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Abstract

In this paper, we introduce and study the notions of uniformly S-

finitely presented modules and uniformly S-coherent rings (resp., mod-

ules) which are “uniform” versions of (c-)S-finitely presented modules

and (c-)S-coherent rings (resp., modules) introduced by Bennis and Ha-

joui [3]. Among the results, the uniform S-versions of the Chase result,

the Chase theorem, and the Matlis theorem are obtained.
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1. Introduction

Throughout this paper, all rings are commutative with identity. Let R be a ring.

For a subset U of an R-module M , we denote by 〈U〉 the submodule of M generated

by U . A subset S of R is called a multiplicative subset of R if 1 ∈ S and s1s2 ∈ S
for any s1 ∈ S, s2 ∈ S.

The study of commutative rings in terms of multiplicative sets began with Ander-

son and Dumitrescu [1], who introduced the notion of S-Noetherian rings. Recall

that a ring R is called an S-Noetherian ring if for any ideal I of R, there is a finitely

generated sub-ideal K of I such that sI ⊆ K for some s ∈ S. Cohen’s theorem,

Eakin-Nagata theorem and Hilbert basis theorem for S-Noetherian rings are also

given in [1]. However, the element s ∈ S in the definition of S-Noetherian rings

is not “uniform” in general. This situation make it difficult to study S-Noetherian

rings via module-theoretic methods. To overcome this difficulty, Qi et al. [16] de-

fined uniformly S-Noetherian rings as S-Noetherian rings in which the choice of s

is fixed. Then they characterized uniformly S-Noetherian rings using u-S-injective

modules.

Recall from [7] that a ring R is said to be a coherent ring provided that any

finitely generated ideal is finitely presented. The notion of coherent rings, which is a
1
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generalization of Noetherian rings, is another important rings defined by finiteness

condition. Many algebraists studied coherent rings in terms of various of modules.

Early in 1960, Chase [5, Theorem 2.1] showed that a ring is coherent exactly when

the class of flat modules is closed under the direct product. In 1970 Stenström [19,

Theorem 3.2] obtained that coherent rings are exactly rings over which every direct

limit of absolutely pure modules is absolutely pure. In 1982, Matlis [14, Theorem 1]

proved that a ring R is coherent if and only if HomR(M,E) is flat for any injective

modules M and E.

To extend coherent rings by multiplicative sets, Bennis et al. [3] introduced the

notions of S-coherent rings and c-S-coherent rings. They also gave an S-version of

Chase’s result to characterize S-coherent rings using ideals. Recently, the authors in

paper et al.[17] characterized S-coherent rings in terms of S-Mittag-Leffler modules

and S-flat modules (which can be seen as flat modules by localizing at S).

The main motivation of this paper is to introduce and study the “uniform” version

of S-coherent rings for extending uniformly S-Noetherian rings. The organization

of the paper is as follows: In Section 2, we introduce and study uniformly S-finitely

presented modules and their connections with u-S-flat modules and u-S-projective

modules (see Proposition 2.8). In Section 3, we introduce uniformly S-coherent

modules and uniformly S-coherent rings. In particular, we study ideal-theoretic

characterizations of uniformly S-coherent rings (see Proposition 3.11). Moreover

examples of S-coherent rings and c-S-coherent rings which are not uniformly S-

coherent of are provided (see Example 3.15). In Section 4, the Chase theorem and

the Matlis theorem are obtained for uniformly S-coherent rings (see Theorem 4.4

and Theorem 4.7).

Since the paper involves uniformly torsion theory, we give a quick review (see

[21] for more details). An R-module T is called u-S-torsion (with respect to s)

provided that there exists s ∈ S such that sT = 0. An R-sequence · · · → An−1
fn−→

An
fn+1−−→ An+1 → · · · is u-S-exact if for any n there is an element s ∈ S such that

sKer(fn+1) ⊆ Im(fn) and sIm(fn) ⊆ Ker(fn+1). An R-sequence 0 → A
f−→ B

g−→
C → 0 is called a short u-S-exact sequence (with respect to s) if sKer(g) ⊆ Im(f)

and sIm(f) ⊆ Ker(g) for some s ∈ S. An R-homomorphism f : M → N is a u-

S-monomorphism (resp., u-S-epimorphism, u-S-isomorphism) (with respect to s)

provided 0→ M
f−→ N (resp., M

f−→ N → 0, 0→ M
f−→ N → 0 ) is u-S-exact (with

respect to s). Let M and N be R-modules. We say M is u-S-isomorphic to N if

there exists a u-S-isomorphism f : M → N . A family C of R-modules is said to be

closed under u-S-isomorphisms if M is u-S-isomorphic to N and M is in C, then N
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is also in C. One can deduce from the following [24, Lemma 2.1] that the existence

of u-S-isomorphisms of two R-modules is actually an equivalence relation.

2. uniformly S-finitely presented modules

Recall from [1] that an R-module M is called S-finite (with respect to s) provided

that there exist an element s ∈ S and a finitely generated R-module F such that

sM ⊆ F ⊆ M . Trivially, S-finite modules are generalizations of finitely generated

modules. For generalizing finitely presented R-modules, Bennis et al. [3] introduced

the notions of S-finitely presented modules and c-S-finitely presented modules. Fol-

lowing [3, Definition 2.1] that an R-module M is called S-finitely presented provided

that there exists an exact sequence of R-modules 0→ K → F →M → 0 with K S-

finite and F finitely generated free. Certainly, an R-module M is S-finitely presented

if and only if there exists an exact sequence of R-modules 0 → T1 → N → M → 0

with N finitely presented and sT1 = 0 for some s ∈ S. Following [3, Definition

4.1] that an R-module M is called c-S-finitely presented provided that there exists

a finitely presented submodule N of M such that sM ⊆ N ⊆ M for some s ∈ S.

Trivially, an R-module M is called c-S-finitely presented if and only if there exists

an exact sequence of R-modules 0→ N → M → T2 → 0 with N finitely presented

and sT2 = 0 for some s ∈ S. Next we will give the notion of uniformly S-finitely pre-

sented modules which generalize both S-finitely presented modules and c-S-finitely

presented modules.

Definition 2.1. Let R be a ring, S be a multiplicative subset of R and s ∈ S.

An R-module M is called u-S-finitely presented (abbreviates uniformly S-finitely

presented) (with respect to s) provided that there is an exact sequence

0→ T1 → F
f−→M → T2 → 0

with F finitely presented and sT1 = sT2 = 0.

Trivially, S-finitely presented modules and c-S-finitely presented modules are all

u-S-finitely presented. Certainly, every u-S-finitely presented R-module is S-finite.

