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Abstract. Let 〈X, τ〉 be a metrizable topological space and let 〈Y, ρ〉 be a

metric space. Let Ω be a family of bounded continuous functions from X to Y .
We show that the family is Lipschitzian with respect to some compatible metric

on X if and only if the family can be written as a countable union of pointwise

equicontinuous subfamilies. From this, we easily characterize those families
of continuous functions between metrizable spaces that are Lipschitzian with

respect to appropriately chosen metrics on the domain and target space.

1. Introduction

Let 〈X, τ〉 be a metrizable topological space and let 〈Y, ρ〉 be a metric space. We
denote the continuous functions from X to Y by C(X,Y ) and the bounded members
of C(X,Y ) by Cb(X,Y ). If X is equipped with a metric d that is compatible with
τ , a function f ∈ C(X,Y ) is called Lipschitz (with respect to d and ρ) provided
for some α > 0, whenever {x,w} ⊆ X, we have ρ(f(x), f(w)) ≤ α · d(x,w) [6, 10].
In this case we say that f is α-Lipschitz with the metrics being understood. When
f is 1-Lipschitz, we say that f is nonexpansive [5].

A basic question to be asked is this: given a subfamily of C(X,Y ), when does
there exist a compatible metric on X such that the family is a Lipschitzian family
with respect to it? Of course, one can also allow ρ to vary over equivalent metrics,
but that is a different question (see [6, Section 3.2]). With respect to applications,
there may be a commitment to a particular metric on the target space, e.g., the
Euclidean metric on Rn or the `1-metric on the absolutely summable real sequences,
but less so for the domain space.

We focus our attention here on subfamilies of Cb(X,Y ). As a warm-up, we
answer this question for the full subfamily Cb(X,Y ) when Y = R equipped with
the Euclidean metric. Let X ′ denote the (possibly empty) set of limit points of X.

Theorem 1.1. Let 〈X, τ〉 be a metrizable space and let R be equipped with the
Euclidean metric. The following statements are equivalent:

(1) the topology of X is discrete, i.e., X ′ = ∅;

(2) there exists a compatible bounded metric d for X with respect to which each
member of Cb(X,R) is Lipschitz;

(3) there exists a compatible metric d for X with respect to which each member
of Cb(X,R) is Lipschitz.
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2 ZVI ARTSTEIN AND GERALD BEER

Proof. (1)⇒ (2). Suppose X ′ = ∅; then the zero-one metric is a compatible metric,
and for each f ∈ Cb(X,Y ), the diameter of the range of f serves as a Lipschitz
constant for f .

(2)⇒ (3). This is trivial.

(3) ⇒ (1). Suppose X ′ 6= ∅. Let x0 be a limit point of X and let 〈xj〉 be a
sequence in X\{x0} τ -convergent to x0. Suppose d is a compatible metric for X.
We produce f ∈ Cb(X,R) that is not Lipschitz with respect to d. Put f(x) :=

min{1,
√
d(x, x0)} whose range has diameter at most one. Choosing k ∈ N for

which d(xj , x0) ≤ 1 for all j ≥ k, we compute

supj≥k
|f(xj)− f(x0)|

d(xj , x0)
= supj≥k

1√
d(xj , x0)

=∞,

showing f is not Lipschitz with respect to d as promised. �

Theorem 1.1 in particular shows that without additional assumptions, a family
of bounded continuous functions from a metrizable space 〈X, τ〉 to a metric space
〈Y, ρ〉 need not be a family of Lipschitz functions with respect to any compatible
metric on X. It is a folk-theorem that this is so if Ω is countable, and we give a
proof as a courtesy to the uninitiated (see Theorem 3.1 infra). But we do much
better: we actually characterize those subfamilies Ω of Cb(X,Y ) whose members
are all Lipschitz with respect to a compatible metric on X as those that can be
written as a countable union of pointwise equicontinuous subfamilies. Furthermore,
the metric can be chosen to be bounded if the listed criterion is met. The folk-
theorem stated above immediately follows from our omnibus result. We provide
an example that shows that such a nice compatible metric might not exist for a
pointwise equicontinuous family of unbounded continuous functions. We also obtain
two results that speak to when a common Lipschitz constant can be found for each
member of Ω. Our results assume nothing additional about the target space 〈Y, ρ〉.
Finally, we use our main result to completely resolve the basic question addressed
in [6, Section 3.2].

