
ON LIE DERIVATIONS OF TRIANGULAR ALGEBRAS
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Abstract. Let T be a triangular algebra and G ∈ T be an arbitrary but
fixed point. We say that a linear map φ : T → T is Lie derivable at G if
φ([S, T ]) = [φ(S), T ] + [S, φ(T )] for any S, T ∈ T with ST = G. In this
paper, we describe the general form of φ and give some necessary and sufficient
conditions for φ to be proper. These results are then applied to nest algebras.

1. introduction

Let A be an associative algebra over a field F. A linear map δ : A → A is
called a derivation if δ(ST ) = δ(S)T + Sδ(T ) for all S, T ∈ A. Derivations are
very important maps both in theory and applications, and have been studied
intensively(for example, see [5, 9, 18, 19, 20] and references therein). In recent
years the problem under which conditions that a linear map becomes a derivation
has attracted many mathematicians’ attention. One direction in the study of this
problem is to characterize derivable maps at a given point. We say that a linear
map δ : A → A is derivable at G ∈ A if δ(ST ) = δ(S)T + Sδ(T ) for all S, T ∈ A
with ST = G. It is obvious that the condition of δ being a derivable map at G
is weaker than the condition of being a derivation. For some algebras, the cases
that G is zero, the unit, nontrivial idempotents, invertible elements, and so on
were discussed by several authors (for example, refer to [1, 2, 12, 13, 15, 17, 22]
and the references therein). These results enhanced people’s understanding of
derivations on several algebras.

More generally, a linear map φ : A → A is called a Lie derivation if φ([S, T ]) =
[φ(S), T ] + [S, φ(T )] for all S, T ∈ A, here [S, T ] = ST − TS is the usual Lie
product and is said to be Lie derivable at G ∈ A if φ([S, T ]) = [φ(S), T ]+[S, φ(T )]
for all S, T ∈ T with ST = G. Ji and Qi in [11] proved that, under some mild
conditions, if a linear map φ from a triangular algebra T into itself is Lie derivable
at 0 (resp. a standard idempotent P ∈ T ), then φ is proper, that is, φ = ϕ + τ ,
where ϕ is a derivation of T and τ is a linear map from T into the center of
T vanishing on each commutator [S, T ] whenever ST = 0 (resp. ST = P ).
Lu and Jing [14] showed that the same is true for Lie derivable maps of B(X),
where B(X) is the algebra of all bounded linear operators on a Banach space
X of dimension greater than 2. There are similar results on generalized matrix
algebras and prime rings (see [8, 16]). But, so far, to the best of our knowledge
there have been no papers on the study of Lie derivable maps at a given point
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which is not 0 or a standard idempotent. So the purpose of the present paper
is to characterize Lie derivable maps of triangular algebras at an arbitrary but
fixed point.

Triangular algebras were firstly introduced in [6] and then studied by many
authors(see, for example, [3, 4, 7, 21]). Let A and B be two unital algebras with
unit I1 and I2, respectively. Let M be an (A, B)-bimodule, which is faithful as
a left A-module and also as a right B-module, that is, for any a ∈ A and b ∈ B,
aM = {0} and Mb = {0} imply a = 0 and b = 0, respectively. The algebra

T = Tri(A,M,B) =

{(
a m
0 b

)
: a ∈ A,m ∈M, b ∈ B

}
,

under the usual matrix operations is called a triangular algebra. The non-trivial

idempotent element P =

(
I1 0
0 0

)
is said to be the standard idempotent of T . It

follows from Proposition 3 in [6] that the center of T is

Z(T ) =

{
a⊕ b =

(
a 0
0 b

) ∣∣∣∣am = mb for all m ∈M
}
.

Define two projections πA : T → A and πB : T → B by

πA

(
a m
0 b

)
= a and πB

(
a m
0 b

)
= b.

Then πA(Z(T )) ⊆ Z(A) and πB(Z(T )) ⊆ Z(B). Furthermore, there exists an
unique algebra isomorphism η : πA(Z(T )) → πB(Z(T )) such that am = mη(a)
for every a ∈ A, m ∈M.

2. Result and proof

In this section, we consider the question of characterizing Lie derivable maps
of triangular algebras at an arbitrary but fixed point. Firstly, we describe the
general forms of these maps as following.

Theorem 2.1. Let T = Tri(A,M,B) be a triangular algebra and G =

(
a0 m0

0 b0

)
be an arbitrary but fixed point in T . Assume that

(i) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B);
(ii) For every a ∈ A, there exists some integer n such that nI1− a is invertible

in A;
(iii) For every b ∈ B, there exists some integer n such that nI2− b is invertible

in B.
If a linear map φ : T → T is Lie derivable at G, then φ is of the form

φ

(
a m
0 b

)
=

(
f11(a) + g11(m) + h11(b) af12(I1)− f12(I1)b+ g12(m)

0 f22(a) + g22(m) + h22(b)

)
,

where

f11 : A → A, f12 : A →M, f22 : A → Z(B), g11 :M→ Z(A),

g12 :M→M, g22 :M→ Z(B), h11 : B → Z(A), h22 : B → B
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are linear maps satisfying the following conditions:
(1) f12(a) = af12(I1) for all a ∈ A;
(2) f11(I1) ∈ Z(A), h22(I2) ∈ Z(B);
(3) g12(am) = ag12(m)+f11(a)m−mf22(a)+h11(I2)am−amh22(I2) for all m ∈

M and a ∈ A;
(4) g12(mb) = g12(m)b+mh22(b)−h11(b)m+mbf22(I1)−f11(I1)mb for all m ∈

M and b ∈ B.

