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A B S T R A C T

This paper applies Lie symmetry analysis method (LSAM) to high dimensional fractional Burg-
ers equation. We obtained all the Lie symmetries and the corresponding conserved vectors for
the equation by this method. Then we acquired a one-dimensional optimal system, which is
utilized to reduce the aimed equation with Riemann-Liouville fractional derivative (RLFD) to
a low dimensional fractional partial differential equation (FPDE) with Erdélyi-Kober fractional
derivative (EKFD). Finally, we obtained the power series solution (PSS) of the reduced equa-
tion and provided its convergence proof. Moreover, we obtained some other low dimensional
reduced FPDEs with RLFD, which can be solved by different methods in the literatures herein.

1. Introduction
As a generalization of the classical calculus, fractional calculus is believed to have originated from L’Hôspital’s

letter to Leibniz in 1695. Since then, it has gradually attracted the research interest of numerous mathematicians
and physicists. Especially in the past half century, it has developed rapidly and achieved success in various fields of
engineering and technology [1–4]. Thus it is very meaningful to solve fractional differential equation (FDE). There are
currently some methods for solving FDEs, such as Adomian decomposition method [5], finite difference method [6],
homotopy perturbation method [7], the sub-equation method [8], the variational iteration method [9], Lie symmetry
analysis method [10], invariant subspace method [11], the reduced differential transform method [12–14] and so on.
However, most of them are numerical methods. The sub-equation method is an ad hoc solving technique for FDEs
with the modified RLFD. The invariant subspace method is applicable to some equations that are easy to find their
invariant subspaces. While the LSAM, as a universal and effective modern method to obtain analytical solutions of
FDEs, has received an increasing attention.

The LSAM was founded by the famous Norwegian mathematician Sophus Lie in the late 19th century. Then some
other mathematicians further developed this method, such as Ovsiannikov [15], Olver [16], Ibragimov [17–19] and
so on. As a modern analytical method, it has been extended to FDEs by Gazizov et al. [10] in 2007. Subsequently,
this method was effectively applied to the (1+1)-dimensional FDEs models [20–30] and the (2+1)-dimensional FDEs
models [31–34] that have emerged in various application fields.

In this paper, the LSAM is used to study the following (3+1)-dimensional time fractional Burgers equation with
nonlinear term:

𝐷𝛼
𝑡 𝑢 + 𝑎𝑢𝑢𝑥 = 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧, 0 < 𝛼 < 1, (1.1)

where 𝑢 = 𝑢(𝑡, 𝑥, 𝑦, 𝑧) is the flow velocity, 𝑡 is the time, 𝑥, 𝑦, 𝑧 are the spatial coordinates, and 𝑎 is an arbitrary constant.
The classic Burgers equation has widely used in physical and engineering fields, such as nonlinear acoustics, aerody-
namics, fluid mechanics, etc. In recent years, fractional Burgers-type equations have been introduced and studied, as
the additive effect of wall friction through the bounding layers can be modeled using fractional derivatives [35]. Vari-
ous analytical methods and numerical techniques have been used for solving different fractional Burgers-type equations
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[35–45]. Wherein Lie symmetry analysis is an effective analytical method. In [37], Inc et al. used it to research frac-
tional Burgers-Huxley equation, which describes the mutual influence among diffusion transport, convective effects
and reaction mechanisms. In [38], Saqib et al. used it to study the time-fractional inviscid Burgers equation for non-
viscous fluids. In [39], Zhang used it to study the time-fractional coupled Burgers equation, which is a evolution or
sedimentation model of two types of particles in a colloid or fluid suspension at a proportional volume concentration
under the action of gravity. In [45], Yu used it to study some fractional Burgers-type equations with delays.

The aim of this paper is to find all Lie symmetries of Eq. (1.1) and construct the corresponding conserved vector
for each symmetry by the generalization of Noether operator and the new conservation theorem. The one-dimensional
optimal system obtained through Olver’s method [16] is used to reduce the dimensionality of Eq. (1.1) by one or two,
where the reduced equation is then solved simultaneously to obtain the PSS. To our knowledge, it is difficult to obtain
the PSS for high dimensional FPDEs, while the PSS of the reduced low dimensional equations gained by the LSAM
can be easily obtained.

As we all know, there are many types of definitions for fractional derivative. This paper adopts Riemann-Liouville
type [1–4]

𝑎𝐷
𝛼
𝑡 𝑓 (𝑡, 𝑥) = 𝐷𝑛

𝑡 𝑎𝐼
𝑛−𝛼
𝑡 𝑓 (𝑡, 𝑥) =

⎧⎪⎨⎪⎩
1

Γ(𝑛−𝛼)
𝑑𝑛

𝑑𝑡𝑛 ∫ 𝑡𝑎 𝑓 (𝑠,𝑥)
(𝑡−𝑠)𝛼−𝑛+1 d𝑠, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ

𝐷𝑛
𝑡 𝑓 (𝑡, 𝑥), 𝛼 = 𝑛 ∈ ℕ

for 𝑡 > 𝑎. For convenience, 0𝐷𝛼
𝑡 is denoted as 𝐷𝛼

𝑡 in the following text.
The following is the arrangement of this paper. Section 2 introduces the LSAM for Eq. (1.1). Section 3 calculates

the conserved vectors for all the obtained symmetries. Section 4 constructs a one-dimensional optimal system of the
symmetry group. Section 5 presents the reduced equations, the PSS and the proof of its convergence. Section 6 gives
the conclusion.

2. Lie symmetry analysis
Consider Eq. (1.1), which is assumed to be invariant under the following group of one-parameter (𝜖) continuous

transformations:

𝑡∗ = 𝑡 + 𝜖𝜏(𝑡, 𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(𝜖), 𝑥∗ = 𝑥 + 𝜖𝜉(𝑡, 𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(𝜖),
𝑦∗ = 𝑦 + 𝜖𝜁 (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(𝜖), 𝑧∗ = 𝑧 + 𝜖𝜃(𝑡, 𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(𝜖),
𝑢∗ = 𝑢 + 𝜖𝜂(𝑡, 𝑥, 𝑦, 𝑧, 𝑢) + 𝑜(𝜖), 𝐷𝛼

𝑡∗𝑢
∗ = 𝐷𝛼

𝑡 𝑢 + 𝜖𝜂
𝛼,𝑡 + 𝑜(𝜖),

𝐷𝑥∗𝑢
∗ = 𝐷𝑥𝑢 + 𝜖𝜂𝑥 + 𝑜(𝜖), 𝐷𝑦∗𝑢

∗ = 𝐷𝑦𝑢 + 𝜖𝜂𝑦 + 𝑜(𝜖),

𝐷𝑧∗𝑢
∗ = 𝐷𝑧𝑢 + 𝜖𝜂𝑧 + 𝑜(𝜖), 𝐷2

𝑥∗𝑢
∗ = 𝐷2

𝑥𝑢 + 𝜖𝜂
𝑥𝑥 + 𝑜(𝜖),

𝐷2
𝑦∗𝑢

∗ = 𝐷2
𝑦𝑢 + 𝜖𝜂

𝑦𝑦 + 𝑜(𝜖), 𝐷2
𝑧∗𝑢

∗ = 𝐷2
𝑧𝑢 + 𝜖𝜂

𝑧𝑧 + 𝑜(𝜖),

(2.1)

where 𝜏, 𝜉, 𝜁 , 𝜃, 𝜂 are infinitesimals and 𝜂𝛼,𝑡, 𝜂𝑥, 𝜂𝑦, 𝜂𝑧, 𝜂𝑥𝑥, 𝜂𝑦𝑦, 𝜂𝑧𝑧 are the corresponding extensions of orders 𝛼, 1
and 2, respectively. Then the group generator is