Indeed, since in Definition 2.1 we have sT2 = 0, so sM ⊆ Im(f). Note that the fact

that Im(f) is finitely generated implies M is S-finite.

By [24, Lemma 2.1], an R-module M is u-S-finitely presented if and only if there

is an exact sequence 0 → T1 → M
g−→ F → T2 → 0 with F finitely presented and

s′T1 = s′T2 = 0 for some s′ ∈ S. So an R-module M is u-S-finitely presented if and

only if it is u-S-isomorphic to a finitely presented R-module.
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Theorem 2.2. Let Φ : 0 → M
f−→ N

g−→ L → 0 be a u-S-exact sequence of R-

modules. The following statements hold.

(1) The class of u-S-finitely presented modules is closed under u-S-isomorphisms.

(2) If M and L are u-S-finitely presented, so is N .

(3) Any finite direct sum of u-S-finitely presented modules is u-S-finitely pre-

sented.

(4) If N is u-S-finitely presented, then L is u-S-finitely presented if and only if

M is S-finite.

Moreover, if Φ is an exact sequence, the both sides of the conditions in (2) and (4)

can be taken to be “uniform” with respect to the same s ∈ S.

Proof. (1) It follows from the fact that an R-module M is u-S-finitely presented if

and only if it is u-S-isomorphic to a finitely presented R-module.

(2) Since u-S-finitely presented modules are closed under u-S-isomorphisms, we

may assume Φ is an exact sequence by (1). Consider the following push-out:

0 // M

h
��

f
// N

g
//

l
��

L // 0

0 // F1
m // X

n // L // 0.

with F2 finitely presented, Ker(h) and Coker(h) u-S-torsion. So l is also a u-S-

isomorphism. Consider the following pull-back:

0 // F1
m // X

n // L // 0

0 // F1
// Y

k

OO

// F2
//

j

OO

0.

with F2 finitely presented, Ker(j) and Coker(j) u-S-torsion. So k is also a u-S-

isomorphism. Since F1 and F2 are finitely presented, Y is also finitely presented.

Hence N is u-S-isomorphic to a finitely presented R-module, and thus is u-S-finitely

presented.

(3) This follows from (2).

(4) Since u-S-finitely presented modules and S-finite modules are closed under u-

S-isomorphisms respectively, we may assume Φ is an exact sequence by (1). Suppose

M is S-finite. Since N is u-S-finitely presented, there is an exact sequence 0→ T1 →
F

l−→ N → T2 → 0 with F finitely presented and sT1 = sT2 = 0 for some s ∈ S.
4
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Consider the following pull-back of f an l:

0 // M
f
// N

g
// L // 0

0 // Z //

s

OO

F

l

OO

// K

t

OO

// 0.

Since l is a u-S-isomorphism, s and t are both u-S-isomorphisms. So Z is also

S-finite. Note that L is u-S-isomorphic to K which is u-S-finitely presented (see

[3, Theorem 2.4(4)]). So L is u-S-finitely presented. Suppose L is u-S-finitely

presented. Considering the above pull-back, we have K is also S-finitely presented.

Hence Z is S-finite by [3, Theorem 2.4(5)], which implies that M is also S-finite.

The “Moreover” part can be checked by the proof of (2) and (4). �

Recall from [4] that an R-module M is said to be S-Noetherian provided that

any submodule of M is S-finite. A ring R is called S-Noetherian if R itself is an

S-Noetherian R-module.

Proposition 2.3. Let R be a ring and S be a multiplicative subset of R. Then a

ring R is S-Noetherian if and only if any S-finite module is u-S-finitely presented.

Proof. For necessity, let M be an S-finite module. Then there is a u-S-epimorphism

f : F →M with F finitely generated free. Since R is an S-Noetherian ring, we have

F is also S-Noetherian (see [4]). Hence M is u-S-finitely presented by Theorem

2.2(4). For sufficiency, let I be an ideal of R. Then R/I is S-finite, and thus

u-S-finitely presented. By Theorem 2.2(4) again, I is S-finite. �

Proposition 2.4. Let R be a ring, S a multiplicative subset of R consisting of finite

elements. Then an R-module M is a u-S-finitely presented R-module if and only if

MS is a finitely presented RS-module.

Proof. Suppose M is a u-S-finitely presented R-module. Then there is an exact

sequence 0 → T1 → N
f−→ M → T2 → 0 with N finitely presented and sT1 =

sT2 = 0. Localizing at S, we have 0 → (T1)S → NS
f−→ MS → (T2)S → 0. Since

sT1 = sT2 = 0, (T1)S = (T2)S = 0. So MS
∼= NS is a finitely generated RS-

module. On the other hand, suppose MS is a finitely generated RS-module. Let

S = {s1, . . . , sn} and set s = s1 · · · sn. We may assume that MS is generated by

{m1

s
, . . . , mn

s
}. Consider the R-homomorphism f : Rn → M satisfying f(ei) = mi

for each i = 1, . . . , n. It is easy to verify that f is a u-S-epimorphism. Consider

the exact sequence 0 → Ker(fS) → Rn
S

fS−→ MS → 0. Then Ker(fS) is a finitely

generated RS-module, and thus Ker(f) is S-finite. By Theorem 2.2(2), M is u-S-

finitely presented. �
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Let p be a prime ideal of R. We say an R-module M is (simply) p-finite provided

M is (R \ p)-finite. We always denote by Spec(R) the spectrum of all prime ideals

of R, and Max(R) the set of all maximal ideals of R, respectively.

Lemma 2.5. Let R be a ring, S be a multiplicative subset of R and M be an R-

module. The following statements are equivalent:

(1) M is finitely generated R-module;

(2) M is p-finite for any p ∈ Spec(R);

(3) M is m-finite for any m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3) Trivial.

(3)⇒ (1) For each m ∈ Max(R), there exist an element sm ∈ R \m and a finitely

generated submodule Fm of M such that smM ⊆ Fm. Since {sm | m ∈ Max(R)}
generated R, there exist finite elements {sm1 , . . . , smn} such that 〈sm1 , . . . , smn〉 = R.

So M = 〈sm1 , . . . , smn〉M ⊆ Fm1 + · · ·+ Fmn ⊆M . Hence M = Fm1 + · · ·+ Fmn . It

follows that M is finitely generated. �

Let p be a prime ideal of R. We say an R-module M is (simply) u-p-finitely

presented provided M is u-(R \ p)-finitely presented.

Proposition 2.6. Let R be a ring, S be a multiplicative subset of R and M be an

R-module. The following statements are equivalent:

(1) M is a finitely presented R-module;

(2) M is u-p-finitely presented for any p ∈ Spec(R);

(3) M is u-m-finitely presented for any m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3) Trivial.

