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0 ABSTRACT. We present some new upper and lower bounds for the numerical radius of bounded linear
1 operators on a complex Hilbert space and show that the bounds are stronger than the existing ones. In
— particular, we prove that if A is a bounded linear operator on a complex Hilbert space ¢ and if R(A),
2 3(A) are the real part, the imaginary part of A, respectively, then
S HAH
4 i) > 150+ I+ 3] - 9) ~ S
15 and . .
il WA(A) 2 ATA+AA"] + [ IR(A4) + 3(4) >~ [R(4) - 3(4)
v where w(-) and || - | denote the numerical radius and the operator norm, respectively. Further, we obtain
18 refinements of the inequalities for the numerical radius of the product of two operators. Finally, as an
19 application of the second inequality mentioned above, we obtain an improvement of upper bound for the
20 numerical radius of the commutators of operators.
21
22 1. Introduction

o Let #() denote the € *-algebra of all bounded linear operators on a complex Hilbert space 7 with
o inner product (.,.) and the corresponding norm ||.|| induced by the inner product (., .). For A € B(.¢),
o let A* be the adjoint of A and |A| = (A* ) Let R(A) and 3(A) denote the real part and the imaginary
o, part of A, respectively, i.e., R(A) = J(A+A*) and S(A) = 5. (A—A”). Let ||A|| and w(A) denote the
-5 operator norm and the numerical radius of A, respectively. Recall that

29 w(A) = sup{|(Ax,x)| :x € A, ||x|| = 1}.

%% Tt is well known that the numerical radius, i.e., w(.) defines a norm on %(.¢) and is equivalent to the
°1 operator norm ||.||. In fact, for every A € (), we have

32

— 1

3 (LD S < w(A) < [IA]l.

34 2

35 The inequalities in (1.1) are sharp, w(A) = ﬂ if A2 =0 and w(A) = ||A|| if A*A = AA*. In [16],
36 Kittaneh improved the inequalities in (1.1) and proved that

37 1 1

w (1.2) ZllATA+AAT| <w?(A) < SllaTA+AAT].

39
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1 Also in [17], Kittaneh refined the second inequality in (1.1) to prove that

2 1
Sy w(A) < S (Al +[4%]2).

* The Aluthge transform of A, denoted as A, is defined as A = |A| U |A| %, where U is the partial isometry
il appearing in the polar decomposition A =UI|A| of A with kerA = kerU. It follows from the definition

° of A that |A|| < ||A]l. Also, w(A) < w(A). In [20], Yamazaki proved that if A € B(¢), then
7

5 (14) w(4) < (141l + w(A)).

— He also proved that (1.4) refine (1.3). For more recent results on the refinement of the numerical radius
» 1nequa11tles of bounded linear operators we refer the readers to see [2, 3, 4, 5, 9, 10]. Next we note
1> some well known inequalities for the numerical radius of the product of two operators. Dragomir [12]
15 proved thatif A.B € PB(H) and r > 1, then

14 r * 1 r r
% (1.5) w'(B"A) < E(HIAI2 +[B)).

16 In [15], Hedarbeygi et al. established a refinement of (1.5) and proved that if A,B € () and r > 1,
17 then

18 r(p* r 1 r r
L (1O w? (B*A) < Sw (|B|2|1‘\|2)+1H|B|4 + A7

| =

20 In this paper, we obtain several upper and lower bounds for the numerical radius of bounded linear
21 operators on .7, which improve on the existing ones in (1.1), (1.2), (1.3) and (1.4). Further, we obtain
22 upper bounds for the numerical radius of the product of two operators, which refine (1.5) and (1.6). As
23 adirect application of the results obtained here, we obtain an improvement of an existing upper bound

24 for the numerical radius of the commutators of operators.
25

26 2. Numerical radius inequalities of operators

% We start our work with the following improvement of the first inequality in (1.1).