We need the following basic fact whose proof is easy and will be skipped.

Proposition 2.2. Let H be a vector space over a number field F. For any fixed
hi ∈ H, i = 0,±1,±2, ....,±n, if

∑n
i=−n hix

i = 0, x ∈ F, has at least 2n + 1
distinct nonzero solutions in F, then hi = 0, i = 0,±1,±2, ....,±n.

Proof of Theorem 2.1. Since φ is a linear map, we can write

φ

(
a m
0 b

)
=

(
f11(a) + g11(m) + h11(b) f12(a) + g12(m) + h12(b)

0 f22(a) + g22(m) + h22(b)

)
for all

(
a m
0 b

)
∈ T , where f11, f12, f22 are linear maps fromA toA,M,B, respec-

tively; g11, g12, g22 are linear maps from M to A,M,B, respectively; h11, h12, h22
are linear maps from B to A,M,B, respectively.

Now we organize the proof in a series of claims

Claim 1. For any a ∈ A and b ∈ B, the following statements hold:
(i) h12(b) = −f12(I1)b;
(ii) f12(a) = af12(I1).
For any invertible b ∈ B and any real number λ > 0, let

S =

(
I1 0
0 λb0b

−1

)
, T =

(
a0 m0

0 λ−1b

)
.

Then ST = G, and we have(
∗ g12(m0 − λm0b0b

−1) + h12(b0 − bb0b−1)
0 ∗

)
= φ(ST − TS)

= φ(S)T − Tφ(S) + Sφ(T )− φ(T )S

=

(
f11(I1) + h11(λb0b

−1) f12(I1) + h12(λb0b
−1)

0 f22(I1) + h22(λb0b
−1)

)(
a0 m0

0 λ−1b

)
−
(
a0 m0

0 λ−1b

)(
f11(I1) + h11(λb0b

−1) f12(I1) + h12(λb0b
−1)

0 f22(I1) + h22(λb0b
−1)

)
+

(
I1 0
0 λb0b

−1

)
·
(
f11(a0) + g11(m0) + h11(λ

−1b) f12(a0) + g12(m0) + h12(λ
−1b)

0 f22(a0) + g22(m0) + h22(λ
−1b)

)
−
(
f11(a0) + g11(m0) + h11(λ

−1b) f12(a0) + g12(m0) + h12(λ
−1b)

0 f22(a0) + g22(m0) + h22(λ
−1b)

)
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·
(
I1 0
0 λb0b

−1

)
=

(
∗ ∆
0 ∗

)
,

where

∆ =(f11(I1) + h11(λb0b
−1))m0 + (f12(I1) + h12(λb0b

−1))(λ−1b) + f12(a0)

− a0(f12(I1) + h12(λb0b
−1))−m0((f22(I1) + h22(λb0b

−1)) + g12(m0)

+ (h12(λ
−1b)− (f12(a0) + g12(m0) + h12(λ

−1b))(λb0b
−1).

It follows from the matrix equation that

g12(m0 − λm0b0b
−1) + h12(b0 − bb0b−1)

= (f11(I1) + h11(λb0b
−1))m0 + (f12(I1) + h12(λb0b

−1))(λ−1b) + f12(a0)

− a0(f12(I1) + h12(λb0b
−1))−m0((f22(I1) + h22(λb0b

−1)) + g12(m0)

+ (h12(λ
−1b)− (f12(a0) + g12(m0) + h12(λ

−1b))(λb0b
−1).

By Proposition 2.2, the above equality implies that f12(I1)b + h12(b) = 0 for all
invertible b ∈ B. For any b ∈ B, by assumption (iii) of the theorem, there exists
an integer n such that nI2− b is invertible in B. It follows from the previous fact
that f12(I1)(nI2 − b) + h12(nI2 − b) = 0 for all b ∈ B. Then we have

f12(I1)b+ h12(b) = 0 (2.1)

for all b ∈ B.
Moreover, for any invertible a ∈ A and any real number λ > 0, repeating the

similar argument and considering

S =

(
λa m0

0 b0

)
, T =

(
λ−1a−1a0 0

0 I2

)
.

one can get
f12(a) + ah12(I2) = 0 (2.2)

for all a ∈ A. Taking b = I2 in Eq.(2.1), we have h12(I2) = −f12(I1). Combining
this and Eq.(2.2), we obtain that

f12(a) = af12(I1)

for all a ∈ A. The proof of the claim is completed.

