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Abstract. A numerical semigroup is a cofinite subset of the non-negative integers
that is closed under addition and contains 0. Each numerical semigroup S with fixed
smallest positive element m corresponds to an integer point in a rational polyhedral
cone Cm, called the Kunz cone. Moreover, numerical semigroups corresponding to
points in the same face F ⊆ Cm are known to share many properties, such as the
number of minimal generators. In this work, we classify which faces of Cm contain
points corresponding to numerical semigroups. Additionally, we obtain sharp bounds
on the number of minimal generators of S in terms of the dimension of the face of
Cm containing the point corresponding to S.

1. Introduction

A numerical semigroup is a cofinite subset S ⊆ N of the non-negative integers that
is closed under addition and contains 0. Of recent interest is a family of rational
cones Cm, called Kunz cones, with the property that each numerical semigroup S with
smallest positive element m corresponds to an integer point in Cm. Inspired by a family
of polyhedra introduced by Kunz [15], these cones have predominently been used to
apply lattice point counting techniques (e.g., Ehrhart’s theorem) to the enumeration of
numerical semigroups [1, 20], in hopes of making progress on some long-standing open
problems in the numerical semigroups literature, such as Wilf’s conjecture [6, 7, 12, 23]
and the Bras-Amoros conjecture concerning the number of numerical semigroups with
a given genus [5, 13].

More recently, a connection between the faces of Cm and the numerical semigroups
therein was discovered [6, 14]. To each face F ⊆ Cm, a finite poset P can be naturally
associated (called the Kunz poset of F ). If a numerical semigroup S corresponds to a
point in F (we often say “F contains S” for simplicity), then P coincides with a certain
subset of the divisibility poset of S. Note that not all faces of Cm contain numerical
semigroups, but every face has an asociated Kunz poset. This construction was later
enhanced to associate to each F a nilsemigroup N , called the Kunz nilsemigroup of F ,
in such a way that (i) the Kunz poset P of F is the divisibility poset of the non-nil
elements of N , and (ii) if a numerical semigroup S lies in F , then N is the quotient of
S by a certain semigroup congruence [9, 11].
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An interesting consequence of the above is that the faces of Cm naturally partition
the (infinite) collection of numerical semigroups with smallest positive element m into
finitely many equivalence classes with similar algebraic properties. For instance, if two
numerical semigroups lie in the same face of Cm, then they have the same number of
minimal generators (it is one more than the number of minimal generators of the Kunz
nilsemigroup N), and the first Betti numbers of their defining toric ideals coincide [11].
In this way, one may view the Kunz cones as a sort of “moduli space of numerical
semigroups” though this has yet to be made precise [4].

In this paper, we answer two natural questions.

Main Question 1.1. When does a given face F ⊆ Cm contain numerical semigroups?

We answer Main Question 1.1 in terms of the Kunz nilsemigroup of F (Theorem 3.5).
Our characterization is both combinatorial and algebraic in nature, involving both
nilsemigroups and the saturation of certain integer lattices, and yields an algorithm
for testing whether a given face F contains numerical semigroups. We also provide
some examples that highlight the difficulty in obtaining a purely combinatorial (e.g.,
poset-theoretic or nilsemigroup-theoretic) characterization.

One of the applications of Theorem 3.5 lies in streamlining the process of proving the
existence of numerical semigroups with certain properties. The central theme of [18,
19], and the recent manuscript [9], is locating a numerical semigroup with prescribed
smallest positive element m, number of minimal generators, and first Betti number.
The latter article [9] made significant headway on this problem by first constructing a
Kunz nilsemigroup N , from which all 3 quantities are determined, and then locating a
numerical semigroup S lying in the face of Cm corresponding to N . Due to forthcoming
work of the second and fifth authors of the present manuscript that proves all higher
Betti numbers also coincide for numerical semigroups in the same face, and the broader
interest these quantities hold (see the survey [21]), it is worthwhile to streamline the
process of proving there exists a numerical semigroup withh a given Kunz nilsemigroup.

Presently, after identifying a Kunz nilsemigroup N with the desired properties, one
must locate a numerical semigroup in the face corresponding to N , the construction of
which is often technical and cumbersome due to certain modular arithmetic restrictions
that must be satisfied. Theorem 3.5 provides a different (and simpler) avenue: after
locating the desired Kunz nilsemigroup N , prove N corresponds to a face F ⊆ Cm, then
prove F contains numerical semigroups. We demonstrate the utility of this approach
in our answer to the following question. Let e(F ) denote the number of minimal
generators of the Kunz nilsemigroup of F (if F contains a numerical semigroup S,
then e(F ) is one less than the number of minimal generators of S).

Main Question 1.2. Given d and m, what are the possible values of e(F ) for F ⊆ Cm
with d = dimF?
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It is known [14] that dimF ≤ e(F ). We obtain, for each face F with dimF ≥ 2,
sharp bounds on e(F ) in terms of dimF . We also identify a family of faces for each m
that demonstrate every intermediate value of e(F ) between these bounds is attained.
Our proof of the latter is made more concise and less technical thanks to Theorem 3.5
(we encourage the reader to compare them to the constructions given in [9]). We also
identify when the faces in this family contain numerical semigroups, and for those that
do not, we prove that locating such a face that does contain numerical semigroups is
impossible (again using Theorem 3.5).

Our answers to Main Questions 1.1 and 1.2 can be found in Sections 3 and 4, re-
spectively, after an overview of the background in Section 2.

2. Background

In this section, we recall Kunz nilsemigroups and presentations (for a thorough
introduction, see [9]), basic definitions from polyhedral geometry (see [24]), and the
Kunz cone (see [14]).