2. Preliminaries

All metrizable topological spaces will consist of at least two points. If 〈Y, ρ〉 is
a metric space and A is a nonempty subset, we put diam(A) := sup{ρ(a1, a2) :
{a1, a2} ⊆ A}. If f : X → Y , we put M(f) := diam(f(X)); to say that f is
bounded means that M(f) <∞ [8, p. 327].

If Ω is a family of functions from a metrizable space 〈X, τ〉 to a metric space
〈Y, ρ〉, we say that Ω is equibounded if sup{M(f) : f ∈ Ω} < ∞. This is a weaker
requirement than uniform boundedness, which for us means that ∪f∈Ωf(X) has
finite diameter. The classical uniform boundedness principle of functional analysis
[12, p. 169] in fact asserts that the uniform boundedness of a subfamily of X∗ on
the unit ball of a Banach space X in the above sense follows from its pointwise
boundedness there.

The family is called pointwise equicontinuous [7, p. 266] if for each ε > 0 and each
x ∈ X, there exists a neighborhood W of x such that for each w ∈ W and f ∈ Ω,
we have ρ(f(x), f(w)) < ε. Notice that this is a property of the topology τ , and
does not depend on the metric the space is equipped with. Indeed, our definition
does not presume that X be equipped with a particular metric and indeed makes
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MAKING CONTINUOUS FUNCTIONS LIPSCHITZ 3

sense even if 〈X, τ〉 is not metrizable. Of course, this concept arises in standard
versions of the Arzela-Ascoli theorem (see, e.g., [7, p. 267]).

We need some additional terminology requiring that X be equipped with a par-
ticular compatible metric d. We say that Ω is uniformly equicontinuous if for each
ε > 0 there exists δ > 0 such that whenever {x,w} ⊆ X with d(x,w) < δ and
whenever f ∈ Ω, we have ρ(f(x), f(w)) < ε. Of course, uniform equicontinuity
ensures pointwise equicontinuity. The family Ω is called equi-Lipschitzian if we
can find α > 0 such that each f ∈ Ω is α-Lipschitz with the respect to d and
ρ. In this case, the family is uniformly equicontinuous; further, the family will be
equibounded provided d is a bounded metric.

The following elementary result [10, p. 92] is most gracefully established using
the fact that each open cover of a compact metric space has a Lebesgue number.

Proposition 2.1. Let 〈X, d〉 be a compact metric space and let 〈Y, ρ〉 be a met-
ric space. Then each pointwise equicontinuous subfamily of C(X,Y ) is uniformly
equicontinuous.

This property of pointwise equicontinuous families is in fact characteristic of
the class of metric domains for which each open cover has a Lebesgue number.
This well-studied class, properly trapped between the compact metric spaces and
the complete metric spaces, is often called the UC-spaces in the literature, but
it also goes by the Atsuji spaces and the Lebesgue spaces (see, e.g, [2, 3, 9, 11]).
Usually, it is defined as the class of metric spaces 〈X, d〉 such that each continuous
function defined on X with values in an arbitrary second metric space is uniformly
continuous. It is known that a metrizable space 〈X, τ〉 has a compatible UC-metric
if and only if X ′ is compact [3, p. 59].

3. Results

Again, our major purpose is to find conditions under which a family of bounded
continuous functions from a metrizable space 〈X, τ〉 to a metric space 〈Y, ρ〉 is a
Lipschitzian family with respect to a suitably chosen compatible metric on X. If
we have a finite family of continuous functions Ω = {f1, f2, f3, . . . , fk}, this is easy:
let d be any compatible metric, and define d1 : X ×X → [0,∞) by

d1(x,w) := d(x,w) +

k∑
n=1

ρ(fn(x), fn(w)).

The metric d1 is a compatible metric that does the job, even without the bounded-
ness assumption on the functions. Actually, each fn is nonexpansive with respect
to d1 and ρ. In the case that each function is bounded, we can make d1 bounded
by taking d to be bounded in the first place.