𝑋 = 𝜏 𝜕
𝜕𝑡

+ 𝜉 𝜕
𝜕𝑥

+ 𝜁 𝜕
𝜕𝑦

+ 𝜃 𝜕
𝜕𝑧

+ 𝜂 𝜕
𝜕𝑢
, (2.2)

and its corresponding prolongation is

𝑃𝑟(𝛼,2)𝑋 = 𝑋 + 𝜂𝛼,𝑡 𝜕
𝜕𝑢𝛼𝑡

+ 𝜂𝑥 𝜕
𝜕𝑢𝑥

+ 𝜂𝑥𝑥 𝜕
𝜕𝑢𝑥𝑥

+ 𝜂𝑦𝑦 𝜕
𝜕𝑢𝑦𝑦

+ 𝜂𝑧𝑧 𝜕
𝜕𝑢𝑧𝑧

, (2.3)
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where

𝜂𝑥 =𝐷𝑥𝜂 − 𝑢𝑡𝐷𝑥𝜏 − 𝑢𝑥𝐷𝑥𝜉 − 𝑢𝑦𝐷𝑥𝜁 − 𝑢𝑧𝐷𝑥𝜃,

𝜂𝑦 =𝐷𝑦𝜂 − 𝑢𝑡𝐷𝑦𝜏 − 𝑢𝑥𝐷𝑥𝜉 − 𝑢𝑦𝐷𝑦𝜁 − 𝑢𝑧𝐷𝑦𝜃,

𝜂𝑧 =𝐷𝑧𝜂 − 𝑢𝑡𝐷𝑧𝜏 − 𝑢𝑥𝐷𝑧𝜉 − 𝑢𝑦𝐷𝑧𝜁 − 𝑢𝑧𝐷𝑧𝜃,

𝜂𝑥𝑥 =𝐷𝑥𝜂
𝑥 − 𝑢𝑥𝑡𝐷𝑥𝜏 − 𝑢𝑥𝑥𝐷𝑥𝜉 − 𝑢𝑥𝑦𝐷𝑥𝜁 − 𝑢𝑥𝑧𝐷𝑥𝜃,

𝜂𝑦𝑦 =𝐷𝑦𝜂
𝑦 − 𝑢𝑦𝑡𝐷𝑦𝜏 − 𝑢𝑥𝑦𝐷𝑦𝜉 − 𝑢𝑦𝑦𝐷𝑦𝜁 − 𝑢𝑦𝑧𝐷𝑦𝜃,

𝜂𝑧𝑧 =𝐷𝑧𝜂
𝑧 − 𝑢𝑧𝑡𝐷𝑧𝜏 − 𝑢𝑥𝑧𝐷𝑧𝜉 − 𝑢𝑦𝑧𝐷𝑧𝜁 − 𝑢𝑧𝑧𝐷𝑧𝜃,

(2.4)

and

𝜂𝛼,𝑡 =
𝜕𝛼𝜂
𝜕𝑡𝛼

+ (𝜂𝑢 − 𝛼𝐷𝑡𝜏)
𝜕𝛼𝑢
𝜕𝑡𝛼

− 𝑢
𝜕𝛼𝜂𝑢
𝜕𝑡𝛼

−
∞∑
𝑛=1

(
𝛼
𝑛

)
𝐷𝑛
𝑡 𝜉𝐷

𝛼−𝑛
𝑡 𝑢𝑥

−
∞∑
𝑛=1

(
𝛼
𝑛

)
𝐷𝑛
𝑡 𝜁𝐷

𝛼−𝑛
𝑡 𝑢𝑦 −

∞∑
𝑛=1

(
𝛼
𝑛

)
𝐷𝑛
𝑡 𝜃𝐷

𝛼−𝑛
𝑡 𝑢𝑧

+
∞∑
𝑛=1

[(𝛼
𝑛

)
𝜕𝑛𝜂𝑢
𝜕𝑡𝑛

−
(

𝛼
𝑛 + 1

)
𝐷𝑛+1
𝑡 𝜏

]
𝐷𝛼−𝑛
𝑡 𝑢 + 𝜇,

(2.5)

with

𝜇 =
∞∑
𝑛=2

𝑛∑
𝑚=2

𝑚∑
𝑘=2

𝑘−1∑
𝑟=0

(
𝛼
𝑛

)(
𝑛
𝑚

)(
𝑘
𝑟

)
𝑡𝑛−𝛼(−𝑢)𝑟

𝑘!Γ(𝑛 + 1 − 𝛼)
𝜕𝑚𝑢𝑘−𝑟

𝜕𝑡𝑚
𝜕𝑛−𝑚+𝑘𝜂
𝜕𝑡𝑛−𝑚𝜕𝑢𝑘

.

Note that 𝐷𝑖 means taking the total derivative of 𝑖 (𝑖 = 𝑡, 𝑥, 𝑦, 𝑧).

Remark 2.1. From the definition of RLFD, the lower limit of the integral should be fixed under the infinitesimal
transformations (2.1), that is, 𝑡 = 0 should be invariant, i.e.

𝜏(𝑡, 𝑥, 𝑦, 𝑧, 𝑢)|𝑡=0 = 0. (2.6)

Remark 2.2. From the expression of 𝜇, it can be obtained that 𝜇 = 0 when 𝜂 is a linear function of variable 𝑢, that
is,

𝜕2𝜂
𝜕𝑢2

= 0. (2.7)

The equation (1.1) is considered to admit the one-parameter Lie symmetry group (2.1), if it satisfies the following
invariance criterion:

𝑃𝑟(𝛼,2)𝑋
(
𝐷𝛼
𝑡 𝑢 + 𝑎𝑢𝑢𝑥 − 𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝑢𝑧𝑧

)|(1.1) = 0, (2.8)

which can be rewritten as(
𝜂𝛼,𝑡 + 𝑎𝜂𝑢𝑥 + 𝑎𝑢𝜂𝑥 − 𝜂𝑥𝑥 − 𝜂𝑦𝑦 − 𝜂𝑧𝑧

)|(1.1) = 0. (2.9)

Putting 𝜂𝛼,𝑡, 𝜂𝑥, 𝜂𝑥𝑥, 𝜂𝑦𝑦, 𝜂𝑧𝑧 into (2.9) and setting the coefficients of different derivatives of 𝑢 to zero, with the
conditions (2.6) and (2.7), we can obtain the following infinitesimals:

𝜏 = 𝑐1𝑡, 𝜉 =
𝛼
2
𝑐1𝑥 + 𝑐3, 𝜁 = 𝛼

2
𝑐1𝑦 + 𝑐2𝑧 + 𝑐4,

𝜃 = 𝛼
2
𝑐1𝑧 − 𝑐2𝑦 + 𝑐5, 𝜂 = −𝛼

2
𝑐1𝑢,

(2.10)
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with the constants 𝑐𝑖 (𝑖 = 1, 2, 3, 4, 5). That is to say, Eq. (1.1) admits a five-dimension Lie algebra L5 to be spanned
by the following generators:

𝑋1 = 𝑡 𝜕
𝜕𝑡

+ 𝛼
2
𝑥 𝜕
𝜕𝑥

+ 𝛼
2
𝑦 𝜕
𝜕𝑦

+ 𝛼
2
𝑧 𝜕
𝜕𝑧

− 𝛼
2
𝑢 𝜕
𝜕𝑢
,

𝑋2 = 𝑧 𝜕
𝜕𝑦

− 𝑦 𝜕
𝜕𝑧
, 𝑋3 =

𝜕
𝜕𝑥
, 𝑋4 =

𝜕
𝜕𝑦
, 𝑋5 =

𝜕
𝜕𝑧
.

(2.11)

We represent the corresponding one-parameter (𝜖) continuous transformation groups as

ℎ𝑖 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑡∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑢∗), 𝑖 = 1, 2, 3, 4, 5. (2.12)

By solving the following Lie equations:

d(𝑡∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑢∗)
d𝜖

= (𝜏, 𝜉, 𝜁 , 𝜃, 𝜂),

(𝑡∗, 𝑥∗, 𝑦∗, 𝑧∗, 𝑢∗)|𝜖=0 = (𝑡, 𝑥, 𝑦, 𝑧, 𝑢),
(2.13)

we can get the following symmetry transformation groups corresponding to 𝑋𝑖 (𝑖 = 1, 2, 3, 4, 5):

ℎ1 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑒𝜖𝑡, 𝑒
𝛼
2 𝜖𝑥, 𝑒

𝛼
2 𝜖𝑦, 𝑒

𝛼
2 𝜖𝑧, 𝑒−

𝛼
2 𝜖𝑢),

ℎ2 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑡, 𝑥, 𝑦 + 𝜖𝑧, 𝑧 − 𝜖𝑦, 𝑢),
ℎ3 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑡, 𝑥 + 𝜖, 𝑦, 𝑧, 𝑢),
ℎ4 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑡, 𝑥, 𝑦 + 𝜖, 𝑧, 𝑢),
ℎ5 ∶ (𝑡, 𝑥, 𝑦, 𝑧, 𝑢) → (𝑡, 𝑥, 𝑦, 𝑧 + 𝜖, 𝑢),

(2.14)

where 𝜖 is any small real parameter.

