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Abstract

A famous conjecture attributed to Dardano-Dikranjan-Rinauro-Salce
states that any uniformly fully inert subgroup of a given group is com-
mensurable with a fully invariant subgroup (see, respectively, [5] and [6]).
In this short note, we completely settle this problem in the affirmative for
an arbitrary Abelian group.

1 Preliminaries

Throughout the present brief paper, all our groups are additively written and
Abelian. Our notation and terminology are mainly standard and follow those
from [11].

Recall the standard notion that a subgroup F of an arbitrary group G is
said to be fully invariant if ϕ(F ) ⊆ F for any endomorphism ϕ of G, while if
ϕ is an invertible endomorphism (= an automorphism), then F is said to be a
characteristic subgroup. It is obvious that fully invariant subgroups are always
characteristic, whereas the converse implication fails in general.

On the same vein, imitating [6] and [3], respectively, a subgroup S of a group
G is called fully (resp., characteristically) inert, provided (ϕ(S) + S)/S is finite
for all endomorphisms, respectively automorphisms, ϕ of G.
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The first of these two concepts is known to be refined in [5] and [6] to the
so-called uniformly fully inert subgroups by requiring the existence of a fixed
positive integer m such that the cardinality of the quotient-group (ϕ(S)+S)/S
is bounded by m (i.e., it has at most m elements, for each endomorphism ϕ of
G), while the second concept mentioned above was refined in [5] by defining a
subgroup H of a group G to be uniformly characteristically inert, provided there
is a positive integer k such that, for every automorphism φ of G, the cardinality
of the factor-group (φ(H)+H)/H is bounded by k (that is, it has no more than
k elements for each automorphism φ of G). It is evident that any (uniformly)
fully inert subgroup is always (uniformly) characteristically inert, whereas the
reverse implication is wrong in general.

Remember also that two subgroups B and C of a groupG are called commen-
surable and write for short that B ∼ C or, equivalently, that C ∼ B since this is
a symmetric relation, provided that both quotients (B +C)/B and (B +C)/C
are finite.

The class I of groups in which fully inert subgroups are commensurable with
fully invariant subgroups was studied by many authors: in fact, it is worthwhile
noticing that, in many special cases, a fully inert subgroup is commensurable
with a fully invariant subgroups as well as a characteristically inert subgroup
is commensurable with a characteristic subgroup (see, e.g., [7], [8], [9] and,
respectively, [2], [3], [4]). Note that some of the results from [2] and [3] that are
related to the current subject, namely [3, Proposition 4.2] and [2, Lemma 2.1],
are formulated only for p-groups, where p is a fixed prime, but actually they
remain true for arbitrary groups.

However, it is not so hard to construct examples such that a fully inert
subgroup is not commensurable with a fully invariant subgroup as well as a
characteristically inert subgroup that is not commensurable with a characteristic
subgroup (see, for instance, the previously cited four articles).

On the other side, it was shown in [5, Corollary 1.9] the important fact that
any uniformly characteristically inert subgroup is commensurable a character-
istic subgroup and, moreover, in a way of similarity it was conjectured in [5,
Conjecture 5.2] that every uniformly fully inert subgroup of a given (not neces-
sarily Abelian) group is commensurable with a fully invariant subgroup (see [6,
Conjecture 1.6] too).

Our objective in the present short article is to give a complete positive
solution of this difficult question in the commutative case that we illustrate in
the next section.

2 The Solution

To simplify the exposition, let us define U to be the class of groups in which uni-
formly fully inert subgroups are commensurable with fully invariant subgroups.
This class is, obviously, a counterpart of the aforementioned class I.

Our key tools, necessary to resolve the listed above conjecture, are the fol-
lowing three useful statements. The first ingredient of the proof of the main
theorem listed below is the following one.
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Lemma 2.1 Let G be a group. Then every characteristic subgroup of G⊕G is
fully invariant.

Proof. Assume G is non-zero. An application of [10, Theorem 3] to the
endomorphism ring End(G) of the group G for n = 2 guarantees that each
element of End(G ⊕ G) is the sum of three units, which means that every
endomorphism of G⊕G is the sum of three automorphisms, thus immediately
giving the claim.

Notice that this fact is a simple consequence of a result due to Kaplansky (see
[10, Lemma 2]) pertaining to some special matrix presentations (we emphasize
that this trick was also used in [3], [4]).

We now state and prove the following quite curious statement.

Proposition 2.2 Every group of the form G⊕G belongs to U .

Proof. SupposeK := G⊕G and assume C is a uniformly fully inert subgroup
of K. It is now routinely checked that C is uniformly characteristically inert in
K (as each automorphism is necessarily an endomorphism). Therefore, with the
aid of [5, Corollary 1.9], we deduce that C is commensurable with a characteristic
subgroup H of K. However, with Lemma 2.1 in hand, it then follows that H is
fully invariant in K, as needed.

Our next pivotal instrument is the following one.

Proposition 2.3 If A is a group such that A⊕A ∈ U , then A ∈ U .

Proof. The idea is based on these two well-known facts established in [5]
and [6], respectively (see too the literature given there):

Fact 1: If H is a uniformly fully inert subgroup of G, then H ⊕H is uniformly
fully inert in G⊕G.

Fact 2: If A and B are subgroups of G such that A⊕A is commensurable with
B ⊕B in G⊕G, then A is commensurable with B in G.

With these two claims at hand, it is now straightforwardly verified that the
statement is true, as promised. In fact, suppose U is a uniformly fully inert
subgroup of A. By Fact 1, the square U ⊕ U is uniformly fully inert subgroup
of A ⊕ A. So, by assumption, U ⊕ U is commensurable with a fully invariant
subgroup of A⊕A, say V ⊕ V for some V ≤ A. Thus, Fact 2 is now applicable
to get that U is commensurable with V in A, where it is readily checked that
V is fully invariant in A, as required.

We now come to our basic assertion that answers in the affirmative the
important conjecture from respectively [5, Conjecture 5.2] and [6, Conjecture
1.6], and which surprisingly states that the class U coincides with the class
of all Abelian groups.

We note that the result is preliminary announced in [1] as well as it is
discussed and cited in [13, Theorem 3.6]. Specifically, we are prepared to prove
the following main achievement.
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Theorem 2.4 Each group lies in U , that is, any uniformly fully inert subgroup
H of a group G is commensurable with some fully invariant subgroup of G.

Proof. It follows directly from a combination of Propositions 2.2 and 2.3, as
expected.

The following comments are, hopefully, worthwhile.

Remark. We are able to give a quick sketch of a second, less conceptual, proof
of Theorem 2.4 with no exploiting the validity of Proposition 2.2, but utilizing
similar arguments to those as presented above combined with Proposition 2.3.

In fact, suppose H is a uniformly fully inert subgroup in G. Then, by Fact
1 quoted above (and same as [3, Theorem 4.6]), we derive that H ⊕ H is a
uniformly fully inert subgroup in G⊕G, whence

H ⊕H ∼ C

for some characteristic subgroup C in G ⊕ G (see [5, Corollary 1.9]). But
Lemma 2.1 applies to get that C is fully invariant in G⊕G and that it is also
of the form C = F ⊕ F , where F is fully invariant in G. Indeed, we can write

C = (C ∩G)⊕ (C ∩G)

and set F = C ∩G. So,
H ⊕H ∼ F ⊕ F

and, in view of Fact 2 alluded to above, we infer at once that H ∼ F , as wanted.
The proof is completed.

Nevertheless, it is worth mentioning that some recent work on that conjec-
ture related to p-groups was done in [12] as well.
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