(3) ⇒ (1) By Lemma 2.5, M is finitely generated. Consider the exact sequence

0 → K → F → M → 0 with F finitely generated free. By Theorem 2.2, K is

m-finite for any m ∈ Max(R). So K is also finitely generated, and thus M is finitely

presented. �

Let {Mj}j∈Γ be a family of R-modules and Nj be a submodule of Mj generated

by {mi,j}i∈Λj ⊆ Mj for each j ∈ Γ. Recall from [21] that a family of R-modules

{Mj}j∈Γ is u-S-generated (with respect to s) by {{mi,j}i∈Λj}j∈Γ provided that there

exists an element s ∈ S such that sMj ⊆ Nj for each j ∈ Γ, where Nj = 〈{mi,j}i∈Λj〉.
We say that a family of R-modules {Mj}j∈Γ is u-S-finite (with respect to s) if the

set {mi,j}i∈Λj can be chosen as a finite set for each j ∈ Γ, that is, there is s ∈ S such

that {Mj}j∈Γ are all S-finite with respect to s. Recall from [16] that an R-module

M is called a u-S-Noetherian module provided the set of all submodules of M is
6
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u-S-finite. A ring R is called to be a u-S-Noetherian ring provided that R itself is

a u-S-Noetherian R-module.

Theorem 2.7. Let R be a ring and S be a multiplicative subset of R. Then the

following statements are equivalent:

(1) A ring R is u-S-Noetherian;

(2) Any S-finite module is u-S-Noetherian;

(3) Any finitely generated module is u-S-Noetherian;

(4) There is s ∈ S such that any finitely generated module is u-S-finitely pre-

sented with respect to s.

Proof. (1) ⇒ (2) Let M be an S-finite module. Then there is a u-S-epimorphism

f : F →M with F finitely generated free. Since R is u-S-Noetherian, we have F is

also u-S-Noetherian, and so is M (see [16, Proposition 2.13]).

(2)⇒ (3)⇒ (4) Trivial.

(4)⇒ (1) Let I be an ideal of R. Then R/I is u-S-finitely presented with respect

to s. So I is S-finite with respect to s by Theorem 2.2(4), which implies that R is

u-S-Noetherian. �

Recall from [21, 24] that an R-module P is called u-S-projective (resp., u-S-

flat) provided that the induced sequence 0 → HomR(P,A) → HomR(P,B) →
HomR(P,C) → 0 (resp., 0 → P ⊗R A → P ⊗R B → P ⊗R C → 0) is u-S-exact for

any u-S-exact sequence 0 → A → B → C → 0. It was proved in [24, Proposition

2.9] that any u-S-projective module is u-S-flat.

Proposition 2.8. Let R be a ring and S be a multiplicative subset of R. Then the

following statements hold.

(1) Every S-finite u-S-projective module is u-S-finitely presented.

(2) Every u-S-finitely presented u-S-flat module is u-S-projective.

Proof. (1) Let P be an S-finite u-S-projective module, then there is a u-S-exact

sequence Ψ : 0 → Ker(f)
i−→ F

f−→ P → 0 with F finitely generated free. Since P

is u-S-projective, the sequence Ψ is u-S-split by [24, Theorem 2.7]. So there is a

u-S-epimorphism i′ : F → Ker(f) such that i′ ◦ i = sIdKer(f) for some s ∈ S. Hence

Ker(f) is S-finite, and so P is u-S-finitely presented by Theorem 2.2.

(2) Let M be a u-S-finitely presented u-S-flat module. Then there is a u-S-exact

sequence Υ : 0→ Ker(f)
i−→ F

f−→M → 0 with F finitely generated free and Ker(f)

S-finite. Since M is u-S-flat, Υ is u-S-pure by [22, Proposition 2.4]. It follows from

[22, Theorem 2.2] that Υ is u-S-split. Thus M is u-S-projective. �
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3. uniformly S-coherent modules and uniformly S-coherent rings

Recall that an R-module is said to be a coherent module if it is finitely generated

and any finitely generated submodule is finitely presented. A ring R is said to be

a coherent ring if R is a coherent R-module. In this section, we will introduce a

“uniform” version of coherent rings and coherent modules.

Definition 3.1. Let R be a ring and S be a multiplicative subset of R. An R-module

M is called a u-S-coherent module (abbreviates uniformly S-coherent) (with respect

to s) provided that there is s ∈ S such that it is S-finite with respect to s and any

finitely generated submodule of M is u-S-finitely presented with respect to s.

Theorem 3.2. Let Φ : 0 → M
f−→ N

g−→ L → 0 be a u-S-exact sequence of R-

modules. The following statements hold.

(1) The class of u-S-coherent modules is closed under u-S-isomorphisms.

(2) If L is u-S-coherent, then M is u-S-coherent if and only if N is u-S-coherent.

(3) Any finite direct sum of u-S-coherent modules is u-S-coherent.

(4) If N is u-S-coherent and M is S-finite, then L is u-S-coherent.

Proof. (1) Let h : A → B be a u-S-isomorphism with s1Ker(h) = s1Coker(h) = 0.

Suppose B is u-S-coherent with respect to s2. Then one can check A is u-S-coherent

with respect to s1s2. Similarly, if A is u-S-coherent, then B is also u-S-coherent

(see [24, Lemma 2.1]).

(2) By (1), we can assume that Φ is an exact sequence. Suppose M and L are

u-S-coherent with respect to s. Then one can check N is u-S-coherent with respect

to s from the proof of Theorem 2.2(2). Suppose N and L are u-S-coherent with

respect to s. Then M is S-finite with respect to some s ∈ S by Theorem 2.2(4).

Since N is u-S-coherent with respect to s, M is u-S-coherent with respect to s.

(3) This follows by (2).

(4) Assume that Φ is an exact sequence. Suppose N is u-S-coherent with respect

to s and M is S-finite with respect to s for some s ∈ S. Then L is also S-finite

with respect to s. Let K be a finitely generated submodule of L. Then the sequence

0→M → g−1(K)→ K → 0 is exact. So g−1(K) is S-finite. Consider the following
8
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commutative diagram with rows and columns exact:

0

��

0

��

0

��
0 // Ker(m)

��

// Ker(l)

��

// K1

��

// 0

0 // Rn

m
��

// Rn+e //

l��

Re //

��

0

0 // M // g−1(K) // K //

��

0

0

where m and l are u-S-epimorphisms. Since N is u-S-coherent, Ker(l) is S-finite,

and so is K1. Thus L is u-S-coherent (with respect to s). �

Corollary 3.3. Let f : M → N be an R-homomorphism of u-S-coherent modules

M and N . Then Ker(f), Im(f) and Coker(f) are also u-S-coherent.