Claim 2. We have the following:
(i) h11(b) ∈ Z(A) for all b ∈ B;
(ii) f22(a) ∈ Z(B) for all a ∈ A.
Taking

S =

(
λa 0
0 λ−1b0b

−1

)
, T =

(
λ−1a−1a0 λ−1a−1m0

0 λb

)
,

where a ∈ A, b ∈ B are invertible and λ > 0, we get ST = G. Hence we have(
∆1 ∗
0 ∆2

)
= φ(ST − TS)

= φ(S)T − Tφ(S) + Sφ(T )− φ(T )S
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=

(
f11(λa) + h11(λ

−1b0b
−1) f12(λa) + h12(λ

−1b0b
−1)

0 f22(λa) + h22(λ
−1b0b

−1)

)(
λ−1a−1a0 λ−1a−1m0

0 λb

)
−
(
λ−1a−1a0 λ−1a−1m0

0 λb

)(
f11(λa) + h11(λ

−1b0b
−1) f12(λa) + h12(λ

−1b0b
−1)

0 f22(λa) + h22(λ
−1b0b

−1)

)
+

(
λa 0
0 λ−1b0b

−1

)
·
(
f11(λ

−1a−1a0) + g11(λ
−1a−1m0) + h11(λb) ∗

0 f22(λ
−1a−1a0) + g11(λ

−1a−1m0) + h11(λb)

)
−
(
f11(λ

−1a−1a0) + g11(λ
−1a−1m0) + h11(λb) ∗

0 f22(λ
−1a−1a0) + g11(λ

−1a−1m0) + h11(λb)

)
·
(
λa 0
0 λ−1b0b

−1

)
=

(
∆3 ∗
0 ∆4

)
,

where

∆1 = f11(a0 − a−1a0a) + g11(m0 − λ−2a−1m0b0b
−1) + h11(b0 − bb0b−1),

∆2 = f22(a0 − a−1a0a) + g22(m0 − λ−2a−1m0b0b
−1) + h22(b0 − bb0b−1),

∆3 =(f11(λa) + h11(λ
−1b0b

−1))(λ−1a−1a0)− (λ−1a−1a0)(f11(λa) + h11(λ
−1b0b

−1)

+ λa(f11(λ
−1a−1a0) + g11(λ

−1a−1m0) + h11(λb))− (f11(λ
−1a−1a0)

+ g11(λ
−1a−1m0) + h11(λb))λa

and

∆4 =(f22(λa) + h22(λ
−1b0b

−1))(λb)− (λb)(f22(λa) + h22(λ
−1b0b

−1))

+ (λ−1b0b
−1)(f22(λ

−1a−1a0) + g22(λ
−1a−1m0) + h22(λb))

− (f22(λ
−1a−1a0) + g22(λ

−1a−1m0) + h22(λb))(λ
−1b0b

−1).

It follows from the matrix equation that ∆1 = ∆3, that is,

f11(a0 − a−1a0a) + g11(m0 − λ−2a−1m0b0b
−1 + h11(b0 − bb0b−1))

= (f11(λa) + h11(λ
−1b0b

−1))(λ−1a−1a0)− (λ−1a−1a0)(f11(λa) + h11(λ
−1b0b

−1)

+ λa(f11(λ
−1a−1a0) + g11(λ

−1a−1m0) + h11(λb))− (f11(λ
−1a−1a0)

+ g11(λ
−1a−1m0) + h11(λb))λa.

Using Proposition 2.2, it is easy to see h11(b)a = ah11(b) for all invertible a ∈
A and invertible b ∈ B. By the assumption (iii), for any b ∈ B, there exists
an integer n such that nI2 − b is invertible in B. So the preceding case yields
h11(nI2 − b)a = ah11(nI2 − b), which leads to h11(b)a = ah11(b) for all invertible
a ∈ A and all b ∈ B. For any a ∈ A, by the assumption (ii), there exists an integer
n such that nI1 − a is invertible. Thus, we get h11(b)(nI1 − a) = (nI1 − a)h11(b)
for all a ∈ A and b ∈ B. This implies

h11(b)a = ah11(b) (2.3)
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for all a ∈ A and b ∈ B. Therefore, we obtain that h11(b) ∈ Z(A) for all b ∈ B.
Moreover, by the matrix equation, we have ∆2 = ∆4, that is,

f22(a0 − a−1a0a) + g22(m0 − λ−2a−1m0b0b
−1) + h22(b0 − bb0b−1)

= (f22(λa) + h22(λ
−1b0b

−1))(λb)− (λb)(f22(λa) + h22(λ
−1b0b

−1))

+ (λ−1b0b
−1)(f22(λ

−1a−1a0) + g22(λ
−1a−1m0) + h22(λb)

− (f22(λ
−1a−1a0) + g22(λ

−1a−1m0) + h22(λb))(λ
−1b0b

−1).

With the same argument as the proof of Eq.(2.3), we see that

f22(a)b = bf22(a)

for all a ∈ A and b ∈ B, which means f22(a) ∈ Z(B) for all a ∈ A.

Claim 3. Let a ∈ A and m ∈M. Then
(i) g11(m) ∈ Z(A);
(ii)f11(I1) ∈ Z(A), h22(I2) ∈ Z(B);
(iii) g12(am) = ag12(m) + f11(a)m−mf22(a) + h11(I2)am− amh22(I2).
For any m ∈M, any invertible a ∈ A and any real number λ > 0, set

S =

(
λa m0 − λam
0 b0

)
, T =

(
λ−1a−1a0 m

0 I2

)
.