Fix a commutative semigroup (N,+). An element ∞ ∈ N is nil if a +∞ = ∞ for
all a ∈ N . We say an element a ∈ N is nilpotent if na = ∞ for some n ∈ Z≥1, and
partly cancellative if a + b = a + c ̸= ∞ implies b = c for all b, c ∈ N. We say N is a
nilsemigroup with identity (or just a nilsemigroup) if N has an identity element and
every non-identity element is nilpotent, and that N is partly cancellative if every non-
nil element of N is partly cancellative. The atoms of a partly cancellative semigroup
are the elements that cannot be written as a sum of two non-identity elements.

Fix a partly cancellative semigroup S with finite generating set n0, . . . , nk (we write
S = ⟨n0, . . . , nk⟩ in this case). A factorization of an element n ∈ S is an expression

n = z0n0 + · · ·+ zknk

of n as a sum of generators of S. The set of factorizations of n ∈ S is the set

ZS(n) = {z ∈ Zk+1
≥0 : n = z0n0 + · · ·+ zknk},

viewed as a subset of Zk+1
≥0 . The support of a factorization z = (z0, . . . , zk) is the set

supp(z) = {i : zi > 0} of nonzero coordinates. The factorization homomorphism of S
is the function φS : Zk+1

≥0 → S given by

φS(z0, . . . , zk) = z0n0 + · · ·+ zknk

sending each tuple to the element of S it is a factorization of. The kernel of φS is

kerφS = {(z, z′) ∈ Zk+1
≥0 × Zk+1

≥0 : φS(z) = φS(z
′)},

which is an equivalence relation ∼ setting z ∼ z′ whenever φS(z) = φS(z
′). In fact,

∼ is a congruence relation, meaning that z ∼ z′ implies (z + z′′) ∼ (z′ + z′′) for all
z, z′, z′′ ∈ Zk+1

≥0 (i.e., ∼ is closed under translation). Each such relation z ∼ z′ is called
a trade of S. A set ρ of trades is said to generate ∼ if ∼ is the smallest congruence on
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Zk+1
≥0 containing ρ. A presentation of S is a set of trades obtained from a generating

set of kerφS by omitting any generators z ∼ z′ for which φS(z) is nil.

Fix a subset Z ⊆ Zd
≥0. The factorization graph of Z is the graph ∇Z whose vertices

are the elements of Z in which two tuples z, z′ ∈ Z are connected by an edge if zi > 0
and z′i > 0 for some i. If S is a finitely generated semigroup and n ∈ S, then we
write ∇n = ∇Z for Z = ZS(n). The following, which appeared as [11, Proposition 3.8],
identifies a relationship between factorization graphs and presentations.

Proposition 2.1. Fix a finitely generated, partly cancellative semigroup S. A set ρ of
relations between factorizations of elements of S \ {∞} is a presentation of S if and
only if for every non-nil a ∈ S, a connected graph is obtained from ∇a by adding an
edge for each pair of factorizations of a in ρ.

A numerical semigroup is an additive subsemigroup S of Z≥0 with finite complement
that contains 0. Any numerical semigroup has a unique generating set that is minimal
with respect to inclusion. The cardinality of the minimal generating set of S is known
as the embedding dimension of S, and the smallest positive element of S is called the
multiplicity of S.

Letting m be the multiplicity of S, the Apéry set of S is the set

Ap(S) = {n ∈ S : n−m ̸∈ S}

of minimal elements of S within each equivalence class modulo m. Since S is cofinite,
we have that |Ap(S)| = m and that Ap(S) contains exactly one element in each
equivalence class modulo m. If we write

Ap(S) = {0, a1, . . . , am−1},

where ai ≡ i mod m for each i = 1, . . . ,m−1, then we refer to the tuple (a1, . . . , am−1)
as the Apéry tuple of S.

The Kunz nilsemigroup N of a numerical semigroup S is obtained from S/ ∼, where
∼ is the congruence that relates a ∼ b whenever a = b or a, b /∈ Ap(S) (the set S\Ap(S)
comprises the nil of S/ ∼), by replacing each non-nil element with its equivalence class
in Zm. The atoms of N are thus the elements a ∈ Zm where a ̸= m is a minimal
generator of S.

Example 2.2. Consider the numerical semigroup S = ⟨6, 7, 8, 9⟩. Its Apéry set, writ-
ten as {0, a1, . . . , a5} with ai ≡ i mod 6, is

Ap(S) = {0, 7, 8, 9, 16, 17}.

Thus the Kunz nilsemigroup N of S is the set {0, 1, 2, 3, 4, 5,∞} equipped with the
operation + defined so that 0 is the identity,

1 + 3 = 4, 2 + 2 = 4, 2 + 3 = 5,
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Figure 1. The divisibility poset of the non-nil elements of the Kunz
nilsemigroup of S = ⟨6, 7, 8, 9⟩.

and all other sums yield ∞. The divisibility poset of N \ {∞}, which places b above a
whenever a + c = b for some c ∈ N , is depicted in Figure 1. The factorization sets of
the non-nil elements in N are

ZN(0) = {(0, 0, 0)}, ZN(1) = {(1, 0, 0)}, ZN(2) = {(0, 1, 0)},
ZN(3) = {(0, 0, 1)}, ZN(4) = {(1, 0, 1), (0, 2, 0)}, ZN(5) = {(0, 1, 1)}.

Looking at the factorization graphs of the non-nil elements of N , we see that all are
connected except ∇4. Only one edge is needed to connect it, namely the edge cor-
responding to the trade (1, 0, 1) ∼ (0, 2, 0). Therefore, ρ = {((1, 0, 1), (0, 2, 0))} is a
presentation for N by Proposition 2.1.

A rational polyhedral cone C ⊆ Rd is the set of solutions to a finite list of linear
inequalities with rational coefficients, that is,

P = {x ∈ Rd : Ax ≥ 0}

for some rational matrix A. We say C is pointed if it does not contain any positive-
dimensional linear subspaces of Rd, and the dimension of C is the vector space dimen-
sion of spanR C. If none of the inequalities can be omitted without altering C, we call
this list an H-description or facet description of C (if C is full-dimensional, then such
a list of inequalities is unique up to reordering and scaling by positive constants). The
inequalities appearing in the H-description of C are called facet inequalities of C.