Proof. Use Theorem 3.2 and the exact sequences 0 → Ker(f) → M → Im(f) → 0

and 0→ Im(f)→ N → Coker(f)→ 0. �

Corollary 3.4. Let M and N be u-S-coherent sub-modules of a u-S-coherent mod-

ule. Then M +N is u-S-coherent if and only if so is M ∩N .

Proof. This follows by Theorem 3.2 and the exact sequence 0→M∩N →M⊕N →
M +N → 0. �

Let p be a prime ideal of R. We say that an R-module M is (simply) u-p-coherent

provided M is u-(R \ p)-coherent.

Proposition 3.5. Let R be a ring, S be a multiplicative subset of R and M be an

R-module. The following statements are equivalent:

(1) M is a coherent R-module;

(2) M is u-p-coherent for any p ∈ Spec(R);

(3) M is u-m-coherent for any m ∈ Max(R).

Proof. (1)⇒ (2)⇒ (3) Trivial.

(3) ⇒ (1) By Lemma 2.5, M is finitely generated. Let N be a finitely generated

of M . Then M is u-m-finitely presented for any m ∈ Max(R). So M is finitely

presented by Proposition 2.6. �

Definition 3.6. Let R be a ring, S be a multiplicative subset of R and s ∈ S.

Then R is called a u-S-coherent ring (abbreviates uniformly S-coherent ring) (with
9
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respect to s) provided that R itself is a uniformly S-coherent R-module with respect

to s.

Trivially, every coherent ring is u-S-coherent for any multiplicative set S. And if

S is composed of units, then u-S-coherent rings are exactly coherent rings.

The proof of the following result is easy and direct, so we omit it.

Lemma 3.7. Let R = R1×R2 be direct product of rings R1 and R2, S = S1×S2 be a

multiplicative subset of R. Then R is u-S-coherent if and only if Ri is u-Si-coherent

for any i = 1, 2.

The following example shows that not every u-S-coherent rings is coherent.

Example 3.8. Let R1 be a coherent ring and R2 be a non-coherent ring, S1 = {1}
and S2 = {0}. Set R = R1 × R2 and S = S1 × S2. Then R is a u-S-coherent

non-coherent ring.

Let p be a prime ideal of R. We say a ring R is (simply) u-p-coherent provided

R is u-(R \ p)-coherent.

Proposition 3.9. Let R be a ring and S be a multiplicative subset of R . The

following statements are equivalent:

(1) R is a coherent ring;

(2) R is a u-p-coherent ring for any p ∈ Spec(R);

(3) R is a u-m-coherent ring for any m ∈ Max(R).

Proof. This follows by Proposition 3.5. �

Proposition 3.10. Let R be a ring and S be a multiplicative subset of R. If R is a

u-S-Noetherian ring, then R is u-S-coherent.

Proof. This follows from Theorem 2.7. �

Trivially, u-S-coherent rings are not u-S-Noetherian in general. Indeed, we can

find a non-Noetherian coherent ring in the case that S = {1}.
In 1960, Chase characterized coherent rings by considering annihilator of elements

and intersection of finitely generated ideals in [5, Theorem 2.2]. Now, we give a

“uniform” version of Chase’s result.

Proposition 3.11. (Chase’s result for u-S-coherent rings) Let R be a ring

and S be a multiplicative subset of R. Then the following statements are equivalent:

(1) R is a u-S-coherent ring;
10
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(2) there is s ∈ S such that (0 :R r) is S-finite with respect to s for any r ∈ R,

and the intersection of two finitely generated ideals of R is S-finite with

respect to s;

(3) there is s ∈ S such that (I :R b) is S-finite with respect to s for any element

b ∈ R and any finitely generated ideal I of R.

Proof. (1) ⇒ (2): Suppose R is u-S-coherent with respect to s. Considering the

exact sequence 0 → (0 :R r) → R → Rr → 0, we have (0 :R r) is S-finite with

respect to s by Theorem 2.2. For any two finitely generated ideals I, J of R, we

have I ∩ J is S-finite with respect to s by Corollary 3.4 and Theorem 2.2.

(2)⇒ (1): Let I = 〈a1, . . . , an〉 be a finitely generated ideal of R. We claim that

I is u-S-finitely presented with respect to s by induction on n. Suppose n = 1. the

claim follows by the exact sequence 0 → (0 :R r) → R → Rr → 0. Suppose n = k.

Then the claim holds. Suppose n = k + 1. the claim holds by the exact sequence

0→ 〈a1, . . . , ak〉∩〈ak+1〉 → 〈a1, . . . , ak〉⊕〈ak+1〉 → 〈a1, . . . , ak+1〉 → 0. So the claim

holds for all n.

(1) ⇒ (3): Suppose R is u-S-coherent with respect to s. Let I be a finitely

generated ideal of R and b be an element in R. Consider the following commutative

diagram with exact rows:

0 // I

��

// Rb+ I //

��

(Rb+ I)/I

∼=
��

// 0

0 // (I :R b) // R // R/(I :R b) // 0.

Since R is u-S-coherent with respect to s, we have Rb + I is u-S-finitely presented

with respect to s. Since I is finitely generated, (Rb+ I)/I is u-S-finitely presented

with respect to s by Theorem 2.2. Thus (I :R b) is S-finite is with respect to s by

Theorem 2.2 again.

(3) ⇒ (1): Let I be a finitely generated ideal of R generated by {a1, . . . , an} .

We will show that I is u-S-finitely presented by induction on n. The case n = 1

follows from the exact sequence 0→ (0 :R a1)→ R→ Ra1 → 0. For n ≥ 2, let L =

〈a1, . . . , an−1〉. Consider the exact sequence 0→ (L :R an)→ R→ (Ran+L)/L→ 0.

Then (Ran + L)/L = I/L is u-S-finitely presented with respect to s by (3) and

Theorem 2.2. Consider the exact sequence 0 → L → I → I/L → 0. Since L is

finitely presented by induction and I/L is u-S-finitely presented with respect to s ,

I is also u-S-finitely presented with respect to s by Theorem 2.2. �

Recall from [3] that a ring R is S-coherent (resp., c-S-coherent) provided that

any finitely generated ideal is S-finitely presented (resp., c-S-finitely presented).
11
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Proposition 3.12. Let R be a ring, S be a multiplicative subset of R. If R is a

u-S-coherent ring, then R is both S-coherent and c-S-coherent.

Proof. Let I be a finitely generated ideal and 0 → K → F → I → 0 be an exact

sequence with F finitely generated free. Then K is S-finite by Theorem 2.2(4).