Then ST = G, and we have(
∆1 ∆2

0 ∗

)
= φ(ST − TS)

= φ(S)T − Tφ(S) + Sφ(T )− φ(T )S

=

(
f11(λa) + g11(m0 − λam) + h11(b0) f12(λa) + g12(m0 − λam) + h12(b0)

0 f22(λa) + g22(m0 − λam) + h22(b0)

)
·
(
λ−1a−1a0 m

0 I2

)
−
(
λ−1a−1a0 m

0 I2

)
·
(
f11(λa) + g11(m0 − λam) + h11(b0) f12(λa) + g12(m0 − λam) + h12(b0)

0 f22(λa) + g22(m0 − λam) + h22(b0)

)
+

(
λa m0 − λam
0 b0

)
·
(
f11(λ

−1a−1a0) + g11(m) + h11(I2) f12(λ
−1a−1a0) + g12(m) + h12(I2)

0 f22(λ
−1a−1a0) + g22(m) + h22(I2)

)
−
(
f11(λ

−1a−1a0) + g11(m) + h11(I2) f12(λ
−1a−1a0) + g12(m) + h12(I2)

0 f22(λ
−1a−1a0) + g22(m) + h22(I2)

)
·
(
λa m0 − λam
0 b0

)
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=

(
∆3 ∆4

0 ∗

)
,

where

∆1 = f11(a0 − a−1a0a) + g11(m0 − λ−1a−1a0m0 + a−1a0am−mb0),
∆2 = f12(a0 − a−1a0a) + g12(m0 − λ−1a−1a0m0 + a−1a0am−mb0),

∆3 =λ−1(f11(λa) + g11(m0 − λam) + h11(b0))a
−1a0

− λ−1a−1a0(f11(λa) + g11(m0 − λam) + h11(b0))

+ λa(f11(λ
−1a−1a0) + g11(m) + h11(I2))

− λ(f11(λ
−1a−1a0) + g11(m) + h11(I2))a

and

∆4 =(f11(λa) + g11(m0 − λam) + h11(b0))m+ f12(λa)

+ g12(m0 − λam) + h12(b0)− f12(λ−1a−1a0)b0
− λ−1a−1a0(f12(λa) + g12(m0 − λam) + h12(b0))

−m(f22(λa) + g22(m0 − λam) + h22(b0)) + g12(m)b0

+ λa(f12(λ
−1a−1a0) + g12(m) + h12(I2)) + h12(I2)b0

+ (m0 − λam)(f22(λ
−1a−1a0) + g22(m) + h22(I2))

− (f11(λ
−1a−1a0) + g11(m) + h11(I2))(m0 − λam).

Thus, by the matrix equation, we have ∆1 = ∆3, that is,

f11(a0 − a−1a0a) + g11(m0 − λ−1a−1a0m0 + a−1a0am−mb0)
= λ−1(f11(λa) + g11(m0 − λam) + h11(b0))a

−1a0

− λ−1a−1a0(f11(λa) + g11(m0 − λam) + h11(b0))

+ λa(f11(λ
−1a−1a0) + g11(m) + h11(I2))

− λ(f11(λ
−1a−1a0) + g11(m) + h11(I2))a,

which implies

ag11(m) + ah11(I2)− g11(m)a− h11(I2)a = 0 (2.4)

for all invertible a ∈ A and all m ∈ M since Proposition 2.2. Taking m = 0 in
Eq.(2.4), we get ah11(I2)− h11(I2)a = 0. Combining this and Eq.(2.4) reduces to
ag11(m) = g11(m)a for all invertible a ∈ A and all m ∈ M. By assumption (ii),
for any a ∈ A, there exists an integer n such that nI1 − a is invertible in A. So
we have (nI1 − a)g11(m) = g11(m)(nI1 − a). This leads to

ag11(m) = g11(m)a

for all a ∈ A, which means g11(m) ∈ Z(A).
Furthermore, it follows from the matrix equation that ∆2 = ∆4, that is,

f12(a0 − a−1a0a) + g12(m0 − λ−1a−1a0m0 + a−1a0am−mb0)
= (f11(λa) + g11(m0 − λam) + h11(b0))m+ f12(λa)
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+ g12(m0 − λam) + h12(b0)− f12(λ−1a−1a0)b0
− (λ−1a−1a0)(f12(λa) + g12(m0 − λam) + h12(b0))

−m(f22(λa) + g22(m0 − λam) + h22(b0)) + g12(m)b0

+ λa(f12(λ
−1a−1a0) + g12(m) + h12(I2)) + h12(I2)b0

+ (m0 − λam)(f22(λ
−1a−1a0) + g22(m) + h22(I2))

− (f11(λ
−1a−1a0) + g11(m) + h11(I2))(m0 − λam),

which yields

0 =f11(a)m− g11(am)m+ f12(a)− g12(am)−mf22(a) +mg22(am) + ag12(m)

+ ah12(I2)− amg22(m)− amh22(I2) + g11(m)am+ h11(I2)am

for all invertible a ∈ A and all m ∈M. Combining this and Eq. (2.2), we have

0 =f11(a)m− g11(am)m− g12(am)−mf22(a) +mg22(am) + ag12(m)

− amg22(m)− amh22(I2) + g11(m)am+ h11(I2)am

for all invertible a ∈ A and all m ∈ M. Replacing m with −m in the above
equality, we arrive at

0 =− f11(a)m− g11(am)m+ g12(am) +mf22(a) +mg22(am)− ag12(m)

− amg22(m) + amh22(I2) + g11(m)am+ h11(I2)am.