3. Conservation laws
The conservation vectors with respect to the Lie symmetries (2.11) can be obtained by means of the generalized

conservation theorem [46, 47].
The equation (1.1) are denoted as

𝐹 = 𝐷𝛼
𝑡 𝑢 + 𝑎𝑢𝑢𝑥 − 𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝑢𝑧𝑧 = 0, (3.1)

of which the formal Lagrangian is given by

 = 𝑣(𝑡, 𝑥, 𝑦, 𝑧)𝐹 = 𝑣(𝑡, 𝑥, 𝑦, 𝑧)(𝐷𝛼
𝑡 𝑢 + 𝑎𝑢𝑢𝑥 − 𝑢𝑥𝑥 − 𝑢𝑦𝑦 − 𝑢𝑧𝑧), (3.2)

where 𝑣(𝑡, 𝑥, 𝑦, 𝑧) is a new function to be determined by Eq. (3.4). The Euler-Lagrange operator is

𝛿
𝛿𝑢

= 𝜕
𝜕𝑢

+ (𝐷𝛼
𝑡 )

∗ 𝜕
𝜕(𝐷𝛼

𝑡 𝑢)
+

∞∑
𝑠=1

(−1)𝑠𝐷𝑖1 ⋯𝐷𝑖𝑠
𝜕

𝜕𝑢𝑖1⋯𝑖𝑠
, (3.3)

where (𝐷𝛼
𝑡 )

∗ is the right-hand of Caputo fractional derivative as follows:

(𝐷𝛼
𝑡 )

∗𝑓 (𝑡, 𝑥) ≡ 𝑐
𝑡𝐷

𝛼
𝑇 𝑓 (𝑡, 𝑥) =

{
1

Γ(𝑛−𝛼) ∫ 𝑇𝑡 1
(𝑡−𝑠)𝛼−𝑛+1

𝜕𝑛

𝜕𝑠𝑛 𝑓 (𝑠, 𝑥)d𝑠, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈ ℕ
𝐷𝑛
𝑡 𝑓 (𝑡, 𝑥), 𝛼 = 𝑛 ∈ ℕ.

The following is the adjoint equation of (3.1):

𝐹 ∗ = 𝛿
𝛿𝑢

= (𝐷𝛼
𝑡 )

∗𝑣 − 𝑎𝑢𝑣𝑥 − 𝑣𝑥𝑥 − 𝑣𝑦𝑦 − 𝑣𝑧𝑧 = 0. (3.4)
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The new conservation theorem and Eq. (3.4) are utilized to construct conservation vectors of Eq. (1.1). According
to the classical definition of the conservation laws, if 𝐶 = (𝐶 𝑡, 𝐶𝑥, 𝐶𝑦, 𝐶𝑧) satisfies the conservation equation [𝐷𝑡𝐶 𝑡+
𝐷𝑥𝐶𝑥 +𝐷𝑦𝐶𝑦 +𝐷𝑧𝐶𝑧]𝐹=0 = 0, we call it a conserved vector for the given equation. Next we use Noether operators
to calculate the components of 𝐶 . From the basic operator equation

𝑃𝑟(𝛼,2)𝑋 +𝐷𝑡𝜏 ⋅  +𝐷𝑥𝜉 ⋅  +𝐷𝑦𝜁 ⋅  +𝐷𝑧𝜃 ⋅  = 𝑊 ⋅
𝛿
𝛿𝑢

+𝐷𝑡 𝑡 +𝐷𝑥 𝑥 +𝐷𝑦 𝑦 +𝐷𝑧 𝑧, (3.5)

where 𝑃𝑟(𝛼,2)𝑋 is given in (2.3),  is an identity operator, and 𝑊 = 𝜂 − 𝜏𝑢𝑡 − 𝜉𝑢𝑥 − 𝜁𝑢𝑦 − 𝜃𝑢𝑧 is the characteristic of
𝑋, the following Noether operators are obtained:

 𝑡 = 𝜏 +
𝑛−1∑
𝑘=0

(−1)𝑘𝐷𝛼−1−𝑘
𝑡 (𝑊 )𝐷𝑘

𝑡
𝜕

𝜕(𝐷𝛼
𝑡 𝑢)

− (−1)𝑛𝐽 (𝑊 ,𝐷𝑛
𝑡

𝜕
𝜕(𝐷𝛼

𝑡 𝑢)
),

 𝑥 = 𝜉 +𝑊
( 𝜕
𝜕𝑢𝑥

−𝐷𝑥
𝜕

𝜕𝑢𝑥𝑥

)
+𝐷𝑥(𝑊 ) 𝜕

𝜕𝑢𝑥𝑥
,

 𝑦 = 𝜁 −𝑊𝐷𝑦
𝜕
𝜕𝑢𝑦𝑦

+𝐷𝑦(𝑊 ) 𝜕
𝜕𝑢𝑦𝑦

,

 𝑧 = 𝜃 −𝑊𝐷𝑧
𝜕
𝜕𝑢𝑧𝑧

+𝐷𝑧(𝑊 ) 𝜕
𝜕𝑢𝑧𝑧

,

(3.6)

where 𝑛 = 1 + [𝛼], and the operator 𝐽 is

𝐽 (𝑓, 𝑔) = 1
Γ(𝑛 − 𝛼) ∫

𝑡

0 ∫
𝑇

𝑡

𝑓 (𝜏, 𝑥, 𝑦, 𝑧)𝑔(𝜃, 𝑥, 𝑦, 𝑧)
(𝜃 − 𝜏)𝛼+1−𝑛

d𝜃d𝜏. (3.7)

The conserved vector for each generator 𝑋 is defined by

𝐶 = (𝐶 𝑡, 𝐶𝑥, 𝐶𝑦, 𝐶𝑧) = ( 𝑡, 𝑥, 𝑦, 𝑧). (3.8)

Case 1: 𝑋1 = 𝑡 𝜕𝜕𝑡 +
𝛼
2𝑥

𝜕
𝜕𝑥 + 𝛼

2𝑦
𝜕
𝜕𝑦 +

𝛼
2𝑧

𝜕
𝜕𝑧 −

𝛼
2 𝑢

𝜕
𝜕𝑢

The characteristic of 𝑋1 is

𝑊 = −𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦 −

𝛼
2
𝑧𝑢𝑧. (3.9)

Therefore, for 0 < 𝛼 < 1,

𝐶 𝑡 =𝑣𝐷𝛼−1
𝑡 (𝑊 ) + 𝐽 (𝑊 , 𝑣𝑡) = 𝑣𝐷𝛼−1

𝑡 (−𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦 −

𝛼
2
𝑧𝑢𝑧)

+ 𝐽 (−𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦 −

𝛼
2
𝑧𝑢𝑧, 𝑣𝑡),

𝐶𝑥 =(𝑎𝑢𝑣 − 𝑣𝑥)𝑊 + 𝑣𝐷𝑥(𝑊 ) = (𝑎𝑢𝑣 − 𝑣𝑥)(−
𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦

− 𝛼
2
𝑧𝑢𝑧) + 𝑣(−

𝛼
2
𝑢𝑥 − 𝑡𝑢𝑥𝑡 −

𝛼
2
𝑢𝑥 −

𝛼
2
𝑥𝑢𝑥𝑥 −

𝛼
2
𝑦𝑢𝑥𝑦 −

𝛼
2
𝑧𝑢𝑥𝑧),

𝐶𝑦 = − 𝑣𝑦𝑊 + 𝑣𝐷𝑦(𝑊 ) = −𝑣𝑦(−
𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦 −

𝛼
2
𝑧𝑢𝑧)

+ 𝑣(−𝛼
2
𝑢𝑦 − 𝑡𝑢𝑦𝑡 −

𝛼
2
𝑥𝑢𝑥𝑦 −

𝛼
2
𝑢𝑦 −

𝛼
2
𝑦𝑢𝑦𝑦 −

𝛼
2
𝑧𝑢𝑦𝑧),

𝐶𝑧 = − 𝑣𝑧𝑊 + 𝑣𝐷𝑧(𝑊 ) = −𝑣𝑧(−
𝛼
2
𝑢 − 𝑡𝑢𝑡 −

𝛼
2
𝑥𝑢𝑥 −

𝛼
2
𝑦𝑢𝑦 −

𝛼
2
𝑧𝑢𝑧)

+ 𝑣(−𝛼
2
𝑢𝑧 − 𝑡𝑢𝑧𝑡 −

𝛼
2
𝑥𝑢𝑥𝑧 −

𝛼
2
𝑦𝑢𝑦𝑧 −

𝛼
2
𝑢𝑧 −

𝛼
2
𝑧𝑢𝑧𝑧).