Thus I is S-finitely presented, and so R is S-coherent. Consider the exact sequence

0 → T1 → N
f−→ I → T2 → 0 with N finitely presented and sT1 = sT2 = 0.

Note that since sT2 = 0, we have sI ⊆ Im(f) ∼= N/T1. Since sT1 = 0, s2I can be

seen as a submodule of N . Hence I is c-S-finitely presented. Consequently, R is

c-S-coherent. �

Proposition 3.13. Let R be a ring and S a multiplicative subset of R consisting of

finite elements. Then the following statements are equivalent:

(1) R is a u-S-coherent ring;

(2) R is an S-coherent ring;

(3) R is a c-S-coherent ring.

Proof. Suppose S = {s1, . . . , sn} and set s = s1 · · · sn.

(1)⇒ (2) and (1)⇒ (3) These follow by Proposition 3.12.

(2)⇒ (1) Let I be a finitely generated ideal of R. Then there is an exact sequence

0 → K → F → I → 0 with F finitely generated free and K S-finite. Let X be a

submodule of K such that siK ⊆ X for some si ∈ S. So sK/X = 0 Then the exact

sequence 0 → K/X → F/X → I → 0 makes I u-S-finitely presented with respect

to s. So R is a u-S-coherent ring.

(3)⇒ (1) Let I be a finitely generated ideal of R. Then there is a finitely presented

sub-ideal J of R such that siI ⊆ J = 0. So s(I/J) = 0. Then the exact sequence

0→ I → J → I/J → 0 makes I u-S-finitely presented with respect to s. So R is a

u-S-coherent ring. �

Let R be a ring, M be an R-module and S be a multiplicative subset of R. For

any s ∈ S, there is a multiplicative subset Ss = {1, s, s2, ....} of S. We denote by

Ms the localization of M at Ss. Certainly, Ms
∼= M ⊗R Rs

Proposition 3.14. Let R be a ring and S a multiplicative subset of R. If R is a

u-S-coherent ring with respect to some s ∈ S, then Rs is a coherent ring.

Proof. Suppose R is a u-S-coherent ring with respect to s ∈ S. Let J be a finitely

generated ideal of Rs. Then J ∼= Is for some finitely generated ideal I of R. So

there is an exact sequence 0 → T1 → K → I → T2 → 0 with K finitely presented

and sT1 = sT2 = 0. Localizing at Ss, we have (T1)s = (T2)s = 0. So J ∼= Is ∼= Ks

that is finitely presented over Rs. So Rs is a coherent ring. �
12
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Next, we will give an example of a ring which is both S-coherent and c-S-coherent,

but not u-S-coherent.

Example 3.15. Let R be a domain. Set S = R − {0}. First, we will show R is

c-S-coherent. Let I be a nonzero finitely generated ideal of R. Suppose 0 6= r ∈ I.

Then we have rI ⊆ Rr ⊆ I. Since Rr ∼= R is finitely presented, R is a c-S-coherent

ring.

Next we will show that R is S-coherent. Let I be a nonzero finitely generated ideal

of R generated by nonzero elements {a1, . . . , an}. Set a = a1 · · · an. Consider the

natural exact sequence 0→ K → Rn f−→ I → 0 satisfying f(ei) = ai for each i. We

claim that K is S-finite with respect to a by induction on n. Set Ik = 〈a1, . . . , ak〉.
Suppose n = 1. Then K = 0 as a1 is a non-zero-divisor. So the claim trivially holds.

Suppose the claim holds for n = k. Now let n = k + 1. Consider the following

commutative diagram with exact rows and columns.

0 // Kk� _

��

// Rk
� _

��

// Ik� _

��

// 0

0 // Kk+1

����

// Rk+1

����

// Ik +Rak+1

����

// 0

0 // (Ik :R Rak+1) // R // (Ik +Rak+1)/Ik // 0,

Since a(Ik :R Rak+1) ⊆ aR ⊆ (Ik :R Rak+1), it follows that (Ik :R Rak+1) is S-finite

with respect to a. By induction, Kk is S-finite with respect to a. It is easy to

check Kk+1 is also S-finite with respect to a. So the claim holds. Consequently, R

is S-coherent.

Now, let R is a domain such that Rs is not coherent for any s 6= 0. For example,

R = Q+xR[[x]] be the subring of formal power series ring T = R[[x]] with constants

in R of real numbers, where Q is the set of all rational numbers. Indeed, let 0 6=
s = a+ xf(x) ∈ R. We divide it into two cases.

Case I: a 6= 0. In this case, s is a unit in R, and so Rs
∼= R, which is not coherent

by [7, Theorem 5.2.3] .

Case II: a = 0. In this case, Rs
∼= Q + (xR[[x]])xf(x)

∼= Q + (xR[[x]])x. So Rs can

fit into a Milnor square of type II:

Rs
� � //

����

R[[x]][x−1]

����
Q � � // R.

13

11 Sep 2023 21:57:24 PDT
230522-Zhang-2 Version 2 - Submitted to Rocky Mountain J. Math.



Hence Rs is not a coherent domain by [20, Theorem 8.5.17]. We will show that R is

not a u-S-coherent ring. On the contrary, suppose R is u-S-coherent. Then there is

a s 6= 0 such that Rs is a coherent ring by Proposition 3.14, which is a contradiction.

4. module-theoretic characterizations of uniformly S-coherent

rings

In this section, we will characterize uniformly S-coherent rings in terms of u-

S-flat modules and u-S-injective modules. The following lemma is basic and of

independent interest.

Lemma 4.1. Let R be a ring, r ∈ R and M be an R-module. Suppose N is a pure

submodule of M . Then we have the following natural isomorphism

rM

rN
∼= r(

M

N
).

Consequently, suppose {Mi | i ∈ Λ} is a direct system of R-modules. Then

r lim
−→

Mi
∼= lim
−→

(rMi).

Proof. Consider the surjective map f : rM
rN
→ r(M

N
) defined by f(rm + rN) =

r(m + N). It is certainly R-linear. We will check it is also well defined. Indeed,

f(rn+ rN) = r(n+N) = r(0 +N) = 0. So f is an R-epimorphism. Let rm+ rN ∈
Ker(f). Then rm ∈ N . Since N is a pure submodule of M , there is n ∈ N such

that rm = rn. So rm + rN = rn + rN = 0. Hence f is an isomorphism. Suppose

{(Mi, fij) | i, j ∈ Λ} is a direct system of R-modules. Then there is a pure exact

sequence 0→ K →
⊕

Mi → lim
−→

Mi → 0, where K = 〈x−fij(x) | x ∈Mi, i ≤ j ∈ I〉
(see [8, (2.1.1)]). Note that {(rMi, fij) | i, j ∈ Λ} is also a direct system of R-

modules. We have the following equivalence

lim
−→

(rMi) ∼=
⊕

rMi

K ′
=
r
⊕

Mi

rK
∼= r

⊕
Mi

K
∼= r lim

−→
Mi

where K ′ = 〈rx− fij(rx) | rx ∈ rMi, i ≤ j ∈ I〉. �

Lemma 4.2. Let E be an injective cogenerator. Then the following statements are

equivalent:

(1) T is uniformly S-torsion with respect to s;

(2) HomR(T,E) is uniformly S-torsion with respect to s.