Given a facet inequality a1x1 + · · · + adxd ≥ 0 of C, the intersection of C with the
equation a1x1 + · · · + adxd = 0 is called a facet of C. Any intersection F of facets
of C is called a face of C, and it itself a rational polyhedral cone. The set of facets
containing a face F is called the facet description of F . The interior of F , denoted
F ◦, is the set of points in F that do not lie in any faces properly contained in F .

Fix m ≥ 2. The Kunz cone Cm ⊆ Rm−1
≥0 is the pointed cone with facet inequalities

xi + xj ≥ xi+j for i, j ∈ Zm \ {0} with i+ j ̸= 0,

where the coordinates of Rm−1 are indexed by Zm\{0}. The integer points (z1, . . . , zm−1)
satisfying zi ≡ i mod m for each i are called Apéry points.
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Theorem 2.3 ([15]). For each m ≥ 2, the set of Apéry points in Cm coincides with
the set of Apéry tuples of numerical semigroups containing m.

We say a face F ⊆ Cm is degenerate if there exists a point x ∈ F ◦ with some xi = 0.
Positive dimensional degenerate faces occur in Cm whenever m is composite (see [14,
Example 3.6]). However, such faces never contain Apéry points. The following result,
which appeared as [11, Theorem 3.3], implies that the Kunz nilsemigroup of a numerical
semigroup S uniquely identifies the face of Cm containing its Apéry tuple.

Theorem 2.4. Fix a non-degenerate face F ⊆ Cm. Define a commutative operation ⊕
on the set Zm ∪ {∞} so that ∞ is nil and for all a, b ∈ Zm,

a⊕ b =

{
a+ b if xa + xb = xa+b;

∞ otherwise.

(a) Under this operation, (N,⊕) is a partly cancellative nilsemigroup (which we call
the Kunz nilsemigroup of F ).

(b) When F contains a numerical semigroup S, the Kunz nilsemigroup of S equals the
Kunz nilsemigroup of F .

In view of Theorems 2.3 and 2.4, given a numerical semigroup S and a face F ⊆ Cm,
we write S ∈ F if the Apéry tuple of S lies in F ◦.

Remark 2.5. The degenerate faces are precisely those in the image of the injection
given by [14, Corollary 3.7], hence it is sufficient to classify the embedding and face
dimension of non-degenerate faces. For these reasons, from a classification standpoint,
it suffices to consider non-degenerate faces of Cm.

Example 2.6. Let us return to the numerical semigroup S = ⟨6, 7, 8, 9⟩ from Exam-
ple 2.2. Since the Kunz nilsemigroup of S is equal to the Kunz nilsemigroup of the
face F ⊆ C6 it lies on, the facet equalities of F are

x1 + x3 = x4, x2 + x2 = x4, and x2 + x3 = x5.

Furthermore, the Apéry tuple of S, (7, 8, 9, 16, 17), satisfies the above facet equalities,
indicating that these are in fact the 3 facets of C(Z6) containing (7, 8, 9, 16, 17).

Fix a non-degenerate face F ⊆ Cm with Kunz nilsemigroup N and contained in i
facets. The embedding dimension of F is the number e(F ) = k of atoms of N . If F
contains a numerical semigroup S, then e(S) = e(F ) + 1. The hyperplane matrix of F
is the matrix HF ∈ Zi×(m−1) whose columns are indexed by the nonzero elements of Zm

and whose rows encode the equations of the facets containing F . Note dimF = rkHF .
Given any finite presentation ρ of N , the matrix Mρ ∈ Z|ρ|×k whose columns are
indexed by the atoms of N and whose rows have the form z− z′ for (z, z′) ∈ ρ is called
a presentation matrix of N . The following appeared as [11, Theorem 4.3] and expresses
dimF in terms of rkMρ.
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(a) (b) (c) (d)

Figure 2. Divisibility posets of non-Apéry Kunz nilsemigroups.

Theorem 2.7. If F ⊆ Cm is a non-degenerate face with Kunz nilsemigroup N , then

dimF = e(F )− rk(Mρ)

where ρ is any finite presentation of N .

3. A criterion for Apéry faces

Not all non-degenerate faces of the Kunz cone Cm contain Apéry points. In this
section, we provide a criterion for a face F ⊂ Cm to contain Apéry points (Theorem 3.5).
We also discuss some consequences, including an algorithm to determine whether a face
contains Apéry points.

Definition 3.1. Fix m ≥ 2 and a face F ⊆ Cm with Kunz nilsemigroup N . We say
F is Apéry, and that N is Apéry, if F ◦ contains an Apéry point.

Example 3.2. Consider the face F, F ′ ⊆ C6 whose Kunz nilsemigroups N and N ′

have divisibility posets depicted in Figures 2a and 2b, respectively. If N were the
Kunz nilsemigroup of a numerical semigroup S with Apéry set {0, a1, . . . , a5}, then
2a1 = a2 = 2a4, which is impossible since a1 and a4 are distinct modulo 6. Similarly,
if N ′ were the Kunz nilsemigroup of S, then since a2 = 2a1 = a3 + a5 we either have
a3 < a1 < a5 or a5 < a1 < a3. Either way, it is impossible to have a4 = 2a5 = a1 + a3.
Hence, neither F nor F ′ are Apéry.