20 Theorem 2.1. If A € B(H), then

30

a1 w(A) = S JA] + flllﬁﬁ() S(A)[ = [1%(A) =3 ()]

. Proof. Letx € # with ||x|| = 1. Then by the Cartesian decomposition of A, we have
33

2 (A | = /(A2 + (S (A)x,)?
=3 > (R |+ ] (BA)x) )

- V2

38

1
= 2 5 | {(R(A) £3(A))x,x) |-

40 Taking supremum over all x € 77, ||x|| = 1, we get
41

o w(A) > f||9‘( )E3(A)]-
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1 Thus,
Y 1
B w(A) = ﬁmaX{II%(A) +3(A), 19%(A) =3 (A)]1}-
4 Now,
B \}m ax{[[R(A) +3(A)][], [[R(A) =3 (A)]|}
% _ {HEK A)[[+11%(4) - 3(A)H+\HER(AHS(A)H—HSK(A)—f*(A)H\}
Y V2 2 2
10 A)) +iR(A) =SADI | TIRA) +3A) - [R(A) =S@A)]|
T f{ 2 ’ 2 }
2 _ { AT IRA) +3(A)] —[[%R(4) = 3(4)] !}
8 V2 2
= _ LAl \HTK A)+3(A)| - [1%R(4) =3 ()]l |
E This completes the proof. O

'® Remark 2.2. (i) Clearly, the inequality in Theorem 2.1 refines the first inequality in (1.1).

]

2% (i) If w(A) = @, then ||R(A) +3(A)|| = ||R(A) —3(A)||, but the converse is not necessarily true.
o, For example, if A is (non-zero) self-adjoint, then ||R(A) +3(A)|| = ||R(A) —3(A)|| and w(A) # @.
o, (iii) In [8, Th. 2.1], Bhunia and Paul proved that

23 1 1

20 2 wia) = SliAll+5 HIR@)I = IS@] -

> Clearly, if A € () is (non-zero) self-adjoint, then

26
27 1 1 HAII | [[9R(A4) +3(A) [ = [%(A) =S (A)][ |

& A+ = [ IRA)| - IS

o 5 AL+ 5 TR = IS A)H> Wi

29 .

v e (1410

3oand1fA—< 0 0>,then

31

32 1 1 ]l TIFA) +3(A)] - 19(4) = 3(A)[[ |

— — A+ = | [|RA)]| —(|S(A .

5 Al + 5 IR - [S@)l 1< 15 + N

* Thus, we conclude that the inequality in Theorem 2.1 and the inequality (2.1) are not comparable, in
Egeneral.

36

3Z Next we prove the following inequality which improve on the first inequality in (1.2).

38
55 Theorem 2.3. IfA € B( ), then

L, |
j% wr(A) > zHA A+AAY| tq || R(A)+S(A)]> = |R(A) —SA)[* |

42
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Proof. As the proof of Theorem 2.1, we have

2 wi(A) 2 %maX{Hm(A) +3(A)]1% [%R(A) -3(@A)]*}.

%Now,

j S max{[9R(4) + S(4) P, |9%(4) - S(4)])

B _ 1{IIW(A)+3(A)||2+II9?(A)—5(A)H2+|HTK(AHS(A)IIZ—IIEK(A)—S’*(A)IIZ\}

9 2 2 2

0 1 [I(RA) +3(A))* + (R(A) = S(A)?l| |, [IIRA) +S(A)]> — [R(A4) —S(A)| |

m = 2 2 + 2

% _ At AAT] | TIRA)+S@)]7 —IR(A) = S@)IP |

v 4 4 )

15 This completes the proof. O

® Remark 2.4. (i) Clearly, the inequality in Theorem 2.3 refines the first inequality in (1.2).

% (i) Tf w?(A) = HAAj[iA‘“', then [|R(A) +3(A)| = ||R(A) — 3(A)||, but the converse is not necessarily
— true.