(3.10)

Case 2: 𝑋2 = 𝑧 𝜕
𝜕𝑦 − 𝑦

𝜕
𝜕𝑧

Jicheng Yu et al.: Page 5 of 17
21 Dec 2023 18:53:43 PST
230906-Feng Version 3 - Submitted to Rocky Mountain J. Math.



Symmetry analysis of fractional Burgers-type equation

The characteristic of 𝑋2 is

𝑊 = −𝑧𝑢𝑦 + 𝑦𝑢𝑧. (3.11)

Therefore, for 0 < 𝛼 < 1,

𝐶 𝑡 = 𝑣𝐷𝛼−1
𝑡 (𝑊 ) + 𝐽 (𝑊 , 𝑣𝑡) = 𝑣𝐷𝛼−1

𝑡 (−𝑧𝑢𝑦 + 𝑦𝑢𝑧) + 𝐽 (−𝑧𝑢𝑦 + 𝑦𝑢𝑧, 𝑣𝑡),
𝐶𝑥 = (𝑎𝑢𝑣 − 𝑣𝑥)𝑊 + 𝑣𝐷𝑥(𝑊 ) = (𝑎𝑢𝑣 − 𝑣𝑥)(−𝑧𝑢𝑦 + 𝑦𝑢𝑧) + 𝑣(−𝑧𝑢𝑥𝑦 + 𝑦𝑢𝑥𝑧),
𝐶𝑦 = −𝑣𝑦𝑊 + 𝑣𝐷𝑦(𝑊 ) = −𝑣𝑦(−𝑧𝑢𝑦 + 𝑦𝑢𝑧) + 𝑣(−𝑧𝑢𝑦𝑦 + 𝑢𝑧 + 𝑦𝑢𝑦𝑧),
𝐶𝑧 = −𝑣𝑧𝑊 + 𝑣𝐷𝑧(𝑊 ) = −𝑣𝑧(−𝑧𝑢𝑦 + 𝑦𝑢𝑧) + 𝑣(−𝑢𝑦 − 𝑧𝑢𝑦𝑧 + 𝑦𝑢𝑧𝑧).

(3.12)

Case 3: 𝑋3 =
𝜕
𝜕𝑥

The characteristic of 𝑋3 is

𝑊 = −𝑢𝑥. (3.13)

Therefore, for 0 < 𝛼 < 1,

𝐶 𝑡 = 𝑣𝐷𝛼−1
𝑡 (𝑊 ) + 𝐽 (𝑊 , 𝑣𝑡) = −𝑣𝐷𝛼−1

𝑡 (𝑢𝑥) − 𝐽 (𝑢𝑥, 𝑣𝑡),
𝐶𝑥 = (𝑎𝑢𝑣 − 𝑣𝑥)𝑊 + 𝑣𝐷𝑥(𝑊 ) = −𝑎𝑢𝑣𝑢𝑥 + 𝑢𝑥𝑣𝑥 − 𝑣𝑢𝑥𝑥,
𝐶𝑦 = −𝑣𝑦𝑊 + 𝑣𝐷𝑦(𝑊 ) = 𝑢𝑥𝑣𝑦 − 𝑣𝑢𝑥𝑦,
𝐶𝑧 = −𝑣𝑧𝑊 + 𝑣𝐷𝑧(𝑊 ) = 𝑢𝑥𝑣𝑧 − 𝑣𝑢𝑥𝑧.

(3.14)

Case 4: 𝑋4 =
𝜕
𝜕𝑦

The characteristic of 𝑋4 is

𝑊 = −𝑢𝑦. (3.15)

Therefore, for 0 < 𝛼 < 1,

𝐶 𝑡 = 𝑣𝐷𝛼−1
𝑡 (𝑊 ) + 𝐽 (𝑊 , 𝑣𝑡) = −𝑣𝐷𝛼−1

𝑡 (𝑢𝑦) − 𝐽 (𝑢𝑦, 𝑣𝑡),
𝐶𝑥 = (𝑎𝑢𝑣 − 𝑣𝑥)𝑊 + 𝑣𝐷𝑥(𝑊 ) = −𝑎𝑢𝑣𝑢𝑦 + 𝑢𝑦𝑣𝑥 − 𝑣𝑢𝑥𝑦,
𝐶𝑦 = −𝑣𝑦𝑊 + 𝑣𝐷𝑦(𝑊 ) = 𝑢𝑦𝑣𝑦 − 𝑣𝑢𝑦𝑦,
𝐶𝑧 = −𝑣𝑧𝑊 + 𝑣𝐷𝑧(𝑊 ) = 𝑢𝑦𝑣𝑧 − 𝑣𝑢𝑦𝑧.

(3.16)

Case 5: 𝑋5 =
𝜕
𝜕𝑧

The characteristic of 𝑋5 is

𝑊 = −𝑢𝑧. (3.17)

Therefore, for 0 < 𝛼 < 1,

𝐶 𝑡 = 𝑣𝐷𝛼−1
𝑡 (𝑊 ) + 𝐽 (𝑊 , 𝑣𝑡) = −𝑣𝐷𝛼−1

𝑡 (𝑢𝑧) − 𝐽 (𝑢𝑧, 𝑣𝑡),
𝐶𝑥 = (𝑎𝑢𝑣 − 𝑣𝑥)𝑊 + 𝑣𝐷𝑥(𝑊 ) = −𝑎𝑢𝑣𝑢𝑧 + 𝑢𝑧𝑣𝑥 − 𝑣𝑢𝑥𝑧,
𝐶𝑦 = −𝑣𝑦𝑊 + 𝑣𝐷𝑦(𝑊 ) = 𝑢𝑧𝑣𝑦 − 𝑣𝑢𝑦𝑧,
𝐶𝑧 = −𝑣𝑧𝑊 + 𝑣𝐷𝑧(𝑊 ) = 𝑢𝑧𝑣𝑧 − 𝑣𝑢𝑧𝑧.

(3.18)
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Symmetry analysis of fractional Burgers-type equation

Table 1
The Commutation Table.

[𝑋𝑖, 𝑋𝑗] 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5
𝑋1 0 0 − 𝛼

2
𝑋3 − 𝛼

2
𝑋4 − 𝛼

2
𝑋5

𝑋2 0 0 0 𝑋5 -𝑋4
𝑋3

𝛼
2
𝑋3 0 0 0 0

𝑋4
𝛼
2
𝑋4 -𝑋5 0 0 0

𝑋5
𝛼
2
𝑋5 𝑋4 0 0 0

Table 2
The Adjoint Table.

𝐴𝑑 𝑋1 𝑋2 𝑋3 𝑋4 𝑋5

𝑋1 𝑋1 𝑋2 𝑒
𝛼
2 𝜀𝑋3 𝑒

𝛼
2 𝜀𝑋4 𝑒

𝛼
2 𝜀𝑋5

𝑋2 𝑋1 𝑋2 𝑋3 cos 𝜀 𝑋4 − sin 𝜀 𝑋5 cos 𝜀 𝑋5 + sin 𝜀 𝑋4
𝑋3 𝑋1 −

𝛼
2
𝜀𝑋3 𝑋2 𝑋3 𝑋4 𝑋5

𝑋4 𝑋1 −
𝛼
2
𝜀𝑋4 𝑋2 + 𝜀𝑋5 𝑋3 𝑋4 𝑋5

𝑋5 𝑋1 −
𝛼
2
𝜀𝑋5 𝑋2 − 𝜀𝑋4 𝑋3 𝑋4 𝑋5

4. Optimal system
Next we use Olver’s method [16] to construct an optimal system for the symmetry group admited by Eq. (1.1).

