q2; q4)k q

2k

(q2; q2)2k (q4; q4)3k
≡ 0. (1.2)

It is worth mentioning that the following Gasper and Rahman’s quadratic summation
(see [1, (3.8.12)]) plays an important role in Wei’s work: for |q| < 1,∑

k≥0

1− aq3k

1− a
(a, b, q/b; q)k (d, f, a2q/df ; q2)k

(aq/d, aq/f, df/a; q)k (q2, aq2/b, abq; q2)k
qk

+
(aq, f/a, b, q/b; q)∞ (d, aq2/df, fq2/d, df 2q/a2; q2)∞

(a/f, fq/a, aq/d, df/a; q)∞ (aq2/b, abq, fq/ab, bf/a; q2)∞

×
∑
k≥0

(f, bf/a, fq/ab; q2)kq
2k

(q2, fq2/d, df 2q/a2; q2)k

=
(aq, f/a; q)∞ (aq2/bd, abq/d, bdf/a, dfq/ab; q2)∞
(aq/d, df/a; q)∞ (aq2/b, abq, bf/a, fq/ab; q2)∞

. (1.3)

Recently, by taking suitable parametric substitutions into (1.3), and utilizing the ‘creative
microscoping’ method introduced by Guo and Zudilin [6], Guo [5] gave several generaliza-
tions of (1.2), where the modulo [n]Φn(q)2 condition was replaced by the weaker condition
modulo Φn(q)2 or Φn(q)3. For example, Guo [5, Theorem 1.2] got the following result: for
positive integers n, d, r with n ≡ −1 (mod 2d) and r < d ≤ 2r,

n−1∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)2). (1.4)

Letting n = p to be a prime and q → 1 in (1.4), we arrive at the following result: for
0 < r < d ≤ 2r and any prime p ≡ −1 (mod 2d),

p−1∑
k=0

(3dk + r)

(
r
d

)
k

(
d−r
d

)
k

(
r
2d

)2
k

(
1
2

)
k

k!4
(
d+2r
2d

)
k

≡ 0 (mod p2), (1.5)
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SOME RESULTS FROM A GASPER AND RAHMAN’S QUADRATIC SUMMATION 3

which is a generalization of (1.1).
Furthermore, at the end of Guo’s paper [5], the following two conjectures were proposed.

Conjecture 1. [5, Conjecture 6.1]. For positive integers n, d, r with n ≡ −1 (mod 2d)
and r < d, there holds

n−1∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)2). (1.6)

Conjecture 2. [5, Conjecture 6.2]. Let d and r be positive integers such that r is odd
and gcd(d, r) = 1. Let n be a positive integer satisfying n ≡ −r (mod 2d) and dn > n+r.
Then, we have

n−1∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)2). (1.7)

In this paper, we shall confirm the above two conjectures and refine the q-supercongruence
(1.4). Our first result is stated as follows.

Theorem 1.1. Conjecture 1 is true.

Our second result, an enhanced version of (1.4), can be stated as follows.

Theorem 1.2. For positive integers n, d, r with n ≡ −1 (mod 2d) and r < d ≤ 2r, there
holds

n−1∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)3). (1.8)

Obviously, when d = 2 and r = 1, (1.8) is a q-analogue of (1.1) modulo p3. Besides,
setting n = p to be a prime and q → 1 in Theorem 1.2, we get a stronger version of
congruence (1.5): for 0 < r < d ≤ 2r and any prime p ≡ −1 (mod 2d),

p−1∑
k=0

(3dk + r)

(
r
d

)
k

(
d−r
d

)
k

(
r
2d

)2
k

(
1
2

)
k

k!4
(
d+2r
2d

)
k

≡ 0 (mod p3). (1.9)

The last result can be shown as follows.

Theorem 1.3. Conjecture 2 is true.

The rest of our paper is arranged as follows. In Section 2, by utilizing Gasper and
Rahman’s quadratic summation (1.3), the ‘creative microscoping’ method and the Chinese
remainder theorem for coprime polynomials, we first establish a generalized result with
two free parameters a and b. Afterwards, we present how Theorems 1.1 and 1.2 can be
derived from this parametric form. At last, we prove Theorem 1.3 in Section 3.
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4 CHANG XU AND XIAOXIA WANG∗

2. Proofs of Theorems 1.1 and 1.2

Firstly, we establish a generalized form of Theorems 1.1 and 1.2 with two free parameters
a and b.