Comparing these two equalities, we get

0 = f11(a)m− g12(am)−mf22(a) + ag12(m)− amh22(I2) + h11(I2)am

for all invertible a ∈ A and all m ∈ M. By assumption (ii) again, there exists n
such that nI1 − a is invertible in A. Then one can easily check that

g12(am) = ag12(m) + f11(a)m−mf22(a) + h11(I2)am− amh22(I2) (2.5)

for all a ∈ A and m ∈M.
Moreover, letting a = I1 in Eq.(2.5), we get

(f11(I1) + h11(I2))m = m(f22(I1) + h22(I2)) (2.6)

for all m ∈ M. By Claim 2 (i) and the assumption (i) of the theorem, there
exists η(h11(I2)) ∈ Z(B) such that

h11(I2)m = mη(h11(I2)) (2.7)

for all m ∈M. It follows from Eqs. (2.6) and (2.7) that

f11(I1)m = m(f22(I1) + h22(I1)− η(h11(I2)))

for all m ∈M, which implies f11(I1) ∈ Z(A).
Similarly, one can verify that h22(I2) ∈ Z(B).

Claim 4. For any m ∈M and b ∈ B, we claim that
(i) g22(m) ∈ Z(B);
(ii) g12(mb) = g12(m)b+mh22(b)− h11(b)m+mbf22(I1)− f11(I1)mb.
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For any invertible b ∈ B, m ∈M and real number λ > 0, putting

S =

(
I1 m
0 λ−1b0b

−1

)
, T =

(
a0 m0 − λmb
0 λb

)
,

we have ST = G. Then(
∗ g12(m0 − a0m− λ−1m0b0b

−1 +mbb0b
−1) + h12(b0 − bb0b−1)

0 g22(m0 − a0m− λ−1m0b0b
−1 +mbb0b

−1) + h22(b0 − bb0b−1)

)
= φ(ST − TS)

= φ(S)T − Tφ(S) + Sφ(T )− φ(T )S

=

(
f11(I1) + g11(m) + h11(λ

−1b0b
−1) f12(I1) + g12(m) + h12(λ

−1b0b
−1)

0 f22(I1) + g22(m) + h22(λ
−1b0b

−1)

)
·
(
a0 m0 − λmb
0 λb

)
−
(
a0 m0 − λmb
0 λb

)
·
(
f11(I1) + g11(m) + h11(λ

−1b0b
−1) f12(I1) + g12(m) + h12(λ

−1b0b
−1)

0 f22(I1) + g22(m) + h22(λ
−1b0b

−1)

)
+

(
I1 m
0 λ−1b0b

−1

)
·
(
f11(a0) + g11(m0 − λmb) + h11(λb) f12(a0) + g12(m0 − λmb) + h12(λb)

0 f22(a0) + g22(m0 − λmb) + h22(λb)

)
−
(
f11(a0) + g11(m0 − λmb) + h11(λb) f12(a0) + g12(m0 − λmb) + h12(λb)

0 f22(a0) + g22(m0 − λmb) + h22(λb)

)
·
(
I1 m
0 λ−1b0b

−1

)
=

(
∗ ∆1

0 ∆2

)
,

where

∆1 =(f11(I1) + g11(m) + h11(λ
−1b0b

−1))(m0 − λmb)
+ λ(f12(I1) + g12(m) + h12(λ

−1b0b
−1))b

− a0(f12(I1) + g12(m) + h12(λ
−1b0b

−1))

− (m0 − λmb)(f22(I1) + g22(m) + h22(λ
−1b0b

−1))

+ f12(a0) + g12(m0 − λmb) + h12(λb)

+m(f22(a0) + g22(m0 − λmb) + h22(λb))

− (f11(a0) + g11(m0 − λmb) + h11(λb))m

− λ−1(f12(a0) + g12(m0 − λmb) + h12(λb))b0b
−1

and

∆2 =λ(f22(I1) + g22(m) + h22(λ
−1b0b

−1))b
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− λb(f22(I1) + g22(m) + h22(λ
−1b0b

−1))

+ λ−1b0b
−1(f22(a0) + g22(m0 − λmb) + h22(λb))

− λ−1(f22(a0) + g22(m0 − λmb) + h22(λb))b0b
−1.

By the matrix equation, we arrive at

g22(m0 − a0m− λ−1m0b0b
−1 +mbb0b

−1) + h22(b0 − bb0b−1)
= λ(f22(I1) + g22(m) + h22(λ

−1b0b
−1))b

− λb(f22(I1) + g22(m) + h22(λ
−1b0b

−1))

+ λ−1b0b
−1(f22(a0) + g22(m0 − λmb) + h22(λb))

− λ−1(f22(a0) + g22(m0 − λmb) + h22(λb))b0b
−1.