We briefly recall some definitions (see [16, Chapter 7]). A lattice is a Z-submodule
L ⊆ Zn, and the rank of L is rk(L) = dimQ spanQ L. The saturation of L is

Sat(L) := spanQ(L) ∩ Zn,

and we say L is saturated if L = Sat(L). The dual or orthogonal complement of L is

L⊥ = {v ∈ Zn : v · v′ = 0 for all v′ ∈ L},
which is a saturated lattice, even if L is not saturated, and in particular L⊥⊥ = Sat(L).
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Definition 3.3. Fix a Kunz nilsemigroup N and a presentation ρ of N . The presen-
tation lattice of N is given by

LN = Lρ = {c1(z1 − z′1) + · · ·+ cn(zn − z′n) : c1, . . . , cn ∈ Z, (z1, z′1), . . . , (zn, z′n) ∈ ρ}.

The following result ensures the presentation lattice Lρ does not depend on the
chosen presentation ρ of N , justifying the alternative notation LN .

Proposition 3.4. If ρ, ρ′ are presentations of a Kunz nilsemigroup N , then Lρ = Lρ′.

Proof. Let (z, z′) ∈ ρ. Since ρ and ρ′ generate the same congruence, (z, z′) can be
obtained via translation, transitivity, and symmetry from trades in ρ′. Thus, z − z′

is an integral linear combination of vectors in Lρ′ , ensuring z − z′ ∈ Lρ′ . This means
Lρ ⊆ Lρ′ , and so by an identical argument, Lρ = Lρ′ . □

We are now ready to state the main theorem of this section, though we defer its
proof to later in the section.

Theorem 3.5. Fix a non-degenerate face F ⊆ Cm with Kunz nilsemigroup N . Let
a1, . . . , ak denote the atoms of N , and let α = (a1, . . . , ak) ∈ Zk. Then F is Apéry if
and only if v · α ≡ 0 mod m for all v ∈ Sat(LN).

Example 3.6. Consider face F ⊆ C8 whose Kunz nilsemigroup N has divisibility poset
depicted in Figure 2c. Using the presentation

ρ = {((3, 0, 0), (0, 1, 1)), ((0, 0, 3), (1, 1, 0))}
of N , one can argue directly that F is not Apéry since any Apéry point (a1, . . . , a7) ∈ F
must satisfy 4a1 = a1 + a2 + a3 = 4a3, which is impossible since a1 ̸≡ a3 mod 8.
Theorem 3.5 ensures this same conclusion since

(3,−1,−1)− (−1,−1, 3) = (4, 0,−4) ∈ LN ,

implies (1, 0,−1) ∈ Sat(LN), but (1, 0,−1) · (1, 4, 7) = −6 ̸≡ 0 mod 8.

Most “small” examples of non-Apéry faces, including all 3 thus far in this section,
rely on m being composite, in that ax ≡ b mod m has 2 or more solutions when a ≥ 2
divides m. However, Cm has non-Apéry faces for each m ≥ 11.

Example 3.7. The face F ⊆ C11, whose Kunz nilsemigroup N has divisibility poset
depicted in Figure 2d, is not Apéry. Indeed, one presentation of N is

ρ = {((1, 0, 0, 0, 1), (0, 2, 0, 0, 0)), ((1, 1, 0, 0, 0), (0, 0, 2, 0, 0)),
((0, 0, 1, 0, 1), (0, 0, 0, 2, 0)), ((1, 0, 0, 1, 0), (0, 0, 0, 0, 2))},

and since

3(1,−2, 0, 0, 1) + 6(1, 1,−2, 0, 0) + (0, 0, 1,−2, 1) + 2(1, 0, 0, 1,−2) = (11, 0,−11, 0, 0),
we must have (1, 0,−1, 0, 0) ∈ Sat(LN). Theorem 3.5 then implies F is not Apéry.
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Before proving Theorem 3.5, we develop some necessary machinery. We begin with
Proposition 3.8, which ensures that in order to locate an Apéry point in the interior of
a face F ⊆ Cm, it is equivalent to locate an Apéry point on spanQ F .

Proposition 3.8. Fix a face F ⊆ Cm, and let V = spanQ F . If there exists an Apéry
point in V , then F is an Apéry face.

Proof. Let d = dimF , and assume there exists an Apéry point x ∈ V . Fix rational
vectors v1, . . . , vd ∈ F that form a basis for V . By scaling appropriately, we may assume
v1, . . . , vd have entries that are integer multiples of m. Writing x = c1v1 + · · · + cdvd
where each ci ∈ Q, the point

x′ = x+
d∑

i=1

max(⌈−ci⌉, 1)vi

is an Apéry point since x′
i ≡ xi mod m for each i, and x′ ∈ F ◦ since it is a positive

linear combination of v1, . . . , vd. This completes the proof. □

Our next step is Theorem 3.11, a general result we will apply to determine the
existence of Apéry points in the lattice L = (spanQ F ) ∩ Zm−1 using vectors in the

orthogonal lattice L⊥. We first prove a technical lemma.

Lemma 3.9. If L ⊆ Zn is a saturated lattice of rank d, and L ⊆ Zn
m is its image under

the canonical projection Zn → Zn
m, then L is a free Zm-module of rank d and L⊥ = L

⊥
.

Proof. Let v1, . . . , vd be a Z-basis for L. Suppose that there exist ci ∈ Z such that

d∑
i=1

civi = 0, that is,
d∑

i=1

civi = mz

for some z ∈ Zn. Since L is saturated, z ∈ L, and since the vi’s form a Z-basis for L,
z is uniquely expressed as

z =
d∑

i=1

ci
m
vi,

where the coefficients ci
m
are integers. Hencem | ci for each i, and we conclude v1, . . . , vd

form a basis for L. This means L is a free Zm-module of rank d.