Firstly, in Table 1, the commutation relationships of the group generators in (2.11) can be obtained under the Lie
bracket defined by

[𝑋𝑖, 𝑋𝑗] = 𝑋𝑖𝑋𝑗 −𝑋𝑗𝑋𝑖, (𝑖, 𝑗 = 1, 2, 3, 4, 5). (4.1)

The following is Lie series

𝐴𝑑(𝑒𝑥𝑝(𝜀𝑋𝑖))𝑋𝑗 = 𝑋𝑗 − 𝜀[𝑋𝑖, 𝑋𝑗] +
𝜀2

2
[𝑋𝑖, [𝑋𝑖, 𝑋𝑗]] −⋯ , (4.2)

where 𝜀 is an arbitrary parameter. According to (4.2), we can obtain the adjoint representations of all the group
generators in (2.11) and include them in Table 2.

Assuming 𝑋 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5𝑋5, from Table 2, we can get the following expression:

𝐴𝑑(𝑒𝑥𝑝(𝜀1𝑋1))𝑋 = 𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑒
𝛼
2 𝜀𝑋3 + 𝑎4𝑒

𝛼
2 𝜀𝑋4 + 𝑎5𝑒

𝛼
2 𝜀𝑋5, (4.3)

which can be written as

𝐴𝑑(𝑒𝑥𝑝(𝜀1𝑋1))𝑋 = (𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5)𝐴1(𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5)𝑇 , (4.4)

where

𝐴1 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 𝑒

𝛼
2 𝜀1 0 0

0 0 0 𝑒
𝛼
2 𝜀1 0

0 0 0 0 𝑒
𝛼
2 𝜀1

⎞⎟⎟⎟⎟⎟⎠
.
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Symmetry analysis of fractional Burgers-type equation

Table 3
The Construction Table.

Coeff. 𝑋1 Coeff. 𝑋2 Coeff. 𝑋3 Coeff. 𝑋4 Coeff. 𝑋5

𝑃1 𝑎1 𝑎2 𝑒
𝛼
2 𝜀𝑎3 𝑒

𝛼
2 𝜀𝑎4 𝑒

𝛼
2 𝜀𝑎5

𝑃2 𝑎1 𝑎2 𝑎3 cos 𝜀 𝑎4 + sin 𝜀 𝑎5 cos 𝜀 𝑎5 − sin 𝜀 𝑎4
𝑃3 𝑎1 𝑎2 𝑎3 −

𝛼
2
𝜀𝑎1 𝑎4 𝑎5

𝑃4 𝑎1 𝑎2 𝑎3 𝑎4 −
𝛼
2
𝜀𝑎1 𝑎5 + 𝜀𝑎2

𝑃5 𝑎1 𝑎2 𝑎3 𝑎4 − 𝜀𝑎2 𝑎5 −
𝛼
2
𝜀𝑎1

Similar to 𝐴1, we get

𝐴2 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 cos 𝜀2 − sin 𝜀2
0 0 0 sin 𝜀2 cos 𝜀2

⎞⎟⎟⎟⎟⎠
, 𝐴3 =

⎛⎜⎜⎜⎜⎜⎝

1 0 − 𝛼
2𝜀3 0 0

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
,

𝐴4 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 − 𝛼
2𝜀4 0

0 1 0 0 𝜀4
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
, 𝐴5 =

⎛⎜⎜⎜⎜⎜⎝

1 0 0 0 − 𝛼
2𝜀5

0 1 0 −𝜀5 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠
.

Then we can construct the general adjoint matrix

𝐴 = 𝐴1𝐴2𝐴3𝐴4𝐴5 =

⎛⎜⎜⎜⎜⎜⎝

1 0 − 𝛼
2𝜀3 − 𝛼

2𝜀4 − 𝛼
2𝜀5

0 1 0 −𝜀5 𝜀4
0 0 1 0 0
0 0 0 𝑒

𝛼
2 𝜀1 cos 𝜀2 −𝑒

𝛼
2 𝜀1 sin 𝜀2

0 0 0 𝑒
𝛼
2 𝜀1 sin 𝜀2 𝑒

𝛼
2 𝜀1 cos 𝜀2

⎞⎟⎟⎟⎟⎟⎠
.

To conveniently derive invariant functions, we use these matrixes (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5) to construct Table 3, where
𝐴𝑑(𝑒𝑥𝑝(𝜀𝑋𝑖))𝑋 is marked 𝑃𝑖 (𝑖 = 1, 2,⋯ , 5).

Theorem 4.1. For vector 𝑋 =
∑5
𝑖=1 𝑎𝑖𝑋𝑖 with 𝑎𝑖 ∈ 𝐑, the invariant function to Lie symmetry algebra L5 is obtained

as Ξ = 𝐹 (𝑎1, 𝑎2), where 𝐹 is an arbitrary function.

Proof. Consider 𝑔 = exp(𝜀𝑌 ) with 𝑌 =
∑5
𝑖=1 𝑏𝑖𝑋𝑖 is any element from Lie group 𝐺 created by L5. We call the real

function Ξ an invariant when the following condition holds:

Ξ[𝐴𝑑(𝑔)𝑋] = Ξ(𝑋) for all 𝑋 ∈ L5. (4.5)

That is,

𝐴𝑑(𝑒𝑥𝑝(𝜀𝑌 ))𝑋 =𝑒−𝜀𝑌𝑋𝑒𝜀𝑌 = 𝑋 − 𝜀[𝑌 ,𝑋] + 𝜀2

2
[𝑌 , [𝑌 ,𝑋]] −⋯

=(𝑎1𝑋1 + 𝑎2𝑋2 + 𝑎3𝑋3 + 𝑎4𝑋4 + 𝑎5𝑋5) − (𝜗1𝑋1

+ 𝜗2𝑋2 + 𝜗3𝑋3 + 𝜗4𝑋4 + 𝜗5𝑋5)𝜀 + 𝑂(𝜀2),

(4.6)

where

𝜗1 = 0, 𝜗2 = 0, 𝜗3 =
𝛼
2
(𝑏3𝑎1 − 𝑏1𝑎3), 𝜗4 =

𝛼
2
(𝑏4𝑎1 − 𝑏1𝑎4) + (𝑏5𝑎2 − 𝑏2𝑎5),

𝜗5 =
𝛼
2
(𝑏5𝑎1 − 𝑏1𝑎5) + (𝑏2𝑎4 − 𝑏4𝑎2).

(4.7)
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Symmetry analysis of fractional Burgers-type equation

Then the condition (4.5) arrives at

Ξ(𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5) = Ξ(𝑎1 − 𝜀𝜗1, 𝑎2 − 𝜀𝜗2, 𝑎3 − 𝜀𝜗3, 𝑎4 − 𝜀𝜗4, 𝑎5 − 𝜀𝜗5).

By differentiating the function Ξ with respect to parameter 𝜀, and letting 𝜀=0, the following system of first order linear
PDEs can be obtained by collecting the coefficients of 𝑏𝑖:

𝛼
2
𝑎3
𝜕Ξ
𝜕𝑎3

+ 𝛼
2
𝑎4
𝜕Ξ
𝜕𝑎4

+ 𝛼
2
𝑎5
𝜕Ξ
𝜕𝑎5

= 0,

𝑎5
𝜕Ξ
𝜕𝑎4

− 𝑎4
𝜕Ξ
𝜕𝑎5

= 0,

− 𝛼
2
𝑎1
𝜕Ξ
𝜕𝑎3

= 0,

− 𝛼
2
𝑎1
𝜕Ξ
𝜕𝑎4

+ 𝑎2
𝜕Ξ
𝜕𝑎5

= 0,

− 𝑎2
𝜕Ξ
𝜕𝑎4

+ 𝛼
2
𝑎1
𝜕Ξ
𝜕𝑎5

= 0.

(4.8)

By solving the system of equations above, we obtain the general invariant function of L5 with the form Ξ = 𝐹 (𝑎1, 𝑎2),
of which 𝐹 is an arbitrary function.