;% (iii) In [8, Th. 2.9], Bhunia and Paul proved that if A € Z(J¢), then

o 1, o1
%(2-2) wHA) = ATAAAT 4 S [ RA)]F - [1S(A)]* ]

EE Considering the same examples as in Remark 2.2 (iii), we conclude that the inequality in Theorem 2.3
24 and the inequality (2.2) are not comparable, in general.
25

o Next we obtain an upper bound for the numerical radius which improve on (1.4). For this purpose,
o, first we need the following lemma, based on polarization principle.

% Lemma 2.5. Let A € B(H), and let x,y € 7. Then
29

30

a1 A —(A(x— _

) (Axx) = <<x+y>:X+y>4< (x—),x—)
o L AGty) X i) — (A —iy),x i)
34 4

35 Theorem 2.6. IfA € B(H), then

36 1
37 w(A) <

38

39
20 Proof. First we note that

41 i i
o w(A) = sup |R(e°A) | = sup w(R(4)).
PISIN PISIN

(JAIP -+ w2 (&) + w(AJA +AlA]) .

NS}
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1 Let A = UJA]| be the polar decomposition of A. Then, by lemma 2.5, we have
2 (eAx,x) = (¢°|A|x,U™x)
3
3 1 . . . .
4 = 2 <<|A|(e‘6x—|—U*x),e‘9x—|— U*x) — (|A|(e%x — U*x),e®x — U*x))
i 1 i0 sy i0 sTTR i0 STk i0 sTTR
6 + Z(<|A|(e x+1iU"x),e”x+iU"x) — (|A|(e""x —iUx), e x — iU x>)
S Therefore, we have
8
=~ : 1 , . ‘ ,
9 Re(eAx,x) = Z((]A\(elex—l—U*x),elex+U*x>—(]A\(elex—U*x),elex—U*x>)
10
v 1 ‘ .
1" < LAl x+Ux),e%x+U)
2 1 . .
13 = Z<(e—19+U)|Ay(e19+U*)x,x>
" 1. ,
5 < e +u)lalEe® +u)|
E 1 1 x —i 1 * *
17 = AR +Un (e +u)lal] (4*All = [laa™])
18 1 0 7 0
19 = Z||2\A|+el A+e AT
20 1 i0 1
21 = SllAl+3R(7A)l
22 1
v 1 i0 7\ 2|
2 = 5 | (11+ %))
21
1 o L -
— = 5 ||AP + (R(A)* + |AIR(OA) + R(A)
27 Uil 16 712 01 A1Z 1 A 2
. = S|P+ @A) + R (1AlA+Ala)) |
2 1 2 2 01 A1Z 1 A :
o < 5 (JAP+ ISR P+ R(e <1A\A+A|Ar>>u)
31 1
2 < S (IAIP+wA) )+ w(lAlA+AlAD)?
% Since Re(¢®Ax,x) = (R(e®A)x, x), so taking supremum over 6 € R, we get
34
5 w(d) < 5 (HAHZ+W2(A) +W(|A!A+A\A|))§,
36
a7 - as desired.

3 Remark 2.7. From [14] we have if A, X € #(.), then w(A*X + XA) < 2||A|jw(X) and so
39 . - . -

o AP +w?(A) +w(lAJA+AJA]) - < AP +w?(A) + 2| |Al|lw(A)

a = [A]* +w?(A) +2]|A ] w(A)

42 = (/|A] +W(A))2~
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Therefore,
w(A) < 3 (AP + w2 () + w(AlA+ AIAD)F < 5 (1Al +w(A)).
Thus the inequality in Theorem 2.6 is stronger than the inequality (1.4).

Next we need the following two lemmas, first one is known as Heinz inequality and second one is
known as Buzano’s inequality.

Lemma 2.8. ([18]) Let A € B(H). Then, for all x,y € A,

[efe|~]ofo]s]w]n]-

10 [(Ax,y)[* < (JAP“x,x) (|41 Dy, ),
" forall o € [0,1].