Proof. (1)⇒ (2): This follows from [16, Lemma 4.2].

(2) ⇒ (1): Let f : sT → E be an R-homomorphism and i : sT → T be the em-

bedding map. Since E is injective, there exists an R-homomorphism g : T → E such
14
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that f = gi. Let st ∈ sT . Then we have f(st) = sg(t) = 0 since sHomR(T,E) = 0 .

So HomR(sT,E) = 0. Hence sT = 0 since E is an injective cogenerator. �

Let R be a ring and S a multiplicative subset of R. Recall from [16, 22] that

an R-module E is said to be u-S-injective provided that Ext1
R(M,E) is uniformly

S-torsion for any R-module M ; and is said to be u-S-absolutely pure provided that

there exists an element s ∈ S satisfying that for any finitely presented R-module

N , Ext1
R(N,E) is u-S-torsion with respect to s. A multiplicative subset S of R is

said to be regular if it is composed of non-zero-divisors. Next, we give some new

characterizations of u-S-flat modules

Proposition 4.3. Let R be a ring and S be a multiplicative subset of R. Then the

following statements are equivalent:

(1) F is u-S-flat;

(2) there exists an element s ∈ S such that TorR1 (N,F ) is uniformly S-torsion

with respect to s for any finitely presented R-module N ;

(3) HomR(F,E) is u-S-injective for any injective module E;

(4) HomR(F,E) is u-S-absolutely pure for any injective module E;

(5) if E is an injective cogenerator, then HomR(F,E) is u-S-injective;

(6) if E is an injective cogenerator, then HomR(F,E) is u-S-absolutely pure.

Moreover, if S is regular, then all above are equivalent to the following statements:

(7) there exists s ∈ S such that TorR1 (R/I, F ) is uniformly S-torsion with respect

to s for any ideal I of R;

(8) there exists s ∈ S such that, for any ideal I of R, the natural homomorphism

σI : I ⊗R F → IF is a u-S-isomorphism with respect to s;

(9) there exists s ∈ S such that TorR1 (R/K,F ) is uniformly S-torsion with respect

to s for any finitely generated ideal K of R;

(10) there exists s ∈ S such that, for any finitely generated ideal K of R, the

natural homomorphism σK : K ⊗R F → KF is a u-S-isomorphism with respect to

s.

Proof. (1) ⇒ (2): Set the set Γ = {(K,Rn) | K is a finitely generated sub-

module of Rn and n < ∞}. Define M =
⊕

(K,Rn)∈Γ

Rn/K. Then sTorR1 (M,F ) =

s
⊕

(K,Rn)∈Γ

TorR1 (Rn/K, F ) = 0 for some s ∈ S. Let N be a finitely presented R-

module. Then N ∼= Rn/K for some (K,Rn) ∈ Γ. Hence TorR1 (N,F ) = 0 is uniform-

ly S-torsion with respect to s.
15
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(2) ⇒ (1): Let M be an R-module. Then M = lim
−→

Ni for some direct sys-

tem of finitely presented R-modules {Ni}. So sTorR1 (M,F ) = sTorR1 (lim
−→

Ni, F ) ∼=
s(lim
−→

TorR1 (Ni, F )) ∼= lim
−→

(sTorR1 (Ni, F )) = 0 by Lemma 4.1. Hence F is u-S-flat by

[21, Theorem 3.2]

(1) ⇒ (3): Let M be an R-module and E be an injective R-module. Since

M is u-S-flat, TorR1 (M,F ) is uniformly S-torsion. Thus Ext1
R(M,HomR(F,E)) ∼=

HomR(TorR1 (M,F ), E) is also uniformly S-torsion by [16, Lemma 4.2]. Thus HomR(F,E)

is u-S-injective by [16, Theorem 4.3].

(3)⇒ (4)⇒ (6) and (3)⇒ (5)⇒ (6): Trivial.

(6)⇒ (2): Let E be an injective cogenerator. Since HomR(F,E) is u-S-absolutely

pure, there exists s ∈ S such that HomR(TorR1 (N,F ), E) ∼= Ext1
R(N,HomR(F,E)) is

uniformly S-torsion with respect to s for any finitely presented R-module N . Since

E is an injective cogenerator, TorR1 (N,F ) is uniformly S-torsion with respect to s

for any finitely presented R-module N by Lemma 4.2.

(2)⇒ (9), (7)⇒ (9), (7)⇔ (8) and (9)⇔ (10): Obvious.

(10) ⇒ (8): Let
n∑
i=1

ai ⊗ xi ∈ Ker(σI). Let K be the finitely generated ideal

generated by {ai | i = 1, . . . , n}. Consider the following commutative diagram:

K ⊗R F
σK
��

i⊗1 // I ⊗R F
σI
��

KF
i′ // IF

Let
n∑
i=1

ai ⊗ xi be the element in K ⊗R F such that i⊗ 1(
n∑
i=1

ai ⊗ xi) =
n∑
i=1

ai ⊗ xi ∈

I ⊗R F . Since i′σK(
n∑
i=1

ai⊗ xi) = σI(i⊗ 1(
n∑
i=1

ai⊗ xi)) = σI(
n∑
i=1

ai⊗ xi) = 0, we have

n∑
i=1

ai ⊗ xi ∈ Ker(σK) since i′ is a monomorphism. Then s
n∑
i=1

ai ⊗ xi = 0 ∈ K ⊗R F .

So s
n∑
i=1

ai ⊗ xi = si ⊗ 1(
n∑
i=1

ai ⊗ xi) = i ⊗ 1(s
n∑
i=1

ai ⊗ xi) = 0 ∈ I ⊗R F . Hence

sKer(σI) = 0.

Now assume the multiplicative subset S is regular.

(7)⇒ (5) Let E be an injective cogenerator. Since TorR1 (R/I, F ) is uniformly S-

torsion with respect to s, we have HomR(TorR1 (R/I, F ), E) ∼= Ext1
R(R/I,HomR(F,E))

is uniformly S-torsion with respect to s by Lemma 4.2. Since s is regular and E is

injective, we have E is s-divisible, i.e., sE = E. So HomR(F,E) is also s-divisible.