Theorem 4.2. The Killing form 𝐾⟨𝑋,𝑋⟩ = 3𝛼2
4 𝑎

2
1 is also an invariant function to Lie symmetry algebra L5.

Proof. The Killing form of L5 is defined by

𝐾⟨𝑋,𝑋⟩ = Trace(𝑎𝑑𝑋 ⋅ 𝑎𝑑𝑋), (4.9)

where

𝑎𝑑𝑋 =

⎛⎜⎜⎜⎜⎜⎝

0 0 𝛼
2𝑎3

𝛼
2𝑎4

𝛼
2𝑎5

0 0 0 𝑎5 −𝑎4
0 0 − 𝛼

2𝑎1 0 0
0 0 0 − 𝛼

2𝑎1 𝑎2
0 0 0 −𝑎2

𝛼
2𝑎1

⎞⎟⎟⎟⎟⎟⎠
.

Therefore, by calculation, we can easily get 𝐾⟨𝑋,𝑋⟩ = 3𝛼2
4 𝑎

2
1.

Theorem 4.3. Based on Theorems 4.1-4.2, the one-dimensional optimal system for Lie symmetry algebra L5 admitted
by Eq. (1.1) can be spanned by

𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5, 𝑏𝑋3 + 𝑑𝑋4, 𝑏𝑋3 + 𝑑𝑋5, 𝑏𝑋4 + 𝑑𝑋5, 𝑏𝑋3 + 𝑐𝑋4 + 𝑑𝑋5, (4.10)

where 𝑏, 𝑐 and 𝑑 are free parameter.

Proof. Similar to the proofs in literatures [16, 48–52].

5. Reduction and solution
In what follows, we can reduce Eq. (1.1) to some different (2+1)-dimensional time FPDEs and (1+1)-dimensional

time FPDEs by the obtained one-dimensional optimal system.

Case 1: 𝑋1

The characteristic equation of 𝑋1 is

d𝑡
𝑡
= 2d𝑥
𝛼𝑥

=
2d𝑦
𝛼𝑦

= 2d𝑧
𝛼𝑧

= −2d𝑢
𝛼𝑢

. (5.1)

Jicheng Yu et al.: Page 9 of 17
21 Dec 2023 18:53:43 PST
230906-Feng Version 3 - Submitted to Rocky Mountain J. Math.



Symmetry analysis of fractional Burgers-type equation

By solving (5.1), we can obtain the similarity variables 𝑥𝑡−
𝛼
2 , 𝑦𝑡−

𝛼
2 , 𝑧𝑡−

𝛼
2 and 𝑢𝑡

𝛼
2 . Then the invariant solution can be

constructed as follows:

𝑢 = 𝑡−
𝛼
2 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑥𝑡−

𝛼
2 , 𝜔2 = 𝑦𝑡−

𝛼
2 , 𝜔3 = 𝑧𝑡−

𝛼
2 . (5.2)

Theorem 5.1. The similarity transformation 𝑢 = 𝑡−
𝛼
2 𝑓 (𝜔1, 𝜔2, 𝜔3) with the similarity variables 𝜔1 = 𝑥𝑡−

𝛼
2 , 𝜔2 =

𝑦𝑡−
𝛼
2 , 𝜔3 = 𝑧𝑡−

𝛼
2 reduce Eq. (1.1) to the (2+1)-dimensional time FPDE given by

(1− 3𝛼
2 ,𝛼

2
𝛼 ,

2
𝛼 ,

2
𝛼

𝑓 )(𝜔1, 𝜔2, 𝜔3) + 𝑎𝑓𝑓𝜔1
= 𝑓𝜔1𝜔1

+ 𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

, (5.3)

where ( 𝜄,𝜅
𝛿1,𝛿2,𝛿3

) is the following left-sided EKFD operator:

( 𝜄,𝜅
𝛿1,𝛿2,𝛿3

𝜓)(𝜔1, 𝜔2, 𝜔3) ∶=
𝑚−1∏
𝑗=0

(𝜄 + 𝑗 − 1
𝛿1
𝜔1

d
d𝜔1

− 1
𝛿2
𝜔2

d
d𝜔2

− 1
𝛿2
𝜔3

d
d𝜔3

)

× (𝜄+𝜅,𝑚−𝜅
𝛿1,𝛿2,𝛿3

𝜓)(𝜔1, 𝜔2, 𝜔3), 𝑚 =
{

[𝜅] + 1, if 𝜅 ∉ ℕ,
𝜅, if 𝜅 ∈ ℕ,

(5.4)

with the corresponding left-sided Erdélyi-Kober fractional integral

(𝜄,𝜅
𝛿1,𝛿2,𝛿3

𝜓)(𝜔1, 𝜔2, 𝜔3) ∶=

{
1

Γ(𝜅) ∫ ∞
1 (𝑠 − 1)𝜅−1𝑠−(𝜄+𝜅)𝜓(𝜔1𝑠

1
𝛿1 , 𝜔2𝑠

1
𝛿2 , 𝜔3𝑠

1
𝛿3 )d𝑠, 𝜅 > 0,

𝜓(𝜔1, 𝜔2, 𝜔3), 𝜅 = 0.
(5.5)

Proof. When 0 < 𝛼 < 1, from the definition of RLFD, we can obtain

𝜕𝛼𝑢
𝜕𝑡𝛼

= 𝜕𝛼

𝜕𝑡𝛼
(𝑡−

𝛼
2 𝑓 (𝜔1, 𝜔2, 𝜔3)) =

𝜕
𝜕𝑡

[ 1
Γ(1 − 𝛼) ∫

𝑡

0
(𝑡 − 𝑠)−𝛼𝑠−

𝛼
2 𝑓 (𝑥𝑠−

𝛼
2 , 𝑦𝑠−

𝛼
2 , 𝑧𝑠−

𝛼
2 )d𝑠

]
.

Assuming 𝑟 = 𝑡
𝑠 , we have

𝜕𝛼𝑢
𝜕𝑡𝛼

= 𝜕
𝜕𝑡

[ 𝑡1−
3𝛼
2

Γ(1 − 𝛼) ∫
∞

1
(𝑟 − 1)−𝛼𝑟

3𝛼
2 −2𝑓 (𝜔1𝑟

𝛼
2 , 𝜔2𝑟

𝛼
2 , 𝜔3𝑟

𝛼
2 )d𝑟

]
= 𝜕
𝜕𝑡

[
𝑡1−

3𝛼
2 (1− 𝛼

2 ,1−𝛼
2
𝛼 ,

2
𝛼 ,

2
𝛼

𝑓 )(𝜔1, 𝜔2, 𝜔3)
]
.

Because of 𝜔1 = 𝑥𝑡−
𝛼
2 , 𝜔2 = 𝑦𝑡−

𝛼
2 and 𝜔3 = 𝑧𝑡−

𝛼
2 , the following relation holds:

𝑡 𝜕
𝜕𝑡
𝜓(𝜔1, 𝜔2, 𝜔3) = −𝛼

2
𝜔1

d
d𝜔1

𝜓 − 𝛼
2
𝜔2

d
d𝜔2

𝜓 − 𝛼
2
𝜔3

d
d𝜔3

𝜓.

Hence, we arrive at

𝜕𝛼𝑢
𝜕𝑡𝛼

=𝑡−
3𝛼
2

[
(1 − 3𝛼

2
− 𝛼

2
𝜔1

d
d𝜔1

− 𝛼
2
𝜔2

d
d𝜔2

− 𝛼
2
𝜔3

d
d𝜔3

)(1− 𝛼
2 ,1−𝛼

2
𝛼 ,

2
𝛼 ,

2
𝛼

𝑓 )(𝜔1, 𝜔2, 𝜔3)
]

=𝑡−
3𝛼
2 (1− 3𝛼

2 ,𝛼
2
𝛼 ,

2
𝛼 ,

2
𝛼

𝑓 )(𝜔1, 𝜔2, 𝜔3).

Meanwhile,

𝑎𝑢𝑢𝑥 = 𝑎𝑡−
3𝛼
2 𝑓𝑓𝜔1

, 𝑢𝑥𝑥 + 𝑢𝑦𝑦 + 𝑢𝑧𝑧 = 𝑡−
3𝛼
2 (𝑓𝜔1𝜔1

+ 𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

).