A similar result obtains when we have a countably infinite family of bounded
continuous functions (cf. [6, Theorem 3.2.4] for a weaker result).

Theorem 3.1. Let 〈X, τ〉 be metrizable and let 〈Y, ρ〉 be a metric space. Suppose
〈fn〉 is a sequence in Cb(X,Y ). Then there is a compatible bounded metric d1 for
X with respect to which each fn is Lipschitz.

Proof. Begin with a compatible bounded metric d for X. Noting that each constant
function from X to Y is Lipschitz with respect to each compatible metric on X,
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4 ZVI ARTSTEIN AND GERALD BEER

we may assume without loss of generality that each fn is non-constant, i.e., that
M(fn) > 0. Define d1 : X ×X → [0,∞) by

d1(x,w) := d(x,w) +

∞∑
n=1

2−n · ρ(fn(x), fn(w))

M(fn)
.

Since
∑∞
n=1 2−n = 1, the displayed series converges to a number in [0,1] and since

it determines a pseudo-metric on X, when it is added to d, we get a metric for X.
Also, d1 is majorized by d+ 1 so it is a bounded metric. We include a proof of its
equivalence to d and thus its compatibility with τ .

Since d1 majorizes d, it suffices to show what whenever 〈xj〉 is convergent to
x ∈ X with respect to d, then it is d1-convergent as well [8, p. 313]. Let ε > 0 be
arbitrary and choose k ∈ N so large that

∑∞
n=k+1 2−n < ε

2 . Using the fact that
f1, f2, . . . fk are each continuous at x, we can find j0 ∈ N such that

∀j ≥ j0 ∀n ≤ k, we have ρ(fn(xj), fn(x)) <
2nM(fn)ε

2k
.

With these estimates, we easily get d1(xj , x) < d(xj , x) + ε whenever j ≥ j0. As we
are assuming that limj→∞ d(xj , x) = 0, this yields limj→∞ d1(xj , x) = 0.

It remains to show that each fn is Lipschitz with respect to d1. Fix n ∈ N and
let x and w be arbitrary points of X. We compute

ρ(fn(x), fn(w)) = 2n ·M(fn) · 2−n · ρ(fn(x), fn(w))

M(fn)
≤ 2nM(fn) · d1(x,w),

and this shows that 2nM(fn) serves as a Lipschitz constant for fn. �

Our next result ought to convince the reader that the notion of pointwise equicon-
tinuity has a role to play outside the setting of compactness criteria for function
spaces.

Theorem 3.2. Let 〈X, τ〉 be a metrizable space, and let 〈Y, ρ〉 be a metric space.
Suppose Ω is a subfamily of Cb(X,Y ) that is pointwise equicontinuous. Then there
is a bounded compatible metric d1 on X with respect to which Ω is a Lipschitzian
family.

Proof. We recall that if p is a pseudo-metric on a set S, then so is min{1, p} and if
P is a family of pseudo-metrics on S each bounded by 1, then sup{p : p ∈ P} is also
a pseudo-metric bounded by 1 [7, p. 198]. Let d be a bounded compatible metric
for X and put

d1(x,w) := d(x,w) + supf∈Ω min{1, ρ(f(x), f(w))} for {x,w} ⊆ X.

Then d1 is a bounded metric on X. To show equivalence with d, since d ≤ d1, we
again need only show that whenever 〈xj〉 is a sequence in X with limj→∞ d(xj , x) =
0, then limj→∞ d1(xj , x) = 0. Let ε ∈ (0, 1) be arbitrary, and by the compatibility
of d and pointwise equicontinuity of Ω, choose a neighborhood W of x such that
whenever w ∈ W , (1) we have d(w, x) < ε

2 , and (2) whenever f belongs to Ω, the

inequality ρ(f(x), f(w)) < ε
2 holds. Eventually, xj lies in W , and since ε

2 <
1
2 , we

have for all j sufficiently large
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MAKING CONTINUOUS FUNCTIONS LIPSCHITZ 5

supf∈Ω min{1, ρ(f(xj), f(x))} ≤ ε

2
.