12

13 Lemma 2.9. ([11]) Let a,b,e € 5 with ||e|| = 1. Then

: {ae)e b)) < 3 (a5} + ),

" Now we are in a position to prove an upper bound which improves on both the upper bounds in (1.2)

17
o and (1.3).

19 Theorem 2.10. If A € B(H), then
20

1
o1 WZ(A)SZH‘A|4¢X+|A*|4(1—O¢)

22
o3 forall a € [0,1].

1
+ EW (,A*|2(1—a) ‘A|20¢> ’

?*_ Proof. Let x € # with ||x|| = 1, then by Lemma 2.8, we have

25

3 (Axa)P < (APl x)

& = (JAP%) (AP

2 1 1

2 < SlAPexat PO + 3 1(1APx, 4" 1) (by Lemma 2.9)
30 1 4a 1 *14(1—a) 1 1 20 %12(1—ot)

) = AP AT D) S [(A P A PO
32 1 1

= < 5 (AP (A0 ) ) + S AP A PO )
34 1 1

5 = (AP AT ) ) 212 )

36 1 141 1 w12(1—

5 < AP AT 4 S (AP,

38 .
— Therefore, taking supremum over x € .77, ||x|| = 1, we get
39

1 1
o WA(A) < AR+ AT 4 S (a2 apa)

42 as desired. O
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In particular, considering o = % in Theorem 2.10, we get the following inequality [7, Cor. 2.6]
1 N 1 .
(2.3) wi(4) < ZlIAP+ AT+ 5w (A" lA]).
Next, considering the minimum over & € [0, 1] in Theorem 2.10, we get the following corollary.

Corollary 2.11. IfA € B(I), then

W2 (A) < min {iH’A‘4a+|A*|4(1—a)H+;W <|A*|2(1—a)’A‘2a)}_

0<a<l

Clearly, we have

444
S[=]e]e|e|~]o]a|a|e]|r]-

1
min {4 H ’A|4a + |A*|4(1705)

— 0<a<l

1 2(1— 1 . 1 N
+ 5w (jarp “MAFO‘)} < ZIIAP+ 14"l + 5w (A" lAl).

_
w

12 Inorder to appreciate the inequality in Corollary 2.11 we give the following example.

'S Example 2.12. Let

16 010

v A=10 0 2

s 000

;% Then by simple calculation, we have

21 1 0 0 1 0 0
22 AP A Y = [0 141612 0 | and AP APY= [0 41-@ 0
23 0 0 16“ 0 0 0

24
=" Therefore, we have
25

1+16'"% fo<a<r
26 4 *14(1— U=
— [ e Nl {

27 16¢ ifro<a<l,

28
59 Where 1670 = 1+§/‘%. Also,

30

— 4l=¢ fo<a<l

o wila P japey = ¢4 FO2

3 ifa=1.

33 Now,

34

. 1+16'" 41« 33+1/65 4

3 min { + + } _ + \[ ~2.0724.
36 0<a<ry 4 2 4(14+v65 21/1_*_

Z% min {16&—1—41_a} = Lt 65+ 4v2 ~2.0724
o ro<a<i | 4 2 8 2v/1+ /65 ' '
40 Thus,

4 . 1 4o *14(1-a) 1 #12(1-a)| 4|20 ~
42 O?égl{4y|\A| + A7) ||+§w<|A| Al ) ~ 2.0724.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

REFINED INEQUALITIES FOR THE NUMERICAL RADIUS OF OPERATORS 8

Also, we have
1 1 9
— AP+ |A* || + =w (|A*]|A]) = = = 2.25.
ZIAPR + 14" 4 Sw (4" |l4]) = 5 =2.25

Hence, for the matrix A,

(1 RV BN 1 o1
min, { AP A1 oo (PO AP) b < SIAR AP+ 5 47 AD:

0<a<l1

Thus the inequality in Corollary 2.11 is a refinement of the inequality (2.3) and hence it also refines
the inequalities (1.2) and (1.3).