This completes the proof.
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Symmetry analysis of fractional Burgers-type equation

Next we apply the method introduced in [29] to get the PSS of (5.3). Assuming

𝑓 (𝜔1, 𝜔2, 𝜔3) = 𝑓 (𝜔) =
∞∑
𝑘=0

𝑎𝑘𝜔
𝑘, 𝜔 = 𝐶1𝜔1 + 𝐶2𝜔2 + 𝐶3𝜔3, (5.6)

with infinite number of undetermined constants 𝑎𝑘, one can get

𝑓 ′(𝜔) =
∞∑
𝑘=0

(𝑘 + 1)𝑎𝑘+1𝜔𝑘, 𝑓 ′′(𝜔) =
∞∑
𝑘=0

(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2𝜔𝑘. (5.7)

From [29], we have

(1− 3𝛼
2 ,𝛼

2
𝛼 ,

2
𝛼 ,

2
𝛼

𝑓 )(𝜔1, 𝜔2, 𝜔3) = (1− 3𝛼
2 ,𝛼

2
𝛼

𝑓 )(𝜔) =
∞∑
𝑘=0

Γ(1 − (𝑘+1)𝛼
2 )

Γ(1 − (𝑘+3)𝛼
2 )

𝑎𝑘𝜔
𝑘. (5.8)

Substituting (5.6)-(5.8) into (5.3) arrives at the following equation:

∞∑
𝑘=0

Γ(1 − (𝑘+1)𝛼
2 )

Γ(1 − (𝑘+3)𝛼
2 )

𝑎𝑘𝜔
𝑘 + 𝑎𝐶1

∞∑
𝑘=0

( ∑
𝑖+𝑗=𝑘

(𝑗 + 1)𝑎𝑖𝑎𝑗+1
)
𝜔𝑘

= (𝐶2
1 + 𝐶2

2 + 𝐶2
3 )

∞∑
𝑘=0

(𝑘 + 2)(𝑘 + 1)𝑎𝑘+2𝜔𝑘.

(5.9)

By comparing the coefficients of the same powers of 𝜔 on both sides of (5.9), we can derive the explicit expressions
of 𝑎𝑘 as 𝑎0 = 𝑓 (0), 𝑎1 = 𝑓 ′(0) and

𝑎𝑘+2 =
1

(𝑘 + 2)(𝑘 + 1)(𝐶2
1 + 𝐶2

2 + 𝐶2
3 )

[Γ(1 − (𝑘+1)𝛼
2 )

Γ(1 − (𝑘+3)𝛼
2 )

𝑎𝑘 + 𝑎𝐶1
( ∑
𝑖+𝑗=𝑘

(𝑗 + 1)𝑎𝑖𝑎𝑗+1
)]
, 𝑘 ≥ 0. (5.10)

Therefore, we can obtain the following PSS of Eq. (1.1):

𝑢(𝑡,𝑥, 𝑦, 𝑧) = 𝑡−
𝛼
2

{
𝑎0 + 𝑎1(𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑧)𝑡

− 𝛼
2 + 1

2(𝐶2
1 + 𝐶2

2 + 𝐶2
3 )

[ Γ(1 − 𝛼
2 )

Γ(1 − 3𝛼
2 )
𝑎0

+ 𝑎𝐶1𝑎0𝑎1
]
(𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑧)2𝑡−𝛼 +

∞∑
𝑘=1

1
(𝑘 + 2)(𝑘 + 1)(𝐶2

1 + 𝐶2
2 + 𝐶2

3 )

×
[Γ(1 − (𝑘+1)𝛼

2 )

Γ(1 − (𝑘+3)𝛼
2 )

𝑎𝑘 + 𝑎𝐶1
( ∑
𝑖+𝑗=𝑘

(𝑗 + 1)𝑎𝑖𝑎𝑗+1
)]
(𝐶1𝑥 + 𝐶2𝑦 + 𝐶3𝑧)𝑘+2𝑡

− (𝑘+2)𝛼
2

}
.

(5.11)

Theorem 5.2. In the neighborhood of the point (0, |𝑎0|), the obtained PSS (5.11) is convergent.

Proof. From the coefficient expressions (5.10), taking absolute values for them, we can obtain

|𝑎𝑘+2| ≤ 1
𝐶2
1 + 𝐶2

2 + 𝐶2
3

[ |Γ(1 − (𝑘+1)𝛼
2 )||Γ(1 − (𝑘+3)𝛼
2 )| |𝑎𝑖| + |𝑎𝐶1| ∑

𝑖+𝑗=𝑘
|𝑎𝑖||𝑎𝑗+1|], 𝑘 ≥ 0. (5.12)

From the property of Γ function, one can easily find that the inequality
|Γ(1− (𝑘+1)𝛼

2 )||Γ(1− (𝑘+3)𝛼
2 )| ≤ 1 holds for an arbitrary natural

number 𝑘. Thus, (5.12) can be written as

|𝑎𝑘+2| ≤𝑀
(|𝑎𝑘| + ∑

𝑖+𝑗=𝑘
|𝑎𝑖||𝑎𝑗+1|), 𝑘 ≥ 0, (5.13)
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Symmetry analysis of fractional Burgers-type equation

Table 4
Some of 𝑎𝑛 for different fractional orders when 𝑎0 = 𝑎1 = 1

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝛼 = 0.4 1 1 0.2541438214 0.1018150429 0.02966323869 0.009579915765
𝛼 = 0.6 1 1 0.1894072333 0.05543125540 0.00628336655 0.006247295912
𝛼 = 0.8 1 1 0.1240292550 0.00034780256 0.01036475480 0.001218887081

where 𝑀 = max{ 1
𝐶2
1+𝐶

2
2+𝐶

2
3
, |𝑎𝐶1|
𝐶2
1+𝐶

2
2+𝐶

2
3
}.

Consider another power series

𝐵(𝜔) =
∞∑
𝑘=0

𝑏𝑘𝜔
𝑘, (5.14)

where 𝑏0 = |𝑎0|, 𝑏1 = |𝑎1| and

𝑏𝑘+2 =𝑀(𝑏𝑘 +
∑
𝑖+𝑗=𝑘

𝑏𝑖𝑏𝑗+1), 𝑘 ≥ 0. (5.15)

Therefore, it can be easily derived that |𝑎𝑘| ≤ 𝑏𝑘 for 𝑘 = 0, 1, 2,…, that is, the power series (5.14) is called the majorant
series of (5.6). The next step is to prove its convergence. By simple calculation, we can get

𝐵(𝜔) = 𝑏0 + 𝑏1𝜔 +𝑀
(
𝐵(𝜔)𝜔2 + 𝐵(𝜔)(𝐵(𝜔) − 𝑏0)𝜔

)
. (5.16)

For the independent variable 𝜔, the following function is viewed as an implicit function:

Ψ(𝜔,𝐵) = 𝐵 − 𝑏0 − 𝑏1𝜔 −𝑀
(
𝐵𝜔2 + 𝐵(𝐵 − 𝑏0)𝜔

)
. (5.17)

It can be seen that Ψ(0, 𝑏0) = 0, 𝜕
𝜕𝐵Ψ(0, 𝑏0) ≠ 0, and Ψ(𝜔,𝐵) is an analytic function in a neighborhood of (0, 𝑏0).

From implicit function theorem, the power series (5.14) is analytic in the same neighborhood, that is to say, the PSS
(5.11) is convergent in a neighborhood of (0, |𝑎0|).

Assuming 𝑎 = 1 in Eq. (1.1), 𝐶1 = 𝐶2 = 𝐶3 = 1 and 𝑠 = 𝑥 + 𝑦 + 𝑧 in (5.11), Tabs.4-5 show some values of 𝑎𝑛
and 𝛼, while Figs.1-2 illustrate the dynamical behavior of the solution (5.11) for different parameters.