We conclude that eventually, d1(xj , x) < ε, establishing compatibility of d1.
To exhibit a Lipschitz constant for an arbitrary g ∈ Ω, let x,w ∈ X be given. If

ρ(g(x), g(w)) < 1 holds, we get

ρ(g(x), g(w)) ≤ d(x,w)+ρ(g(x), g(w)) = d(x,w)+min{1, ρ(g(x), g(w))} ≤ d1(x,w).

On the other hand, if ρ(g(x), g(w)) ≥ 1 were true, then d1(x,w) = d(x,w) + 1 ≥ 1
holds, and since ρ(g(x), g(w)) ≤M(g), we get

ρ(g(x), g(w))

d1(x,w)
≤ M(g)

1
= M(g).

Since these two cases are exhaustive, we can state that 1 + M(g) is a Lipschitz
constant for g with respect to d1. �

Theorem 3.1 does not follow from Theorem 3.2 since the sequence in the former
may not be pointwise equicontinuous. An actual generalization will be achieved in
our main result below. Meanwhile we address the following question.

One wonders if the set of terms of 〈fn〉 can be made an equi-Lipschitzian family
under an equivalent remetrization provided the set of terms is equibounded. But
this may not be so, even if the set of terms is uniformly bounded.

Example 3.3. Let X = Y = [0, 1] where X is equipped with its usual topology and
Y is equipped with the Euclidean metric. Define fn ∈ Cb(X,Y ) by

fn(x) =

{
nx if 0 ≤ x < 1

n

1 if 1
n ≤ x ≤ 1.

Clearly, {fn : n ∈ N} is uniformly bounded, as the range of each member is [0, 1].
Now suppose d is any compatible metric for the topology ofX. As limn→∞ d( 1

n , 0) =
0, we get

supn∈N
|fn( 1

n )− fn(0)|
d( 1
n , 0)

= supn∈N
1

d( 1
n , 0)

=∞,

showing the family is not equi-Lipschitzian with respect to d.

What goes wrong in this example is a failure of pointwise equicontinuity, because
if a family of functions were equi-Lipschitzian with respect to metrics d and ρ on the
domain and target space, then the family would have to be uniformly equicontinuous
with respect to those metrics. With pointwise equicontinuity, we may use Theorem
3.2 to get the next result.

Corollary 3.4. Let Ω be an equibounded family of functions from a metrizable
space 〈X, τ〉 to a metric space 〈Y, ρ〉. Then Ω is equi-Lipschitzian with respect to
some compatible metric if and only if Ω is pointwise equicontinuous.
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6 ZVI ARTSTEIN AND GERALD BEER

Proof. For sufficiency, if M(f) ≤ α for each f ∈ Ω, then 1 + α will serve as a
common Lipschitz constant with respect to the metric d1 given in the proof of
the last theorem. On the other hand, if Ω is equi-Lipschitzian with respect to
some compatible metric, it is uniformly equicontinuous with respect to it, and thus
pointwise equicontinuous with respect to τ . �

Corollary 3.5. Let Ω be a pointwise equicontinuous family of functions from a
metrizable space 〈X, τ〉 to a metric space 〈Y, ρ〉. Then Ω is equibounded if and
only if there is a compatible bounded metric d1 on X with respect to which Ω is an
equi-Lipschitzian family.

Proof. Necessity follows the proof of Theorem 3.2. For sufficiency, if α is a Lipschitz
constant for each f ∈ Ω with respect to d1 and d1 is bounded, then ∀f ∈ Ω ∀x,w ∈
X, we have ρ(f(x), f(w)) ≤ αdiam(X). This means that Ω is equibounded. �

With respect to the second corollary, we remark that for an equibounded and
pointwise equicontinuous family, we can scale our bounded metric d1 so that the
family becomes a family of nonexpansive maps with respect to it (if that serves
some purpose).

We next give a pointwise equicontinuous family of unbounded real-valued func-
tions on a certain metrizable space that is not a Lipschitzian family with respect
to any compatible metric (where R is equipped with the Euclidean metric).