Hence HomR(F,E) is u-S-injective by [16, Proposition 4.9]. �
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In 1960, Chase also characterized coherent rings in terms of flat modules (see

[5, Theorem 2.1]). Now, we are ready to give a “uniform” S-version of the Chase

Theorem.

Theorem 4.4. (Chase theorem for u-S-coherent rings) Let R be a ring and S

be a regular multiplicative subset of R. Then the following statements are equivalent:

(1) R is a u-S-coherent ring;

(2) there is s ∈ S such that any direct product of flat modules is u-S-flat with

respect to s;

(3) there is s ∈ S such that any direct product of projective modules is u-S-flat

with respect to s;

(4) there is s ∈ S such that any direct product of R is u-S-flat with respect to s.

Proof. (2)⇒ (3)⇒ (4) Trivial.

(1)⇒ (2) Suppose R is u-S-coherent with respect to some s ∈ S. Let {Fi | i ∈ Λ}
be a family of flat R-modules and I a finitely generated ideal of R. Then I is u-S-

finitely presented with respect to s. So we have an exact sequence 0→ T ′ → K
f−→

I → T → 0 with K finitely presented and sT = sT ′ = 0. Set Im(f) = K ′. Consider

the following commutative diagrams with exact rows:

T ′ ⊗R
∏

i∈I Fi

α

��

// K ⊗R
∏

i∈I Fi

γ ∼=
��

// K ′ ⊗R
∏

i∈I Fi

β

��

// 0

0 //
∏

i∈I(T
′ ⊗R Fi) //

∏
i∈I(K ⊗R Fi) //

∏
i∈I(K

′ ⊗R Fi) // 0,

and

K ′ ⊗R
∏

i∈I Fi

β

��

// I ⊗R
∏

i∈I Fi

θ
��

// T ⊗R
∏

i∈I Fi

��

// 0

0 //
∏

i∈I(K
′ ⊗R Fi) //

∏
i∈I(I ⊗R Fi) //

∏
i∈I(T ⊗R Fi) // 0.

By [8, Lemma 3.8(2)], γ is an isomorphism. Then Ker(β) ∼= Coker(α) which is u-S-

torsion with respect to s. Since K ′ is finitely generated, we have β is an epimorphism

by [8, Lemma 3.8(1)]. Since T⊗R
∏

i∈I Fi and Ker(β) are all u-S-torsion with respect

to s, so Ker(θ) is also u-S-torsion with respect to s.

Now we consider the following commutative diagram with exact rows:

0 // TorR1 (R/I,
∏

i∈I Fi)

��

// I ⊗R
∏

i∈I Fi

θ

��

// R⊗R
∏

i∈I Fi

��
0

∏
i∈I TorR1 (R/I, Fi) //

∏
i∈I(I ⊗R Fi) //

∏
i∈I(R⊗R Fi),

17
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Note TorR1 (R/I,
∏

i∈I Fi) ⊆ Ker(θ). So TorR1 (R/I,
∏

i∈I Fi) is u-S-torsion with re-

spect to s, Hence
∏

i∈I Fi is u-S-flat (with respect to s) by Proposition 4.3.

(4) ⇒ (1) Let I be a finitely generated ideal of R. Consider the following com-

mutative diagram with exact rows:

I ⊗R
∏

i∈I R

g

��

f
// R⊗R

∏
i∈I R

∼=
��

// R/I ⊗R
∏

i∈I R

∼=
��

// 0

0 //
∏

i∈I(I ⊗R R) //
∏

i∈I(R⊗R R) //
∏

i∈I(R/I ⊗R R) // 0.

Since
∏

i∈I R is a u-S-flat module with respect to s, it follows that f is a u-S-

monomorphism. So g is also a u-S-monomorphism with respect to s.

Let 0 → L → F → I → 0 be an exact sequence with F finitely generated free.

Consider the following commutative diagram with exact rows:

L⊗R
∏

i∈I R

h
��

// F ⊗R
∏

i∈I R

∼=
��

// I ⊗R
∏

i∈I R

g

��

// 0

0 //
∏

i∈I(L⊗R R) //
∏

i∈I(F ⊗R R) //
∏

i∈I(I ⊗R R) // 0.

Since g is a u-S-monomorphism with respect to s, h is a u-S-epimorphism with

respect to s. Set Λ to be equal to the cardinal of L. We will show L is S-finite with

respect to s. Indeed, consider the following exact sequence

L⊗R RΛ h //

%% %%

LΛ // T // 0

Imh
. �

==

with T a u-S-torsion module with respect to s. Let x = (m)m∈L ∈ LΛ. Then

sx ⊆ Imh. Subsequently, there exist mj ∈ L, rj,i ∈ R, i ∈ L, j = 1, . . . , n such that

for each t = 1, . . . , k, we have

sx = h(
n∑
j=1

mj ⊗ (rj,i)i∈L) = (
n∑
j=1

mjrj,i)i∈L.

Set U = 〈mj | j = 1, . . . , n〉 be the finitely generated submodule of L. Now, for

any m ∈ L, sm ∈ 〈
∑n

j=1mjrj,m〉 ⊆ U , thus the embedding map U ↪→ L is a u-S-

isomorphism with respect to s and so L is S-finite with respect to s. Consequently,

I is u-S-finitely presented with respect to s. Hence, R is u-S-coherent with respect

to s. �
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In 1982, Matlis [14, Theorem 1] showed that a ring R is coherent if and only if

HomR(M,E) is flat for any injective modules M and E. The rest of this paper is

devoted to obtain a “uniform” S-version of this result.

Lemma 4.5. Let R be a ring, S be a regular multiplicative subset of R and E be an

injective cogenerator over R. Suppose HomR(E,E) is u-S-flat with respect to s ∈ S.

Then HomR(E,E)/R is also u-S-flat with respect to s.

Proof. Let I be an ideal of R. Set H = HomR(E,E). Let i : R � H be the

multiplication map. Suppose H is u-S-flat with respect to s ∈ S. Then there is a

long exact sequence

TorR1 (R/I,H)→ TorR1 (R/I,H/R)→ R/I ⊗R R
R/I⊗i−−−→ R/I ⊗H.

Note that Ker(R/I ⊗ i) ∼= (HI ∩ R)/I = 0 by [14, Proposition 1(2)]. Since

TorR1 (R/I,H) is u-S-torsion with respect to s ∈ S, TorR1 (R/I,H/R) is u-S-torsion

with respect to s ∈ S, which implies that H/R is also u-S-flat with respect to s. �

Lemma 4.6. Let R be a ring and S be a regular multiplicative subset of R. Suppose

that {Aλ | λ ∈ Λ} is a family of u-S-flat modules with respect to s ∈ S, and that Bλ

is a submodule of Aλ such that Aλ/Bλ is u-S-flat with respect to s for each λ ∈ Λ.