Theorem 2.1. Let n, d, r be positive integers with n ≡ −1 (mod 2d) and r < d. Let a, b
be indeterminates. Then, modulo

(
a− q(d−r)n

) (
1− bq(2d−r)n

) (
b− q(2d−r)n

)
,

2dn−rn−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

≡
(
a− q(2d−r)n

) (
ab− 1− b2 + bq(2d−r)n

)
(b− a) (1− ab)

(
qd+r/a; qd

)
(2dn−rn−r)/d

(aqr; qd)(2dn−rn−r)/d

×

(
aq2r, aqd; q2d

)
(2dn−rn−r)/(2d)

(q2d/a, qd+2r/a; q2d)(2dn−rn−r)/(2d)
. (2.1)

Proof. Making the substitution (q, a, b, d, f) →
(
qd, qr/a, qr, qr−(2d−r)n, qr+(2d−r)n) into

(1.3), we get

2dn−rn−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
qr−(2d−r)n, qr+(2d−r)n, qd/a2; q2d

)
k
qdk

(qd+(2d−r)n/a, qd−(2d−r)n/a, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

=

(
qd+r/a; qd

)
(2dn−rn−r)/d

(
aq2r, aqd; q2d

)
(2dn−rn−r)/(2d)

(aqr; qd)(2dn−rn−r)/d (q2d/a, qd+2r/a; q2d)(2dn−rn−r)/(2d)
. (2.2)

From (2.2), we obtain the following congruence: modulo
(
1− bq(2d−r)n

) (
b− q(2d−r)n

)
,

2dn−rn−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

≡

(
qd+r/a; qd

)
(2dn−rn−r)/d

(
aq2r, aqd; q2d

)
(2dn−rn−r)/(2d)

(aqr; qd)(2dn−rn−r)/d (q2d/a, qd+2r/a; q2d)(2dn−rn−r)/(2d)
. (2.3)

Similarly, substituting (q, a, b, d, f) →
(
qd, qr−(d−r)n, qr, bqr, qr/b

)
into (1.3) and noticing

that
(
qr+d−(d−r)n; qd

)
∞ = 0,

(
qr−(d−r)n; qd

)
k

= 0 for 0 < (dn− rn− r) /d < k, we have

2dn−rn−r
2d∑
k=0

1− q3dk+r−(d−r)n

1− qr−(d−r)n

(
qr−(d−r)n, qr, qd−r; qd

)
k

(bqd−(d−r)n, qd−(d−r)n/b, qr+(d−r)n; qd)k

×
(
bqr, qr/b, qd−2(d−r)n; q2d

)
k
qdk

(q2d, q2d−(d−r)n, q2r+d−(d−r)n; q2d)k
= 0. (2.4)

11 Dec 2023 00:06:23 PST
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Consequently, the following result holds, modulo a− q(d−r)n,

2dn−rn−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k
≡ 0. (2.5)

Clearly, a − q(d−r)n and
(
1− bq(2d−r)n

) (
b− q(2d−r)n

)
are relatively prime polynomials.

Thus, combing the following relations:(
a− q(2d−r)n

) (
ab− 1− b2 + bq(2d−r)n

)
(b− a) (1− ab)

≡ 1 (mod
(
1− bq(2d−r)n

) (
b− q(2d−r)n

)
), (2.6)(

1− bq(d−r)n
) (
b− q(d−r)n

)
(b− a) (1− ab)

≡ 1 (mod a− q(d−r)n), (2.7)

with the Chinese remainder theorem for coprime polynomials, we immediately obtain the
desired congruence (2.1) from (2.3) and (2.5). �

Based on Theorem 2.1, we now present the detailed proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. From r < d and n ≡ −1 (mod 2d), we know that the denominator
of the left-hand side of (2.1) is relatively prime to Φn(q)2

(
a− q(d−r)n

)
when b = 1. On

the other hand,
(
qd+r/a; qd

)
(2dn−rn−r)/d has the factor a− q(d−r)n. Therefore, letting b = 1

into (2.1), and applying the following relation:(
a− q(2d−r)n

) (
a− 2 + q(2d−r)n

)
= (a− 1)2 −

(
1− q(2d−r)n

)2
,

we have, modulo Φn(q)2
(
a− q(d−r)n

)
,

2dn−rn−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
qr, qr, qd/a2; q2d

)
k
qdk

(qd/a, qd/a, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

≡

(
qd+r/a; qd

)
(2dn−rn−r)/d

(
aq2r, aqd; q2d

)
(2dn−rn−r)/(2d)