Example 3.6. Equip N with the discrete topology and equip R with the Euclidean
metric. Then any family of functions from N to R is pointwise equicontinuous, as
each point of the domain has a neighborhood consisting of just that point. Let Ω
consist of C(N,R)\Cb(N,R), that is to say, the family of all unbounded real-valued
functions on N. If d is a bounded compatible metric on N, then no member of
Ω is Lipschitz with respect to it. On the other hand, if d is unbounded, there
exists a strictly increasing sequence of positive integers 〈nk〉 such that for each
k, d(1, nk) > k holds. Define f : N→ R by

f(n) =

{
d(1, nk)2 if n = nk for some k

0 otherwise.

Note that f(1) = 0, and as f is unbounded, it belongs to Ω. As

|f(1)− f(nk)|
d(1, nk)

= d(1, nk)→∞,

our function f is not Lipschitz with respect to d.

Our next result will be combined with Theorem 3.2 to get our characterization
theorem.

Proposition 3.7. Let 〈X, τ〉 be a metrizable space and let 〈Y, ρ〉 be a metric space.
Suppose for each n ∈ N, Ωn is a subfamily of Cb(X,Y ) for which there is a com-
patible bounded metric dn on X such that Ωn is a Lipschitzian family with respect
to dn and ρ. Then there is a compatible bounded metric d∗ for X such that for each
n ∈ N and f ∈ Ωn, the function f is Lipschitz with respect to d∗ and ρ.
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MAKING CONTINUOUS FUNCTIONS LIPSCHITZ 7

Proof. For each n ∈ N let diamn(X) ∈ (0,∞) denote the diameter of X with respect
to dn. Then easily d∗ : X ×X → [0, 1] defined by

d∗(x,w) :=

∞∑
n=1

2−n · dn(x,w)

diamn(X)

is a compatible metric on X. To prove that ∪n∈N Ωn consists of Lipschitz functions
with respect to d∗, fix f ∈ Ωn (where n is arbitrary) and let α be a Lipschitz
constant for f with respect to dn. For x,w ∈ X, we compute

ρ(f(x), f(w)) ≤ αdn(x,w) = α2ndiamn(X) · 2−n · dn(x,w)

diamn(X)

≤ α2ndiamn(X) · d∗(x,w),

completing the proof. �

Notice that Theorem 3.1 is a consequence of Proposition 3.7 where Ωn = {fn}
and dn(x,w) = d(x,w) + ρ(fn(x), fn(w)), where d is a bounded compatible metric
for X and fn is bounded and continuous.

We now come to the main result of this paper.

Theorem 3.8. Let 〈X, τ〉 be a metrizable space and let 〈Y, ρ〉 be a metric space.
Let Ω be a subfamily of Cb(X,Y ). The following statements are equivalent:

(1) there is a compatible bounded metric d on X such that each f ∈ Ω is
Lipschitz with respect to d and ρ;

(2) there is a compatible metric d on X such that each f ∈ Ω is Lipschitz with
respect to d and ρ;

(3) Ω can be expressed as ∪∞n=1 Ωn where each Ωn is a pointwise equicontinuous
family with respect to τ and ρ.

Proof. The implication (1) ⇒ (2) is trivial while (3) ⇒ (1) follows from Theorem
3.2 and Proposition 3.7. To prove (2)⇒ (3), for each n ∈ N put

Ωn := {f ∈ Ω : ∀x,w ∈ X we have ρ(f(x), f(w)) ≤ nd(x,w)}.
Each Ωn is an equi-Lipschitzian family, and so is uniformly equicontinuous with
respect to d and ρ. Thus, each Ωn is pointwise equicontinuous with respect to τ
and ρ. �

More information about the underlying domain space may lead to more refined
consequences, such as the following corollary, which follows from Proposition 2.1.

Corollary 3.9. Suppose 〈X, τ〉 in Theorem 3.8 is compact. Then in item (3) of
the theorem, pointwise equicontinuity can be replaced by uniform equicontinuity.

The next corollary follows from Theorem 1.1 and Theorem 3.8.

Corollary 3.10. Let 〈X, τ〉 be a metrizable space and let R be equipped with the
Euclidean metric. The following statements are equivalent.