[efe|~]ofo]s]e]n]-

—_
o

- 3. Numerical radius inequalities of product of operators
11
12 We begin this section with the following two lemmas, first one can be found in [19, p. 20] and second
13 one is obvious.

% Lemma 3.1. Let A € B(H) be posittive and let x € 7€ with ||x|| = 1. Then for all r > 1, we have

16 (Ax,x)" < (A"x,x).

17

18
19 Lemma 3.2. Forall a,b € R, we have |a+b| < v/2|a+ib|.

2 .
2 We now prove an improvement of (1.5) .
21

22 Theorem 3.3. Let A,B € JB(H). Then, forall r > 1,

23 1

ZE WZr(B*A) SEWZ (‘A’2r+i|B’2r).

Z% Proof. Let x € 7 with ||x|| = 1. Then we have,

27 |(B*Ax,x)[*" = |(Ax,Bx)|*"

il < JlAx]> | B

2% < (|A[*x,x)(|B|*"x,x) (by Lemma 3.1)
— 1

o < 5 (AP + (1BPx,)

32

— 1

3 < 5 (AP +1(B7x,x)[* (by Lemma 3.2)
34

— 1 : 2

5 = (AP B )

® 1

?i S sz (’A|2r—|—i‘B|2r).

38
5 laking supremum over x € J7, [[x|| = 1, we get

1
= W (B'A) < Sw? (A +ilBP),

42 as required. O
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1 Itis easy to verify that, w?(JA|>" +i|B|?") < |||A|*" +|B|*"||. Thus, the inequality in Theorem 3.3
o refines the inequality (1.5) for r > 2.
'3 For an improvement of (1.6) we need the following lemma, that can be found in [1].

4

— Lemma 3.4. Let f be a non-negative increasing convex function on [0,00) and let A,B € B(H) be
2 positive. Then

|
Theorem 3.5. IfA,B € B(H), then forr > 1,
1 <|MBP\A|2+ A8

()=

-
[=[3]e]e]~]e

T 4 4
5 5 ) + 2 1B+ 1Al

12

E Proof. Let x € 7 with ||x|| = 1. Then, we have
14

. (B'Ax)P = |(Ax,Bx)]

16 < J|Ax|]?||Bx||?

7 < (JA]Px,x)(|B|*x,x)

18 1 2

b < 5 ((APx) + (Blx.)

20 1 2

o = L (AP +1BP)x.)

2 1 2

5 < (AP +1BP) %)

24 1 4 4 212 20412
> = 1<(IA| +|BI* + |A[*[B|” + |B|*|A]%) x,x)
26 1

- < ZII(|A|4+|B|4+IA\2|B|2+\B|2\A|2)||
28 Loioa ay . Liiai2ie2 20412
- < —||lA B —|||A|“|B B|“|A|~]l.
P _4|||!+!|||+4H\|\|+|||||I

30 Thus, we have

:1 1 1 r
2 [(B*Ax,x)|" < <4||1A|4+|B|4||+4|\|A|2|B|2+|B\2|A\2H>

33

v < L(NAF+IBEIN" 1 (IAPIBE+IBPIAPI Y

35 -2 2 2 2

£ 1 1 A232+ BZAZ r

- < ZH|A’4r+|B’4rH+§ (||| ’ | ’ 2| | ’ | H (byLemma3.4).