It follows from Proposition 2.2 and Claim 2 (ii) that g22(m)b = bg22(m) for all
invertible b ∈ B and all m ∈M. For any b ∈ B, by assumption (iii), there exists
an integer n such that nI2 − b is invertible in B. So we have g22(m)(nI1 − b) =
(nI1 − b)g22(m) for all b ∈ B and m ∈M. This leads to

g22(m)b = bg22(m)

for all b ∈ B and m ∈M. Hence g22(m) ∈ Z(B) for all m ∈M.
Similarly, it follows from the matrix equation that

g12(m0 − a0m− λ−1m0b0b
−1 +mbb0b

−1) + h12(b0 − bb0b−1)
= (f11(I1) + g11(m) + h11(λ

−1b0b
−1))(m0 − λmb)

+ λ(f12(I1) + g12(m) + h12(λ
−1b0b

−1))b

− a0(f12(I1) + g12(m) + h12(λ
−1b0b

−1))

− (m0 − λmb)(f22(I1) + g22(m) + h22(λ
−1b0b

−1))

+ (f12(a0) + g12(m0 − λmb) + h12(λb))

+m(f22(a0) + g22(m0 − λmb) + h22(λb))

− (f11(a0) + g11(m0 − λmb) + h11(λb))m

− λ−1(f12(a0) + g12(m0 − λmb) + h12(λb))b0b
−1,

which yields

0 =− f11(I1)mb− g11(m)mb+ f12(I1)b+ g12(m)b+mbf22(I1) +mbg22(m)

− g12(mb) + h12(b)−mg22(mb) +mh22(b) + g11(mb)m− h11(b)m.

Replacing m with −m, we arrive at

0 =f11(I1)mb− g11(m)mb+ f12(I1)b− g12(m)b−mbf22(I1) +mbg22(m)

+ g12(mb) + h12(b)−mg22(mb)−mh22(b) + g11(mb)m+ h11(b)m.

Comparing these two equalities, we have

g12(mb) = g12(m)b+mh22(b)− h11(b)m+mbf22(I1)− f11(I1)mb
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for all invertible b ∈ B and all m ∈ M. For any b ∈ B, by the assumption (iii)
again, there exists an integer n such that nI2 − b is invertible in B. So we get

g12(m(nI2 − b)) =g12(m)(nI2 − b) +mh22(nI2 − b)− h11(nI2 − b)m
+m(nI2 − b)f22(I1)− f11(I1)m(nI2 − b)

for all b ∈ B and m ∈M, which leads to

g12(mb) = g12(m)b+mh22(b)− h11(b)m+mbf22(I1)− f11(I1)mb
for all b ∈ B and m ∈M, as desired.

By Claim 1-4, the theorem holds.
�

The following proposition is from the remark of Lemma 5 in [7].

Proposition 2.3. Let δ be a derivation of triangular algebra T = Tri(A,M,B).
Then δ is of the form

δ

(
a m
0 b

)
=

(
PA(a) an− nb+ g(m)

0 PB(b)

)
where n ∈ M and PA : A → A, g : M → M, PB : B → B are linear maps
satisfying the following conditions:

(1) g(am) = PA(a)m+ ag(m) for all a ∈ A and m ∈M;
(2) g(mb) = mPB(b) + g(m)b for all b ∈ B and m ∈M.

Proposition 2.3 has the following consequence.

Proposition 2.4. If the derivation δ of triangular algebra T = Tri(A,M,B)
has the following form

δ

(
a m
0 b

)
=

(
PA(a) 0

0 PB(b)

)
,

then δ = 0.

Proof. By Proposition 2.3, we see an − nb + g(m) = 0 for all a ∈ A, b ∈ B and
m ∈ M. It follows that g(m) = 0 for all m ∈ M. Furthermore, by Proposition
2.3 (1), we get PA(a)m = 0 for all a ∈ A and m ∈M. Thus, we have PA(a) = 0
since M is faithful.

Similarly, one can verify PB(b) = 0 for all b ∈ B. Therefore, δ = 0. �

Now we have the following necessary and sufficient conditions for Lie derivable
maps of triangular algebras to be proper.

Theorem 2.5. Let T = Tri(A,M,B) be a triangular algebra and G =

(
a0 m0

0 b0

)
is an arbitrary but fixed point in T . Assume that

(i) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B);
(ii) For every a ∈ A, there exists some integer n such that nI1− a is invertible

in A;
(iii) For every b ∈ B, there exists some integer n such that nI2− b is invertible

in B.
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Let φ : T → T is Lie derivable at G. For any

(
a m
0 b

)
∈ T , we write

φ

(
a m
0 b

)
=

(
f11(a) + g11(m) + h11(b) af12(I1)− f12(I1)b+ g12(m)

0 f22(a) + g22(m) + h22(b)

)
.

Then the following statements are equivalent:
(1) φ is proper;
(2) f11(I1)⊕ f22(I1) ∈ Z(T ), g11(m)⊕ g22(m) ∈ Z(T ) for all m ∈M;
(3) h11(I2)⊕ h22(I2) ∈ Z(T ), g11(m)⊕ g22(m) ∈ Z(T ) for all m ∈M.

Proof. By Theorem 2.1, we have f22(a) ∈ Z(B) and h22(I2) ∈ Z(B). Thus, there
exist η−1(f22(a)) ∈ Z(A) and η−1(h22(I2)) ∈ Z(A) such that η−1(f22(a))m =
mf22(a) and η−1(h22(I2))m = mh22(I2). Hence we arrive at

g12(am) = PA(a)m+ ag12(m) (2.8)

for all a ∈ A and m ∈ M, where PA(a) = f11(a) − η−1(f22(a)) + h11(I2)a −
η−1(h22(I2))a. Similarly, we get

g12(mb) = mPB(b) + g12(m)b (2.9)

for all b ∈ B and m ∈M, where PB(b) = h22(b)−η(h11(b))+bf22(I1)−bη(f11(I1)).
Next, we define three linear maps ψ, γ and τ from T into itself as following.