For the final claim, we induct on d. If d = 0, then L
⊥
= Zn

m = L⊥ for every m ≥ 2,
so suppose d > 0. Let v1, . . . , vd be a Z-basis for L, let

T = spanZ{v1, . . . , vd−1},

and assume T⊥ = T
⊥
holds for every m ≥ 2. Fix a Z-basis w1, . . . , wn−d for L⊥. Since

L⊥ and T⊥ are saturated, T⊥/L⊥ ∼= Z, so choosing any w′ ∈ T⊥ whose image is 1 ∈ Z
yields a Z-basis w1, . . . , wn−d, w

′ is for T⊥.
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Since w′ /∈ L⊥, w′ · vd ̸= 0. We claim |w′ · vd| = 1. For the sake of contradiction,
suppose w′ · vd = ℓ > 1. Applying the inductive hypothesis for m = ℓ, we have

L
⊥ ⊊ T

⊥
= T⊥, where the strict containment follows from T ⊊ L (they are free

Zℓ-modules of distinct ranks) and L
⊥⊥

= L (by [22, Theorem 4.1 and Corollary 4.5]).
However, wi · vj = 0 for all i and j, w′ · vj = 0 for j < d, and w′ · vd ≡ 0 mod ℓ, so

L
⊥
= T⊥, which is a contradiction.

Now, fix m ≥ 2, and consider reduction modulo m. We have L⊥ ⊆ L
⊥ ⊊ T⊥,

and kw′ /∈ L
⊥

for 1 ≤ k < m since the claim in the preceding paragraph implies

kw′ · vd = k ̸≡ 0 mod m. Thus, the order of w′ in T⊥/L
⊥

is m, so |T⊥/L
⊥| ≥ m.

By Lagrange’s theorem, |L⊥| = md = |L⊥|, thereby completing the proof. □

Example 3.10. Both parts of Lemma 3.9 can fail if the lattice L is not saturated.
Indeed, the image of the lattice L ⊆ Z2 generated by (2, 0) under the projection
into Z2

4 is L = {(0, 0), (2, 0)}, which has no basis since 2(2, 0) = (0, 0). Moreover,

L⊥ = spanZ{(0, 1)} projects to L⊥ = {(0, 0), (0, 1), (0, 2), (0, 3)}, so (2, 0) ∈ L
⊥ \ L⊥.

Theorem 3.11. Fix a saturated lattice L ⊆ Zn, γ ∈ Zn, and m ∈ Z≥2. There exists
v ∈ L with vi ≡ γi mod m for each i if and only if w · γ ≡ 0 mod m for every w ∈ L⊥.

Proof. Lemma 3.9 and [22, Theorem 4.1 and Corollary 4.5] imply L⊥⊥
= L

⊥⊥
= L.

To prove the claim, it suffices to prove γ ∈ L if and only if γ ∈ L⊥⊥
, so we are done. □

Letting L = ker(HF )∩Zm−1 and γ = (1, 2, . . . ,m−1), a consequence of Theorem 3.11
is that F is Apéry if and only if w · γ ≡ 0 mod m for every w ∈ Row(HF )∩Zm−1. But
Theorem 3.5 states it is enough to consider vectors in the lower-rank lattice Sat(LN).
To this end, we recall Theorem 3.12, a consequence of the proof of [11, Theorem 4.3]
that relates HF to a presentation matrix of the Kunz nilsemigroup of F , as the final
ingredient in our proof of Theorem 3.5.

Theorem 3.12. Fix a non-degenerate face F ⊆ Cm with Kunz nilsemigroup N , and
order the non-nil elements p1 ⪯ · · · ⪯ pm−1 of N so that p1, . . . , pk are the atoms of N .
Then there exist invertible matrices R and C such that

RHFC =

(
Mρ 0

−A I

)
where the columns on the right hand side are labeled by p1, . . . , pm−1, Mρ is a presen-
tation matrix of N , I is an identity matrix, and A is a matrix whose i-th row is a
factorization of pk+i for each i ≤ m− k − 1.

Proof of Theorem 3.5. Fix a multiplicity m and a non-degenerate face F ⊆ Cm with
Kunz nilsemigroup N and hyperplane matrix HF . Applying Theorem 3.11 with

L = ker(HF ) ∩ Zm−1 and γ = (1, 2, . . . ,m− 1),
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we have that F is Apéry if and only if w · γ ≡ 0 mod m for all w ∈ Row(HF ) ∩ Zm−1.
It is now sufficient to show the statement

(3.1) w · γ ≡ 0 mod m for all w ∈ Row(HF ) ∩ Zm−1

is equivalent to

(3.2) w · α ≡ 0 mod m for all w ∈ Sat(LN).

Letting H̃F = RHFC as in Theorem 3.12 and γ̃ = γC, (3.1) is equivalent to

(3.3) w · γ̃ ≡ 0 mod m for all w ∈ Row(H̃F ) ∩ Zm−1

since Row(H̃F ) = Row(HFC).

Fix w = cH̃F ∈ Row(H̃F ) ∩ Zm−1 with c ∈ Qm−1. Due to the form of H̃F , we
can write c = (c′, c′′) so that w = (c′Mρ, 0) + (−c′′A, c′′I). Since each coordinate of
c′′ coincides with a coordinate of w, each c′′i ∈ Z, so by the definition of A, we have
(−c′′A, c′′I) · γ̃ ≡ 0 mod m. As such, w · γ̃ ≡ 0 mod m if and only if

(c′Mρ, 0) · γ̃ = (c′Mρ) · α ≡ 0 mod m,

which proves (3.3) is equivalent to (3.2) since Row(Mρ) ∩ Zk = Sat(LN). □

Corollary 3.13. If a non-degenerate face F ⊂ Cm has Kunz nilsemigroup N satisfying
any of the following conditions, then F is Apéry:

(a) N has a saturated presentation lattice;
(b) N has a trivial presentation lattice; or
(c) F is a facet.

Proof. Assume F satisfies (a). Letting α the vector of atoms of N , every τ ∈ LN

satisfies τ · α ≡ 0 mod m by definition. However, by assumption, LN = Sat(LN), so F
is Apéry by Theorem 3.5. Since (b) implies (a), this proves the first two claims.