Then
∏
λ∈Λ

Aλ is u-S-flat with respect to s if and only if so are
∏
λ∈Λ

Bλ and
∏
λ∈Λ

Aλ/Bλ.

Proof. Let I be a finitely generated ideal of R. Then there is an exact sequence

TorR2 (R/I,
∏
λ∈Λ

Aλ/Bλ)→ TorR1 (R/I,
∏
λ∈Λ

Bλ)→ TorR1 (R/I,
∏
λ∈Λ

Aλ).

By [21, Theorem 3.2], we only need to show
∏
λ∈Λ

Aλ/Bλ is u-S-flat with respect to s.

Consider the following exact sequence

TorR1 (R/I,
∏
λ∈Λ

Aλ)→ TorR1 (R/I,
∏
λ∈Λ

Aλ/Bλ)→ R/I ⊗R
∏
λ∈Λ

Bλ
f−→ R/I ⊗R

∏
λ∈Λ

Aλ.

Since TorR1 (R/I,
∏
λ∈Λ

Aλ) is u-S-torsion with respect to s, to show
∏
λ∈Λ

Bλ is u-S-

flat with respect to s, we only need to show Ker(f) is u-S-torsion with respect to s.

Note that Ker(f) ∼= (
∏

λ∈ΛBλ ∩ I(
∏

λ∈ΛAλ))/I
∏

λ∈ΛBλ
∼=

∏
λ∈Λ(Bλ ∩ IAλ)/IBλ

as I is finitely generated. Consider the following exact sequence TorR1 (R/I,Aλ) →
TorR1 (R/I,Aλ/Bλ) → R/I ⊗R Bλ

fλ−→ R/I ⊗R
∏
Aλ. We have Ker(fλ) ∼= (Bλ ∩

IAλ)/IBλ is u-S-torsion with respect to s since Aλ/Bλ is u-S-flat with respect to s

. So Ker(f) ∼=
∏

λ∈Λ Ker(fλ) is u-S-torsion with respect to s. �

Theorem 4.7. (Matlis theorem for u-S-coherent rings) Let R be a ring and S

be a regular multiplicative subset of R. Then the following statements are equivalent:
19

11 Sep 2023 21:57:24 PDT
230522-Zhang-2 Version 2 - Submitted to Rocky Mountain J. Math.



(1) R is a u-S-coherent ring;

(2) there are s1, s2 ∈ S such that HomR(M,E) is u-S-flat with respect to s1

for any u-S-absolutely pure module M with respect to s2 and any injective

module E;

(3) there are s1, s2 ∈ S such that HomR(M,E) is u-S-flat with respect to s1 for

any u-S-injective module M with respect to s2 and any injective module E;

(4) there is s1, s2 ∈ S such that if E is an injective cogenerator, then HomR(M,E)

is u-S-flat with respect to s1 for any u-S-injective module M with respect to

s2;

(5) there are s1, s2 ∈ S such that HomR(HomR(M,E1), E2) is u-S-flat with re-

spect to s1 for any u-S-flat module M with respect to s2 and any injective

modules E1, E2;

(6) there are s1, s2 ∈ S such that if E1 and E2 are injective cogenerators, then

HomR(HomR(M,E1), E2) is u-S-flat with respect to s1 for any u-S-flat mod-

ule M with respect to s2;

(7) there is s ∈ S such that if E1 is an injective cogenerator, then HomR(E1, E2)

is u-S-flat with respect to s for any injective cogenerator E2.

Proof. (2)⇒ (3)⇒ (4)⇒ (7) and (5)⇒ (6): Trivial.

(3)⇔ (5) and (4)⇔ (6): This follows from Proposition 4.3.

(1)⇒ (2): Suppose R is a uniformly S-coherent ring with respect to some element

s ∈ S. Let I be a finitely generated ideal of R. Then we have an exact sequence

0 → T ′ → K
f−→ I → T → 0 with K finitely presented and sT = sT ′ = 0. Set

Im(f) = K ′. Consider the following commutative diagrams with exact rows ((−,−)

is instead of HomR(−,−)):

(M,E)⊗R T ′ //

ψ1
T ′
��

(M,E)⊗R K
ψK ∼=
��

// (M,E)⊗R K ′

ψK′
��

// 0

((T ′,M), E) // ((K,M), E) // ((K ′,M), E) // 0,

0 // TorR1 ((M,E), R/K ′) //

ψ1
R/K′
��

(M,E)⊗R K ′

ψK′
��

// (M,E)⊗R R
ψR ∼=
��

// (M,E)⊗R R/K ′

ψR/K′
��

// 0

0 // (Ext1
R(R/K ′,M), E) // ((K ′,M), E) // ((R,M), E) // ((R/K ′,M), E) // 0
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and

TorR1 ((M,E), T )

��

// TorR1 ((M,E), R/K ′) //

ψ1
R/K′
��

TorR1 ((M,E), R/I)

ψ1
R/I ��

// (M,E)⊗R T

��
(Ext1

R(T,M), E) // (Ext1
R(R/K ′,M), E) // (Ext1

R(R/I,M), E) // ((T,M), E)

Since ψK is an isomorphism by [2, Proposition 8.14(1)] and [10, Theorem 2], ψK′

is a u-S-isomorphism with respect to s, and so is ψ1
R/K′ . Then ψ1

R/I is a u-S-

isomorphism with respect to s3 (see the proof of [23, Theorem 1.2]). Since M is u-

S-absolutely pure, Ext1
R(R/I,M) is u-S-torsion with respect to s2 (s2 is independent

of I). Then TorR1 (HomR(M,E), R/I) is u-S-torsion with respect to s1 := s3s′, and

thus HomR(M,E) is u-S-flat with respect to s1 by Proposition 4.3.

(7) ⇒ (1): Let E be an injective cogenerator and set H = HomR(E,E). Then

H is u-S-flat with respect to s by assumption. Since R ⊆ H, we have that H/R

is u-S-flat with respect to s by Lemma 4.5. Let Λ be an index set. Set Hλ = H,

Rλ = R and Eλ = E for any λ ∈ Λ. Since
∏
λ∈Λ

Eλ is also a injective cogenerator,∏
λ∈Λ

Hλ
∼= HomR(Eλ,

∏
λ∈Λ

Eλ) is u-S-flat with respect to s by assumption. Hence∏
λ∈Λ

Rλ is u-S-flat with respect to s by Lemma 4.6. So R is a u-S-coherent ring by

Theorem 4.4. �
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