ψ

(
a m
0 b

)
=

(
PA(a) af12(I1)− f12(I1)b+ g12(m)

0 PB(b)

)
,

γ

(
a m
0 b

)
=

(
η−1(f22(a)) + h11(b) 0

0 η(h11(b)) + f22(a)

)
and

τ

(
a m
0 b

)
=

(
η−1(h22(I2))a− h11(I2)a+ g11(m) 0

0 bη(f11(I1))− bf22(I1) + g22(m)

)
.

Clearly, φ = ψ + γ + τ , where γ is into Z(T ). By Proposition 2.3 and Eqs.(2.8)-
(2.9), one can verify that ψ is a derivation of T .

(1 ) ⇒ (2 ): If φ is proper, then φ = ψ̃ + γ̃, where ψ̃ is a derivation of T
and γ̃ : T → Z(T ) is a linear map vanishing at commutators [S, T ] whenever

ST = G. Hence ψ̃ + γ̃ = ψ + γ + τ , that is, ψ̃ − ψ = τ + γ − γ̃. Note that ψ̃ − ψ
is a derivation of T . By Proposition 2.4, we have ψ̃ − ψ = 0. This yields that τ
is a linear map from T into Z(T ). Then we conclude that

τ

(
0 m
0 0

)
=

(
g11(m) 0

0 g22(m)

)
∈ Z(T )

and

τ

(
0 0
0 I2

)
=

(
0 0
0 η(f11(I1))− f22(I1)

)
∈ Z(T ),

which means η(f11(I1))− f22(I1) = 0, that is, f11(I1)⊕ f22(I1) ∈ Z(T ).
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(2 ) ⇒ (3 ): Since f11(I1) ⊕ f22(I1) ∈ Z(T ), we have f11(I1)m = mf22(I1) for
all m ∈ M. It follows from Eq.(2.6) that h11(I2)m = mh22(I2) for all m ∈ M.
Therefore, h11(I2)⊕ h22(I2) ∈ Z(T ).

(3 ) ⇒ (1 ): If h11(I2) ⊕ h22(I2) ∈ Z(T ), then h11(I2)m = mh22(I2) for all
m ∈M. Hence we have

η−1(h22(I2))− h11(I2) = 0. (2.10)

It follows from Eq.(2.6) that f11(I1)m = mf22(I1) for all m ∈M, which means

η(f11(I1))− f22(I1) = 0. (2.11)

Therefore, by Eqs.(2.10)-(2.11), we get

τ

(
a m
0 b

)
=

(
g11(m) 0

0 g22(m)

)
∈ Z(T )

for all

(
a m
0 b

)
∈ T . Letting ω = γ+ τ , we obtain φ = ψ+ω, where ω is a linear

map from T into Z(T ). Suppose that ST = G. We compute

ω([S, T ]) =φ([S, T ])− ψ([S, T ])

=[φ(S), T ] + [S, φ(T )]− [ψ(S), T ]− [S, ψ(T )]

=[(γ + τ)(S), T ] + [S, (γ + τ)(T )]

=0.

�

Theorem 2.5 has the following consequence, which is the main result in [11] for
a0 = 0 and a0 = I1, respectively.

Corollary 2.6. Let T = Tri(A,M,B) be a triangular algebra and G1 =

(
a0 0
0 0

)
,

where a0 is an arbitrary but fixed point in A. Assume that
(i) πA(Z(T )) = Z(A) and πB(Z(T )) = Z(B);
(ii) For every a ∈ A, there exists some integer n such that nI1− a is invertible

in A;
(iii) For every b ∈ B, there exists some integer n such that nI2− b is invertible

in B.
Then φ : T → T is Lie derivable at G if and only if it has the form φ = ψ+ω,

where ψ is a derivation of T and ω : T → Z(T ) is a linear map vanishing on
each commutator [S, T ] whenever ST = G1.

Proof. The “if” part is obvious. We only need to prove “only if” part.
For any m ∈M, taking

S =

(
a0 m
0 0

)
, T =

(
I1 0
0 0

)
,

we have ST = G1. Then(
−g11(m) −g12(m)

0 −g22(m)

)
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= φ(ST − TS)

= φ(S)T − Tφ(S) + Sφ(T )− φ(T )S

=

(
f11(a0) + g11(m) f12(a0) + g12(m)

0 f22(a0) + g22(m)

)(
I1 0
0 0

)
−
(
I1 0
0 0

)(
f11(a0) + g11(m) f12(a0) + g12(m)

0 f22(a0) + g22(m)

)
+

(
a0 m
0 0

)(
f11(I1) f12(I1)

0 f22(I1)

)
−
(
f11(I1) f12(I1)

0 f22(I1)

)(
a0 m
0 0

)
=

(
0 −g12(m) +mf22(I1)− f11(I1)m
0 0

)
.