(1) The topology τ is discrete;

10 Oct 2022 08:54:02 PDT
221010-Beer Version 1 - Submitted to Rocky Mountain J. Math.



8 ZVI ARTSTEIN AND GERALD BEER

(2) Cb(X,R) is a pointwise equicontinuous family;

(3) Cb(X,R) can be written as a countable union of pointwise equicontinuous
subfamilies.

Cobzaş, Miculescu and Nicolae [6, p. 181] show that for X = Q and Y = [0, 1]
equipped with their usual topologies, then given any pair of compatible metrics d
and ρ on X and Y , there is a member of C(X,Y ) that fails to be Lipschitz with
respect to them. In particular, it follows that if Ω is family of continuous functions
between metrizable spaces, it may not be a Lipschitzian family with respect to
whatever metrics we choose for the domain and target spaces. We can now state
the result that they were after in Section 3.2 of their monograph [6].

Theorem 3.11. Let 〈X, τ1〉 and 〈Y, τ2〉 be metrizable spaces and let Ω be a family
of continuous functions from X to Y . The following statements are equivalent:

(1) there is a compatible bounded metric d on X and a compatible bounded
metric ρ on Y such that each f ∈ Ω is Lipschitz with respect to d and ρ;

(2) there is a compatible metric d on X and a compatible metric ρ on Y such
that each f ∈ Ω is Lipschitz with respect to d and ρ;

(3) there is a compatible metric ρ∗ on Y such that Ω can be expressed as
∪∞n=1 Ωn where each Ωn is a pointwise equicontinuous family with respect
to τ1 and ρ∗.

Proof. The implication (1) ⇒ (2) is trivial, and (2) ⇒ (3) is argued just as in the
proof of Theorem 3.8, where ρ∗ is taken to be ρ. For (3) ⇒ (1), replace ρ∗ by
ρ := min{1, ρ∗}. Each Ωn remains pointwise equicontinuous, but now Ω consists of
bounded continuous functions. Apply Theorem 3.8. �

We next give an elementary application of Theorem 3.8 that nevertheless requires
some delicate estimation.

Example 3.12. Let X = [0, 1] with its usual topology τ and equip R with the
Euclidean metric. Our Ω is a 2-parameter family of functions of the form f(x0,β)

where (x0, β) ∈ [0, 1]× (0,∞). Specifically,

f(x0,β)(x) := β
√
|x− x0| for 0 ≤ x ≤ 1.

Each such function is uniformly continuous and bounded. Obviously, Ω is not a
pointwise equicontinuous family, even if x0 were to be held fixed.

We can write Ω = ∪n∈N Ωn where Ωn := {f(x0,β) ∈ Ω : β ≤ n}. Each Ωn
is a uniformly bounded family. By Theorem 3.8, we can conclude that Ω is a
Lipschitzian family with respect to some compatible (bounded) metric on [0, 1] if
we can show that each Ωn is pointwise equicontinuous. Actually, Ωn is uniformly
equicontinuous with respect to the Euclidean metric on [0, 1] (see Proposition 2.1
supra).

To see this, let n ∈ N and ε > 0 be fixed, and let f(x0,β) ∈ Ωn be arbitrary.

Choose δ > 0 such that
√
δ < ε

2n . We consider two mutually exclusive and exhaus-
tive cases for x,w ∈ [0, 1]: (1) both |x − x0| < δ and |w − x0| < δ, or (2) either
|x− x0| ≥ δ or |w − x0| ≥ δ.

In case (1), we obtain this inequality string without any further control on |x−w|:
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MAKING CONTINUOUS FUNCTIONS LIPSCHITZ 9

|f(x0,β)(x)− f(x0,β)(w)| ≤ n(
√
|x− x0|+

√
|w − x0|) < n · ( ε

2n
+

ε

2n
) = ε.

In case (2), if |x− w| < ε
√
δ

n , we compute

|f(x0,β)(x)− f(x0,β)(w)| ≤ n · ||x− x0| − |w − x0||√
|x− x0|+

√
|w − x0|

≤ n · |x− w|√
δ

< ε.

Thus, wherever x and w may be relative to x0, if |x − w| < ε
√
δ

n , it follows that
|f(x0,β)(x) − f(x0,β)(w)| < ε. This fact establishes uniform equicontinuity of Ωn
relative to the Euclidean metric on [0, 1], and pointwise equicontinuity relative to
τ follows.