(aqr; qd)(2dn−rn−r)/d (q2d/a, qd+2r/a; q2d)(2dn−rn−r)/(2d)
. (2.8)

Since gcd(n, 2d) = 1, the smallest positive integer k such that
(
qm; q2d

)
k
≡ 0 (mod Φn(q))

is (2d−m) (n+ 1) / (2d) for m in the range 0 < m < 2d. When 2r < d, we get 0 <
(d− 2r)(n+ 1)/(2d) < (2dn− rn− r)/(2d), which means that

(
qd+2r; q2d

)
k

has the factor

1−q(d−2r)n for k in the range of (d−2r)(n+1)/(2d) ≤ k ≤ (2dn−rn−r)/(2d). Therefore,
when a = 1, the nominator of the right-hand side of (2.8) is surely divisible by Φn(q)3 and
the denominator of the left-hand side of (2.8) may have the factor Φn(q). Consequently,
taking a = 1 into (2.8), we get

2dn−rn−r
2d∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)2). (2.9)
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Finally, for (2dn− rn− r) /(2d) < k ≤ n − 1,
(
qr; qd

)
k

has the factor 1 − qdn−rn and(
qr; q2d

)
k

has the factor 1− q2dn−rn, which means that the k-th term of the left-hand side

of (2.9) is divisible by Φn(q)2 too. Then, we complete the proof of Theorem 1.1. �

Proof of Theorem 1.2. Clearly, the condition of Theorem 1.2 is a special case of Theorem
1.1. Therefore, following the same line of the proof of Theorem 1.1, we can deduce that
(2.8) remains valid under the condition of Theorem 1.2. And when d ≤ 2r, we have
(d− 2r)(n + 1)/(2d) ≤ 0. Thus, the smallest positive integer k satisfying

(
qd+2r; q2d

)
k
≡

0 (mod Φn(q)) is n + (d − 2r)(n + 1)/(2d). Since r < d, we have n + (d − 2r)(n +
1)/(2d) > (2dn− rn− r) /(2d). Consequently,

(
qd+2r; q2d

)
(2dn−rn−r)/(2d) is coprime with

Φn(q). Then, when a = 1, the right-hand side of (2.8) is divisible by Φn(q)3 and the
denominator of reduced form of the left-hand side of (2.8) is coprime with Φn(q), which
means that the desired congruence is true. �

3. Proof of Theorem 1.3

In this section, we start with the following parametric generalization of Theorem 1.3.

Theorem 3.1. Let d and r be positive integers such that r is odd and gcd(d, r) = 1.
Let n be a positive integer satisfying n ≡ −r (mod 2d) and dn > n + r. Let a, b be
indeterminates. Then, modulo

(
a− q(d−1)n

) (
1− bq(2d−1)n

) (
b− q(2d−1)n

)
,

2dn−n−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

≡
(
a− q(2d−1)n

) (
ab− 1− b2 + bq(2d−1)n

)
(b− a) (1− ab)

(
qd+r/a; qd

)
(2dn−n−r)/d

(aqr; qd)(2dn−n−r)/d

×

(
aq2r, aqd; q2d

)
(2dn−n−r)/(2d)

(q2d/a, qd+2r/a; q2d)(2dn−n−r)/(2d)
. (3.1)

Proof. Letting q → qd, a = qr/a, b = qr, d = qr−(2d−1)n and f = qr+(2d−1)n in (1.3), we
have

2dn−n−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
qr−(2d−1)n, qr+(2d−1)n, qd/a2; q2d

)
k
qdk

(qd+(2d−1)n/a, qd−(2d−1)n/a, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

=

(
qd+r/a; qd

)
(2dn−n−r)/d

(
aq2r, aqd; q2d

)
(2dn−n−r)/(2d)

(aqr; qd)(2dn−n−r)/d (q2d/a, qd+2r/a; q2d)(2dn−n−r)/(2d)
. (3.2)

From (3.2), we obtain the following congruence: modulo
(
1− bq(2d−1)n

) (
b− q(2d−1)n

)
,

2dn−n−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k
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≡

(
qd+r/a; qd

)
(2dn−n−r)/d

(
aq2r, aqd; q2d

)
(2dn−n−r)/(2d)

(aqr; qd)(2dn−n−r)/d (q2d/a, qd+2r/a; q2d)(2dn−n−r)/(2d)
. (3.3)