% Hence, taking supremum over x € 7, ||x|| = 1, we get

39
o 1/ IBPIAP+ |APBI\ " 1
41 2 2 4

42 (]
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1 Remark 3.6. By using convexity property of f(¢) =¢",r > 1, we have
2 L/ IBPIAP+ [APIBEIN | 1y o
— - Z1||BI4 A4r
b 5 (WA AEEELY o i+ 1)
4
. L (IBPIAP+[APIBPY 1 4 4
5 — awoh _ B r A r
0 o (P B A
u < L (Lugpiap)+ Lwaaris®)) + Lise |
B = 202 2 4
o 1 20412 212 | - 4
o = Z(Wr(\B! |A[7) +w"(|A]|B| ))+1H\B! "+HIA[M
E _ 1 r 2 2 1 4r 4r
2 = W (IBIIAP) + L lIBI™ + A7),
13 Thus, forall »r > 1, we have
14 21412 2(RI2(\ "
- 1 B|“|A|*+|A|°|B 1
E WZr(B*A) < 5 (H’ | ’ ‘ 2| | ‘ | ||> +ZH|B’4r+’A’4rH

3
IN

1 r 1 r r
SW(IBPAP) + L IIBIY +[A[]).

1o Therefore, the inequality in Theorem 3.5 is a refinement of that in (1.6).

20 Finally, as a direct application of Theorem 2.3, we obtain the following inequality for the generalized
21 commutators of operators. We use the idea used in the proof of [6, Th. 3.2].

E%Theorem 3.7. Let A,B,X,Y € B(H). Then

24 w(AXB + BYA)

< 2v3B|max (X [7]) W(A) - LIA) + SAP— %@ ~SWIPT

% Proof. Let x € 7 with ||x|| = 1. If [ X|| < 1 and ||Y|| < 1, then by Cauchy Schwarz inequality, we get
29 ((AX £YA)x,x)| < [(Xx,A"x)| +|(Ax, Y *x)|

2 < [|A%]] + [|Ax]

5 < V(AP + AxP)?

% < V2)AAT+ATAR.

Z% Taking supremum over ||x|| = 1, we get

3 (3.1) w(AX £YA) < V2|AA* +AA|?,

::% when ||X|| < 1 and ||Y|| < 1. Now we consider the general case, that is, X,Y € Z(J) are arbi-
>* _v_ . X
49 trary. If X =Y =0, then (3.1) holds trivially. If max {||X[],[|Y[|} # 0, then HWH <1 and

41
ég (3.2) w(AX £YA) < \meaX{HXH, Y]} ||AA* +A*A||%.

40 Y . . .
H max XTTPTE H < 1, and so it follows from the inequality (3.1) that
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1 Replacing X by XB and Y by BY in the inequality (3.2) we get,
% w(AXB+BYA) < V2max {||XB||, ||BY ||} ||AA* +A*A| 2,
"4 This implies that
5
e w(AXB+BYA) < V2|[B]| max {| X[, [Y|[} [AA* +4%A] 2.
Z Therefore, by using the inequality in Theorem 2.3, we have
£ w(AXB+ BYA)
9
10 | [IR(A) +S(A)[1> — IR(A) =S (A) | |
% < 2\f2||19llmax{||X||>HYH}\/WZ(A)— 1 :
E as desired. O
13

Considering X =Y = I (the identity operator) in Theorem 3.7 we get the following corollary.

15 Corollary 3.8. IfA,B € B(), then
16

© 5 - 5
i w(AB£BA) < 2f2||B|y\/w2(A) _ HIBtA) +S@)] ; I19(A4) = SAIP |
18

E Remark 3.9. Let A,B € #(s). (i) Fong and Holbrook [14] proved that

. 33) W(AB + BA) < 2V2||B|lw(A).

22 Clearly, the inequality in Corollary 3.8 is stronger than the inequality (3.3).

23 (ii) Hirzallah and Kittaneh [13] improved on the inequality (3.3) to prove that

24

— RA)|12-(13(A)]?

26

o, Considering the same examples as in Remark 2.2(iii), we see that the inequalities in Corollary 3.8 and
og (3.4) are not comparable, in general.

oo (iil) It follows from the Corollary 3.8 that if w(AB+BA) = 2v/2||B||w(A), then

3 19R(A) +3(A)[| = [[R(A) =3 ().

3
5, Data availability statement.
53 Data sharing is not applicable to this article as no new data were created or analyzed in this study.

34
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