It follows from the matrix equation that

g11(m) = g22(m) = 0

and

f11(I1)m = mf22(I1)

for all m ∈ M, which means f11(I1) ⊕ f22(I1) ∈ Z(T ). Hence, by Theorem 2.5,
φ is proper, that is, φ = ψ + ω, where ψ is a derivation of T and ω : T → Z(T )
is a linear map vanishing on each commutator [S, T ] whenever ST = G1. �

3. Application

In this section, we give some applications of results in Section 2 to nest algebras.
Let X be a Banach space over the complex field C, and B(X) denote the

algebra of all bounded linear operators on X. A nest N in X is a chain of norm
closed linear subspaces of X containing {0} and X, which is closed under the
formation of arbitrary closed linear span and intersection. A nest is said to be
nontrivial if N 6= {{0}, X}. The nest algebra associated to a nest N , denoted by
algN , is the set

algN = {T ∈ B(X) : TN ⊆ N, ∀N ∈ N}.

Theorem 2.1 and 2.5 suggest the following theorem.

Theorem 3.1. Let N be a nest on a complex Banach space space. Suppose
that there exists a non-trivial element in N which is complemented in X. Let
φ : algN → algN is Lie derivable at an arbitrary but fixed point G ∈ algN . For

any

(
x y
0 z

)
∈ algN , we write

φ

(
x y
0 z

)
=

(
f11(x) + g11(y) + h11(z) xf12(I1)− f12(I1)z + g12(y)

0 f22(x) + g22(y) + h22(z)

)
.

Then the following statements are equivalent:
(1) φ is proper;
(2) f11(I1)⊕ f22(I1) ∈ CI, g11(y)⊕ g22(y) ∈ CI for all y ∈M;
(3) h11(I2)⊕ h22(I2) ∈ CI, g11(y)⊕ g22(y) ∈ CI for all y ∈M.
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Proof of Theorem 3.1. If Ñ is the non-trivial element in N which is complement-

ed in X, then there exists an idempotent operator P ∈ B(X) with ran(P ) = Ñ ,
such that X = ran(P )⊕ ker(P ). It is clear that P ∈ algN . Set

N1 = {N ∩ ranP : N ∈ N}, N2 = {N ∩ ker(P ) : N ∈ N}.

Then N1 and N2 are nests on Banach spaces ran(P ) and ker(P ), respectively.
One can check that PB(X)(I − P ) ⊆ algN , which implies

PB(X)(I − P ) = PalgN (I − P ).

Then we denote

algN = {
(
x y
0 z

)
: x ∈ algN1, y ∈ B(ker(P ), ran(P )), z ∈ algN2}.

Note that B(ker(P ), ran(P )) is faithful (algN1, algN2)-bimodule. Indeed, for
x ∈ algN1, if xy = 0 for all y ∈ B(ker(P ), ran(P )), then we have xPB(X)(I −
P ) = {0}. Since B(X) is prime, we see x = 0. It follows that B(ker(P ), ran(P ))
is a faithful (algN1)-left module. Similarly, one can verify that B(ker(P ), ran(P ))
is a faithful (algN2)-right module.

Therefore, nest algebra algN can be decomposed into a triangular algebra
which satisfies conditions (i)-(iii) of Theorem 2.5. Clearly, the center of algN is
CI. Hence, by Theorem 2.5, the theorem is obtained.

�

Setting G1 =

(
x0 0
0 0

)
, where x0 ∈ algN1 is an arbitrary but fixed operator,

we arrive at the following consequence.

Corollary 3.2. Let N be a nest on a complex Banach space. Suppose that there
exists a non-trivial element in N which is complemented in X. Then φ : algN →
algN is Lie derivable at G1 if and only if there exists T ∈ algN and a linear
functional ω : algN → C satisfying ω([S, T ]) = 0 whenever ST = G1 such that
φ(A) = AT − TA+ ω(A) for all A ∈ algN .

Proof. The “if” part is obvious. We only need to prove “only if” part.
By Corollary 2.6, we obtain that φ = ψ + ω, where ψ is a derivation of algN

and ω : algN → C is a linear functional vanishing on each commutator [S, T ]
whenever ST = G1. Using Theorem 2.2 in [10] it follows that every linear deriva-
tion of a nest algebra on a Banach space is continuous. Furthermore, by [20],
every continuous linear derivation of a nest algebra on a Banach space is inner.
Then there is an operator T ∈ algN such that ψ(A) = AT−TA for all A ∈ algN ,
so that φ(A) = AT − TA+ ω(A) for all A ∈ algN . The proof is completed. �

Since every closed subspace is complemented in Hilbert spaces, we have the
following results immediately.

Corollary 3.3. Let N be a nest on a complex Hilbert space. Suppose that φ :
algN → algN is Lie derivable at an arbitrary but fixed point G ∈ algN . For any
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x y
0 z

)
∈ algN , we write

φ

(
x y
0 z

)
=

(
f11(x) + g11(y) + h11(z) xf12(I1)− f12(I1)z + g12(y)

0 f22(x) + g22(y) + h22(z)

)
.

Then the following statements are equivalent:
(1) φ is proper;
(2) f11(I1)⊕ f22(I1) ∈ CI, g11(y)⊕ g22(y) ∈ CI for all y ∈M;
(3) h11(I2)⊕ h22(I2) ∈ CI, g11(y)⊕ g22(y) ∈ CI for all y ∈M.

Corollary 3.4. Let N be a nest on a complex Hilbert space. Then φ : algN →
algN is Lie derivable at G1 if and only if there exists T ∈ algN and a linear
functional ω : algN → C satisfying ω([S, T ]) = 0 whenever ST = G1 such that
φ(A) = AT − TA+ ω(A) for all A ∈ algN .
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