To complete the proof, we claim (c) implies (b). Indeed, if N has a non-trivial
presentation ρ, then N has at most m− 2 atoms and rk(Mρ) ≥ 1. Hence, Theorem 2.7
implies dimF ≤ m− 3 < dim Cm − 1, so F is not a facet. □

Example 3.14. Given Corollary 3.13, one might hope that Apéry faces are precisely
those with saturated presentation lattice. Unfortunately, this is not true in general.
The Kunz nilsemigroup N of the numerical semigroup

S = ⟨18, 41, 43, 83, 85, 92, 96, 99, 106⟩,
seen in Figure 3, has presentation ρ = {(0, 3, 0, 1, 0,−2, 0, 0), (0, 1, 0, 3, 0, 0,−2, 0)}.
One can check that
1
2
(0, 3, 0, 1, 0,−2, 0, 0)+ 1

2
(0, 1, 0, 3, 0, 0,−2, 0) = (0, 2, 0, 2, 0,−1,−1, 0) ∈ Sat(LN)\LN .

Despite this, the face containing S does not violate Theorem 3.5 since the right hand
side above has the desired dot product with the vector of atoms of N .
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Figure 3. Divisibility poset of an Apéry Kunz nilsemigroup whose pre-
sentation lattice Lρ is not saturated. Atoms 2, 6, 9, and 16 are omitted
for clarity, and the opaque vertex and dashed edges identify the location
of a trade in Sat(Lρ) \ Lρ.

One of the primary applications of Theorem 3.5 is an algorithm for determining
whether a face F is Apéry using its Kunz nilsemigroup N (Algorithm 3.15). Table 1
gives some data on the distribution of Apéry faces for m ≤ 13, computed using an im-
plementation of Algorithm 3.15 in SageMath dependent on the packages numsgps-sage
and kunzpolyhedron [17, 10], as well as the GAP package numericalsgps [8].

Algorithm 3.15. Check if a given Kunz nilsemigroup N is Apéry.

function IsApery(N)
α← (a1, . . . , ae) atoms of N
ρ← a presentation of N
B ← a basis of Sat(Lρ)
if v · α = 0 for each v ∈ B then

return True
else

return False
end if

end function

We close the section with one final result that will be useful in the next section.

Corollary 3.16. Fix a non-degenerate face F ⊆ Cm with Kunz nilsemigroup N .
If n(ei − ej) ∈ LN for some n ∈ Z≥2 and i ̸= j, then F is not Apéry.

Proof. Since n(ei− ej) ∈ LN , ei− ej ∈ Sat(LN). Letting α = (a1, . . . , ak) be the vector
of atoms of N , we have (ei − ej) · α ≡ ai − aj mod m, which is nonzero since ai and aj
are distinct modulo m. Thus, F is not Apéry by Theorem 3.5. □
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m = 6 m = 8 m = 9 m = 10 m = 11 m = 12 m = 13
d # % # % # % # % # % # % # %
1 6(2) 75 23(2) 54 48(0) 40 168(16) 78 142(70) 30 1398(6) 84 1257(72) 18
2 6(0) 21 83(0) 34 111(13) 14 909(8) 46 60(60) 1 12773(24) 63 3681(852) 4
3 2(2) 7 93(2) 20 68(0) 4 1764(26) 29 36213(123) 43 708(780) 0
4 34(0) 9 12(12) 1 1510(0) 17 48354(24) 28
5 3(3) 2 586(4) 9 34149(122) 17
6 92(0) 4 12871(0) 10
7 4(4) 1 2424(22) 5
8 196(0) 2
9 5(5) 1

Table 1. For each m, the number of dimension d non-Apéry faces in Cm
(and how many are maximal under containment among non-Apéry faces),
along with the percentage of d-dimensional faces that are non-Apéry.

4. Face dimension and embedding dimension

In this section, we locate in Theorem 4.4 the extremal values of e(F ) that can be
attained for faces F ⊆ Cm for fixed m and dim(F ) ≥ 2, and identify in Proposition 4.5
for which such values there are no Apéry faces. We also construct in Theorem 4.7 a
family of Kunz nilsemigroups that attains those values and many of the values between
them, demonstrating that for dim(F ) ≥ 2, the set of attainable values is an interval.

Lemma 4.1. If N is the Kunz nilsemigroup of a non-degenerate face F ⊆ Cm, then

dim(F ) ≥ e(F )−
∑

p∈N−{∞}

(|ZN(p)| − 1).

Proof. For every p ∈ N \ {∞}, the factorization graph ∇p has |ZN(p)| vertices, so it
suffices to add at most |ZN(p)| − 1 edges for ∇p to be connected. By Proposition 2.1,
there is a presentation ρ such that |ρ| ≤

∑
p∈N−{∞}(|ZN(p)| − 1). Since rk(Mρ) ≤ |ρ|,

an application of Theorem 2.7 gives us the desired result. □

Lemma 4.2. Let N be a Kunz nilsemigroup, m = m(N), and e = e(N). If p ∈ N is
non-nil and A ⊆ ZN(p) is the set of factorizations of p with coordinate sum 2, then:

(a) |A| ≤ ⌊1
2
e⌋+ 1;

(b) if m is odd and e is even, |A| ≤ 1
2
e; and

(c) if m is even and |A| = ⌊1
2
e⌋+ 1, then p = 2q for some q ∈ N .

Proof. We first prove part (b). Since p = 2q has a unique solution for q ∈ Zm when m is
odd, p has at most one singleton-support factorization. Further, all factorizations in A
must have disjoint support by partial cancellativity of N . If p has no singleton-support
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factorizations, then certainly |A| ≤ 1
2
e. Otherwise, p has at most ⌊1

2
(e− 1)⌋ = 1

2
e− 1

factorizations supported on 2 atoms, so |A| ≤ 1
2
e.