Similarly, setting q → qd, a = qr−(d−1)n, b = qr, d = bqr, f = qr/b into (1.3) and noticing
that

(
qr+d−(d−1)n; qd

)
∞ = 0,

(
qr−(d−1)n; qd

)
k

= 0 for 0 < (dn− n− r) /d < k, we have

2dn−n−r
2d∑
k=0

1− q3dk+r−(d−1)n

1− qr−(d−1)n

(
qr−(d−1)n, qr, qd−r; qd

)
k

(bqd−(d−1)n, qd−(d−1)n/b, qr+(d−1)n; qd)k

×
(
bqr, qr/b, qd−2(d−1)n; q2d

)
k
qdk

(q2d, q2d−(d−1)n, q2r+d−(d−1)n; q2d)k
= 0. (3.4)

Therefore, the following result holds, modulo a− q(d−1)n,

2dn−n−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
bqr, qr/b, qd/a2; q2d

)
k
qdk

(bqd/a, qd/ab, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k
≡ 0. (3.5)

Note that a − q(d−1)n and
(
1− bq(2d−1)n

) (
b− q(2d−1)n

)
are relatively prime polynomials.

Then, based on the r = 1 case of relations (2.6) and (2.7) and using the Chinese remainder
theorem for coprime polynomials, we derive the desired congruence from (3.3) and (3.5).

�

Now, with the help of Theorem 3.1, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. From gcd(d, r) = 1 and n ≡ −r (mod 2d), we get gcd(n, 2d) = 1.
Thus, the denominator of left-hand side of (3.1) is relatively prime to Φn(q)2

(
a− q(d−1)n

)
if b = 1. Meanwhile,

(
qd+r/a; qd

)
(2dn−n−r)/d is divisible by a − q(d−1)n. Therefore, setting

b = 1 into (3.1), and invoking the following relation:(
a− q(2d−1)n

) (
a− 2 + q(2d−1)n

)
= (a− 1)2 −

(
1− q(2d−1)n

)2
,

we obtain, modulo Φn(q)2
(
a− q(d−1)n

)
,

2dn−n−r
2d∑
k=0

1− q3dk+r/a

1− qr/a

(
qr/a, qr, qd−r; qd

)
k

(
qr, qr, qd/a2; q2d

)
k
qdk

(qd/a, qd/a, aqr; qd)k (q2d, q2d/a, q2r+d/a; q2d)k

≡

(
qd+r/a; qd

)
(2dn−n−r)/d

(
aq2r, aqd; q2d

)
(2dn−n−r)/(2d)

(aqr; qd)(2dn−n−r)/d (q2d/a, qd+2r/a; q2d)(2dn−n−r)/(2d)
. (3.6)

Moreover, from the conditions of this theorem, we can also get n + r ≥ 2d and d ≥ 2.
Consequently, the smallest positive integer k such that

(
qd−r; qd

)
k
≡ 0 (mod Φn(q)) is

(n+ r) /d. On the other hand, when d ≥ 3, the smallest positive integer k satisfying(
qd+2r; q2d

)
k
≡ 0 (mod Φn(q)) is (dn− 2n+ d− 2r) / (2d) and there is 0 < (n+ r) /d ≤

(dn− 2n+ d− 2r) / (2d) < (2dn− n− r) /(2d). Thus, when a = 1, the nominator of the

11 Dec 2023 00:06:23 PST
230617-Wang Version 2 - Submitted to Rocky Mountain J. Math.



8 CHANG XU AND XIAOXIA WANG∗

right-hand side of (3.6) is surely divisible by Φn(q)3 and the denominator of the left-hand
side of (3.6) may have the factor Φn(q). As a result, letting a = 1 into (3.6), we get

2dn−n−r
2d∑
k=0

[3dk + r]

(
qr, qd−r; qd

)
k

(
qr, qr, qd; q2d

)
k
qdk

(qd, qd; qd)k (q2d, q2d, qd+2r; q2d)k
≡ 0 (mod Φn(q)2). (3.7)

Furthermore, when (2dn− n− r) /(2d) < k ≤ n− 1, 1− qdn−n is a factor of
(
qr; qd

)
k

and(
qr; q2d

)
k

contains the factor 1− q2dn−n, which means that the k-th term of the left-hand

side of (3.7) is still divisible by Φn(q)2. Then, the proof of Theorem 1.3 is completed. �
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