We next give a more abstract application of Theorem 3.8. Suppose 〈X, d〉 and
〈Y, ρ〉 are metric spaces and f : X → Y . We recall that the modulus of continuity
of f [1, 4] is the function ωf : (0,∞)→ [0,∞] given by

ωf (t) := sup{ρ(f(x), f(w)) : d(x,w) ≤ t}.

Since ωf is nondecreasing, both limt→0+ωf (t) and limt→∞ωf (t) exist as extended
nonnegative real numbers. The following properties are easy to verify:

(1) f is constant if and only if ωf is the zero function;
(2) f is bounded if and only if limt→∞ ωf (t) is finite;
(3) f is uniformly continuous if and only if limt→0+ ωf (t) = 0;
(4) f is α-Lipschitz if and only if ∀t > 0, we have ωf (t) ≤ αt.

Example 3.13. Suppose 〈X, d〉 and 〈Y, ρ〉 are metric spaces and Ω ⊆ Cb(X,Y ).
Suppose we can find a sequence of functions 〈φn〉 from (0,∞) to [0,∞) and a
positive sequence 〈δn〉 such that

• ∀n ∈ N limt→0+ φn(t) = 0, and

• ∀f ∈ Ω ∃n ∈ N such that φn majorizes ωf on (0, δn).

Then there exists a bounded metric d∗ equivalent to d such that Ω is a Lipschitzian
family with respect to d∗ and ρ. Put differently, with respect to d∗ and ρ, ∀f ∈
Ω ∃α > 0 such that for all t > 0 we have ωf (t) ≤ αt. This occurs because

Ω = ∪n∈N {f ∈ Ω : ωf ≤ φn on (0, δn)},

and so Ω is evidently a countable union of uniformly equicontinuous families.

We call f : R → R quadratic if f(x) = ax2 + bx + c where a 6= 0. Consider the
family of quadratic functions from R to R. If we equip the target space with the
Euclidean metric and the domain with the equivalent metric d(x,w) := |x − w| +
|x2 − w2|, then it is a routine exercise to verify that |a| + |b| serves as a Lipschitz
constant for f(x) = ax2 + bx+ c with respect to these metrics.

It follows then from the equivalence of conditions (2) and (3) of Theorem 3.11
that the family Ω of quadratic functions must be decomposable into a countable
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union of pointwise equicontinuous families with respect to the Euclidean metric on
the target space. We close by exhibiting such a decomposition without reference to
the above remetrization of the domain.

The family Ω may be viewed as a 3-parameter family consisting of all functions
of the form f(x0,a,y0) where x0 ∈ R, a ∈ R\{0} and y0 ∈ R, defined by

f(x0,a,y0)(x) := a(x− x0)2 + y0 for x ∈ R.

Of course, none of these function is bounded with respect to the Euclidean metric on
the target space. For each n ∈ N, put Ωn := {f(x0,a,y0) ∈ Ω : |x0| ≤ n and |a| ≤ n}.
Since Ω = ∪n∈N Ωn, it suffices to show that each Ωn is pointwise equicontinuous
with respect to the Euclidean metric on the target space.

To this end, fix n ∈ N, f(x0,a,y0) ∈ Ωn, x ∈ R, and ε > 0. We intend to show
that if

|x− w| < min{1, ε

n(2|x|+ 1 + 2n)
},

then |f(x0,a,y0)(x)−f(x0,a,y0)(w)| < ε. Factoring a difference of squares as a product
of a sum and a difference, we compute

|f(x0,a,y0)(x)−f(x0,a,y0)(w)| = |a| · |(x−x0)2− (w−x0)2| ≤ n|(x−x0)2− (w−x0)2|
= n|x− w||x+ w − 2x0| ≤ n|x− w|(2|x|+ 1 + 2|x0|)

≤ n|x− w|(2|x|+ 1 + 2n) < ε,

as required.
Note that if the quadratic functions were to be Lipschitzian with respect to

compatible metrics d and ρ where d is bounded, then ρ is forced to be bounded as
well. Such a scenario is guaranteed to exist by Theorem 3.11.
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