We next prove part (a). Since p = 2q has at most two solutions for q ∈ Zm, p
has at most two singleton-support factorizations. This means p has either zero, one, or
two singleton-support factorizations, and proceeding as before in each case, one readily
shows |A| ≤ ⌊1

2
e⌋+ 1.

This leaves part (c). If p = 2q has no solutions q ∈ Zm, then all factorizations in A
are supported on 2 atoms, and there can be at most |A| ≤ ⌊1

2
e⌋ such factorizations. □

Lemma 4.3. Fix a non-degenerate face F ⊆ Cm, and let N be its Kunz nilsemigroup
and e = e(N) = m− 3. If some non-nil element of N has a factorization of coordinate
sum 3, then dim(F ) ≥ ⌊1

2
(m− 3)⌋.

Proof. Suppose p, q ∈ N \ {0,∞} are the only two non-atoms. If q has a factorization
with coordinate sum 3, then q = p+a for some atom a. Moreover, if p = a1+a2 is any
factorization of p, then q = a1 + a2 + a, and since a1 + a ̸= q and a2 + a ̸= q are not
atoms, p = a1 + a = a2 + a. Partial cancellativity implies a1 = a2 = a. In particular,
q = 3a is the only factorization of q with coordinate sum 3, and p = 2a is the only
factorization of p.

If m is even, q has at most 1
2
(m − 4) + 1 coordinate sum 2 factorizations by

Lemma 4.2(a), so |ZN(q)| ≤ 1
2
(m− 4) + 2 = 1

2
m. If m is odd, q has at most 1

2
(m− 3)

coordinate sum 2 factorizations by Lemma 4.2(b), so |ZN(q)| ≤ 1
2
(m − 1). In either

case, |ZN(q)| ≤ ⌊12m⌋, and

dim(F ) ≥ (m− 3)− (⌊1
2
m⌋ − 1) = ⌊1

2
(m− 3)⌋

then follows from Lemma 4.1. □

Theorem 4.4. Fix a multiplicity m ≥ 7 and a non-degenerate face F ⊆ Cm, and let
e = e(F ) and d = dimF . Let N denote the Kunz nilsemigroup of F .

(a) If e = m− 1, then d = m− 1.
(b) If e = m− 2, then ⌊1

2
(m− 1)⌋ ≤ d ≤ e.

(c) If e = m− 3 and m is odd, then 2 ≤ d ≤ e.

Proof. By Theorem 2.7, d ≤ e. If e = m− 1, each non-nil element of N is an atom and
therefore has a single factorization. Applying Lemma 4.1, we have d = m− 1.

If e = m − 2, there is a unique non-atom p ∈ N \ {0,∞}. Every factorization of p
has coordinate sum 2, so |ZN(p)| ≤ ⌊12(m− 2)⌋+ 1 by Lemma 4.2. Lemma 4.1 yields

d ≥ (m− 2)− ⌊1
2
(m− 2)⌋ = ⌊1

2
(m− 1)⌋.

Lastly, suppose e = m−3 and m is odd, and let p, q ∈ N \{0,∞} be the non-atoms.
If one of p or q has a factorization of coordinate sum 3, Lemma 4.3 gives

d ≥ ⌊1
2
(m− 3)⌋ ≥ 2
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sincem ≥ 7. Otherwise, all factorizations of p and q have coordinate sum 2, Lemma 4.2
gives |ZN(p)| ≤ 1

2
(m− 3) and |ZN(q)| ≤ 1

2
(m− 3). This yields

d ≥ (m− 3)− (m− 5) = 2,

after applying Lemma 4.1. □

Proposition 4.5. Fix m ≥ 7. In each of the following cases, if F ⊆ Cm is a non-
degenerate face with dimF = d and e(F ) = e, then m is even and F is not Apéry:

(a) d = 1
2
m− 1 and e = m− 2; or

(b) d = 1 and e = m− 3.

Proof. Let N be the Kunz nilsemigroup of F . First, suppose d = 1
2
m−1 and e = m−2,

and let p ∈ N \ {0,∞} be the unique non-atom. By Lemmas 4.1 and 4.2(a),
1
2
m = e− d+ 1 ≤ |ZN(p)| ≤ ⌊12e⌋+ 1 = ⌊1

2
m⌋

so |ZN(p)| = 1
2
m = 1

2
e+1. Necessarily, p has two singleton-support factorizations, i.e.,

p = 2a = 2a′ for distinct atoms a, a′ ∈ N , and so by Corollary 3.16, F is not Apéry.
Next, suppose d = 1 and e = m−3, and let p, q ∈ N \{0,∞} denote the non-atoms.

By Lemma 4.3, every factorization of p and q has coordinate sum 2. As in part (a),

m− 2 = e− d+ 2 ≤ |ZN(p)|+ |ZN(q)| ≤ 2(⌊1
2
e⌋+ 1) = 2⌊1

2
(m− 1)⌋.

By Lemma 4.2(b) and the first inequality, m is even. This forces

|ZN(p)|+ |ZN(q)| = m− 2 and thus |ZN(p)| = |ZN(q)| = 1
2
m− 1 = 1

2
(e+ 1).

There are two cases. First, if p ̸= 2q ∈ Zm, then the atom p − q does not appear in
any factorization of p, meaning p has two singleton-support factorizations and F is not
Apéry by Corollary 3.16. As such, assume p = 2q and q = 2p. This forces p = 2d and
q = 4d for some d ∈ Zm with order 6. For each atom i ∈ N , let the standard basis
vector ei denote the factorization of i. Letting I = [1, 3d− 1] \ {d},

ρ = {(ed+i + ed−i, 2ed) : i ∈ I} ∪ {(e5d+j + e5d−j, 2e5d) : j ∈ I}
is a presentation of N . Letting τi = (ed+i + ed−i)− 2ed and ωj = (e5d+j + e5d−j)− 2e5d,∑

i∈I

τi −
∑
j∈I

ωj = (m− 3)e5d − (m− 3)ed = (m− 3)(e5d − ed) ∈ LN

since ei appears exactly once for each i ̸= d, 5d. By Corollary 3.16, F is not Apéry. □

Remark 4.6. Theorem 4.7(b) exhibits faces of the Kunz cone described in Propo-
sition 4.5(a). The Kunz nilsemigroup with divisibility poset depicted in Figure 4a
corresponds to a face described by Proposition 4.5(b); it is not difficult to construct
similar nilsemigroups for any even m ≥ 8.