(a) 𝛼=0.4 (b) 𝛼=0.6 (c) 𝛼=0.8

Figure 1: Dynamical profiles of the truncated power series solution (5.11) with 𝑎 = 1, 𝐶1 = 𝐶2 = 𝐶3 = 1, 𝑎0 = 𝑎1 = 1 and
𝑠 = 𝑥 + 𝑦 + 𝑧.
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Symmetry analysis of fractional Burgers-type equation

Table 5
Some of 𝑎𝑛 for different fractional orders when 𝑎0 = 𝑎1 = 0.1

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑎5
𝛼 = 0.4 0.1 0.1 0.01041438214 0.002473399409 0.000107398179 -0.00001169010880
𝛼 = 0.6 0.1 0.1 0.003940723327 -0.001517613459 -0.0002735785966 -0.00003708124004
𝛼 = 0.8 0.1 0.1 -0.002597074506 -0.006372178961 -0.00007474377889 0.0001048892399

(a) 𝛼=0.4 (b) 𝛼=0.6 (c) 𝛼=0.8

Figure 2: Dynamical profiles of the truncated power series solution (5.11) with 𝑎 = 1, 𝐶1 = 𝐶2 = 𝐶3 = 1, 𝑎0 = 𝑎1 = 0.1
and 𝑠 = 𝑥 + 𝑦 + 𝑧.

Case 2: 𝑋2

The characteristic equation of 𝑋2 is

d𝑡
0

= d𝑥
0

=
d𝑦
𝑧

= d𝑧
−𝑦

= d𝑢
0
. (5.18)

By solving (5.18), we can obtain the similarity variables 𝑡, 𝑥, 𝑦2 + 𝑧2 and 𝑢. Then the invariant solution can be
constructed as follows:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑥, 𝜔3 = 𝑦2 + 𝑧2. (5.19)

Finally, we can obtain the following reduced equation by substituting (5.19) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑓𝑓𝜔2

= 𝑓𝜔2𝜔2
+ 4𝑓𝜔3

+ 4𝜔3𝑓𝜔3𝜔3
. (5.20)

Case 3: 𝑋3

The characteristic equation of 𝑋3 is

d𝑡
0

= d𝑥
1

=
d𝑦
0

= d𝑧
0

= d𝑢
0
. (5.21)

We can obtain the similarity variables 𝑡, 𝑦, 𝑧, 𝑢 by solving (5.21) and construct the following invariant solution:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑦, 𝜔3 = 𝑧. (5.22)
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Finally, we can obtain the following reduced equation by substituting (5.22) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 = 𝑓𝜔2𝜔2

+ 𝑓𝜔3𝜔3
. (5.23)

Case 4: 𝑋4

The characteristic equation of 𝑋4 is

d𝑡
0

= d𝑥
0

=
d𝑦
1

= d𝑧
0

= d𝑢
0
. (5.24)

We can obtain the similarity variables 𝑡, 𝑥, 𝑧, 𝑢 by solving (5.24) and construct the following invariant solution:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑥, 𝜔3 = 𝑧. (5.25)

Finally, we can obtain the following reduced equation by substituting (5.25) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑓𝑓𝜔2

= 𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

. (5.26)

Case 5: 𝑋5

The characteristic equation of 𝑋5 is

d𝑡
0

= d𝑥
0

=
d𝑦
0

= d𝑧
1

= d𝑢
0
. (5.27)

We can obtain the similarity variables 𝑡, 𝑥, 𝑦, 𝑢 by solving (5.27) and construct the following invariant solution:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑥, 𝜔3 = 𝑦. (5.28)

Finally, we can obtain the following reduced equation by substituting (5.28) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑓𝑓𝜔2

= 𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

. (5.29)

Case 6: 𝑏𝑋3 + 𝑑𝑋4

The characteristic equation of 𝑏𝑋3 + 𝑑𝑋4 is

d𝑡
0

= d𝑥
𝑏

=
d𝑦
𝑑

= d𝑧
0

= d𝑢
0
. (5.30)

By solving (5.30), we can obtain the similarity variables 𝑡, 𝑑𝑥 − 𝑏𝑦, 𝑧 and 𝑢. Then the invariant solution can be
constructed as follows:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑑𝑥 − 𝑏𝑦, 𝜔3 = 𝑧. (5.31)

Finally, we can obtain the following reduced equation by substituting (5.31) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑑𝑓𝑓𝜔2

= (𝑏2 + 𝑑2)𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

. (5.32)

Case 7: 𝑏𝑋3 + 𝑑𝑋5

The characteristic equation of 𝑏𝑋3 + 𝑑𝑋5 is

d𝑡
0

= d𝑥
𝑏

=
d𝑦
0

= d𝑧
𝑑

= d𝑢
0
. (5.33)
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By solving (5.33), we can obtain the similarity variables 𝑡, 𝑑𝑥 − 𝑏𝑧, 𝑦 and 𝑢. Then the invariant solution can be
constructed as follows:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑑𝑥 − 𝑏𝑧, 𝜔3 = 𝑦. (5.34)

Finally, we can obtain the following reduced equation by substituting (5.34) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑑𝑓𝑓𝜔2

= (𝑏2 + 𝑑2)𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

. (5.35)

Case 8: 𝑏𝑋4 + 𝑑𝑋5

The characteristic equation of 𝑏𝑋4 + 𝑑𝑋5 is

d𝑡
0

= d𝑥
0

=
d𝑦
𝑏

= d𝑧
𝑑

= d𝑢
0
. (5.36)

By solving (5.36), we can obtain the similarity variables 𝑡, 𝑑𝑦 − 𝑏𝑧, 𝑥 and 𝑢. Then the invariant solution can be
constructed as follows:

𝑢 = 𝑓 (𝜔1, 𝜔2, 𝜔3), 𝜔1 = 𝑡, 𝜔2 = 𝑑𝑦 − 𝑏𝑧, 𝜔3 = 𝑥. (5.37)

Finally, we can obtain the following reduced equation by substituting (5.37) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎𝑓𝑓𝜔3

= (𝑏2 + 𝑑2)𝑓𝜔2𝜔2
+ 𝑓𝜔3𝜔3

. (5.38)

Case 9: 𝑏𝑋3 + 𝑐𝑋4 + 𝑑𝑋5

The characteristic equation of 𝑏𝑋3 + 𝑐𝑋4 + 𝑑𝑋5 is

d𝑡
0

= d𝑥
𝑏

=
d𝑦
𝑐

= d𝑧
𝑑

= d𝑢
0
. (5.39)

By solving (5.39), we can obtain the similarity variables 𝑡, 1
𝑏𝑥 + 1

𝑐 𝑦 −
2
𝑑 𝑧 and 𝑢. Then the invariant solution can be

constructed as follows:

𝑢 = 𝑓 (𝜔1, 𝜔2), 𝜔1 = 𝑡, 𝜔2 =
1
𝑏
𝑥 + 1

𝑐
𝑦 − 2

𝑑
𝑧. (5.40)

Finally, we can obtain the following reduced equation by substituting (5.40) into Eq. (1.1):

𝐷𝛼
𝜔1
𝑓 + 𝑎

𝑏
𝑓𝑓𝜔2

= ( 1
𝑏2

+ 1
𝑐2

+ 4
𝑑2

)𝑓𝜔2𝜔2
. (5.41)

Note that Eqs. (5.20), (5.23), (5.26), (5.29), (5.32) , (5.35), (5.38) and (5.41) are some (2+1)- and (1+1)-dimensional
fractional generalized Burgers equations with Riemann-Liouville fractional derivative, respectively. These reduced
equations were studied by means of different numerical and analytical methods in [35–38, 40–44].

6. Conclusion
This paper extends the (1+1)-dimensional and the (2+1)-dimensional FPDEs to the (3+1)-dimensional FPDEs.

The LSAM is successfully used for reducing high dimensional time FPDE to some low dimensional equations and
obtaining the corresponding PSSs. This indicates that the LSAM can be effectively applied to some higher dimensional
time FPDEs in physical science and engineering. However, using the LSAM to solve high dimensional FPDEs has its
demerits, such as the need to repeatedly use the LSAM to reduce the dimensionality of the equation, which increases
computational complexity. The equation after dimensionality reduction can also be solved by using other numerical
and analytical methods, which requires us to perfectly combine the LSAM with other methods. These issues will
promote the improvement and development of the LSAM for FPDEs. In addition to high dimensional time FPDEs,
we will also apply the LSAM to study some high dimensional space-time FPDEs, fractional difference differential
equations, fractional stochastic differential equations, etc., which have appeared in many important fields of science
and technology.
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