Theorem 4.7. Fix m ≥ 7. There is a face F ⊆ Cm with e(F ) = e and dimF = d if:

(a) e = m− 1 and d = m− 1;
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(a) (b) (c) (d)

Figure 4. Divisibility poset of a Kunz nilsemigroup corresponding to
a non-Apéry face with dimension 1, along with depictions of the three
constructions for Theorem 4.7.

(b) e = m− 2 and ⌊1
2
(m− 1)⌋ ≤ d ≤ m− 2; or

(c) 2 ≤ e ≤ m− 3 and d ∈ [2, e].

Each such face F can be chosen Apéry, except where impossible by Proposition 4.5.

Proof. The face F = Cm, which has the numerical semigroup S = ⟨m,m+1, . . . , 2m−1⟩,
verifies part (a). Next, for each k = 1, . . . ,m− 2, consider the point x ∈ Zm−1

≥0 with

xi =


2 if i = 1, . . . , k;

4 if i = k + 1;

3 if i = k + 2, . . . ,m− 1.

Since xi+xj ≥ xk for any i, j, k ∈ Zm\{0}, we have x ∈ Cm. Moreover, if xi+xj = xi+j,
then xi = xj = 2 and xi+j = 4, which necessitates i ∈ [1, k] and j = k+1− i. As such,
the Kunz nilsemigroup N of the face F ⊆ Cm with x ∈ F ◦ has divisibility poset
depicted in Figure 4b, so dimF = e − (|ZN(k + 1)| − 1) = m − 2 − ⌊1

2
(k − 1)⌋ by

Theorem 2.7. Additionally, k + 1 has at most one singleton-support factorization, so
letting ẑ ∈ ZN(k + 1) denote a factorization of k + 1 with minimal support,

ρ = {(ẑ, z) : z ∈ ZN(k + 1), z ̸= ẑ}
is a presentation of N . Since each factorization z above has support 2, after permuting
rows and columns Mρ = [I | A] for some matrix A, meaning LN is saturated.
As we vary k in the above construction, we obtain faces whose dimension d has
⌊m

2
⌋ ≤ d ≤ m − 2. If m is odd, ⌊m

2
⌋ = 1

2
(m − 1), so to prove part (b), it remains to

assume m is even and construct a face F with dimF = 1
2
m− 1. To this end, consider

the point x ∈ Zm−1
≥0 with

xi =


1 if i = 1;

2 if i = 2;

1 if i = 3, . . . ,m− 1.
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As before, it is clear x ∈ Cm, and xi + xj = xi+j only preicsely when i + j = 2, so the
Kunz nilsemigroup of the face F ⊆ Cm with x ∈ F ◦ has divisibility poset depicted in
Figure 4c, and thus dimF = e− (|ZN(2)|−1) = 1

2
m−1 by Theorem 2.7. As F satisfies

Proposition 4.5(a), part (b) is proved.
This leaves part (c). First, if d = 2, then by [3, Theorem 4.2], the numerical

semigroup S = ⟨m,m+1, . . . ,m+e⟩ lies in a 2-dimensional face of Cm for e ∈ [2,m−3],
so it suffices to consider e ≥ d ≥ 3. To this end, fix e ∈ [3,m− 3] and fix k ∈ [2, e− 1],
let h = m− e− 1, and consider the point x ∈ Zm−1

≥0 with

xi =


h if i = 1, . . . , k;

2h if i = k + 1, k + 2;

2h− 1 if i = k + 3, . . . , e+ 1;

2(m− i) if i = e+ 2, . . . ,m− 1.

Certainly xi + xj ≥ xi+j whenever xi ≥ h and xj ≥ h, and it is not hard to check that
x−1 + xj = 2 + xj ≥ xj−1 for each j. As such, if xi < h, then i > e+ 2, so

xi + xj = (m− i)x−1 + xj ≥ (m− i− 1)x−1 + xj−1 ≥ · · · ≥ xi+j.

This proves x ∈ Cm. Moreover, xi+xj = xi+j only occurs when (i) i ∈ [1, k] and either
j = k + 1 − i or k + 2 − i, or (ii) i, j, i + j ∈ {e + 2, . . . ,m − 1}. In particular, the
Kunz nilsemigroup of the face F ⊆ Cm with x ∈ F ◦ has divisibility poset depicted in
Figure 4d. As such, e(F ) = k + ((e+ 1)− (k + 2)) + 1 = e. To obtain dimF , consider
the face F ′ ⊆ Ck+3 containing the arithmetical numerical semigroup

S = ⟨k + 3, k + 4, k + 5, . . . , 2k + 3⟩.
The divisibility poset of the Kunz nilsemigroup N ′ of F ′ is identical to the divisibility
poset depicted in Figure 4d restricted to the elements in {0, 1, . . . , k + 2}. As such,
there exist presentations ρ and ρ′ of N and N ′, respectively, such that

Mρ = [Mρ′ | 0 ] and thus LN = LN ′ × {0}e−k.

In particular, LN is saturated since LN ′ is, and rk(Mρ) = rk(Mρ′), so

dimF = e− rk(Mρ) = e− rk(Mρ′) = e− (k − dimF ′) = e− k + 2,

by Theorem 2.7 and [3, Theorem 4.2]. □
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