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Abstract

In this note, we give the Cohen type theorem for uniformly S-Noetherian
modules and the Eakin-Nagata type theorem for uniformly S-Noetherian
rings. We also answer an open question proposed by Kim and Lim [5,
Question 4.10].
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1. INTRODUCTION

Throughout this note, all rings are commutative rings with identity and all mod-
ules are unitary. Let R be a ring. We always denote by S a multiplicative subset
of R, that is, 1 € S and sys9 € S for any s; € S, s9 € S. Let M be an R-module.
Denote by Anng(M) = {r € R | rM = 0}. For a subset U of M, denote by (U) the
R-submodule of M generated by U.

In the development of Noetherian rings, Cohen theorem and Eakin-Nagata theo-
rem are crucial. In the early 1950s, Cohen [3] showed that a ring R is Noetherian if
and only if every prime ideal of R is finitely generated, which is now called Cohen
type theorem. Recently, Parkash and Kour [7] provided a Cohen theorem to Noe-
therian modules: a finitely generated R-module M is Noetherian if and only if for
every prime ideal p of R with Ann(M) C p, there exists a finitely generated sub-
module N* of M such that pM C N®? C M(p), where M(p) :={x € M | sx € pM

for some s € R\ p}. In the late 1960s, Eakin and Nagata independently found that
1
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if R C T be an extension of rings with 7" a finitely generated R-module, then R is
a Noetherian ring if and only if so is T (see [4, 6]). This well-known result is now
called Eakin-Nagata theorem.

In the past few decades, several generalizations of Noetherian rings (modules)
have been extensively studied. In 2002, Anderson and Dumitrescu [1] introduced
the notions of S-Noetherian rings and S-Noetherian modules. They also considered
the Cohen type theorem and Eakin-Nagata type theorem for S-Noetherian rings [1,
Proposition 4, Corollary 7]. Recently, Kim and Lim [5] gave a new proof of the
Cohen type theorem for S-Noetherian modules and a generalization of the Eakin-
Nagata type theorem for S-Noetherian ring. They also showed that if an R-module
M is faithful S-Noetherian with S consisting of non-zero-divisors, then R itself is
an S-Noetherian ring, and latter they ask if the regularity of S is essential? (see [5,
Proposition 3.7, Question 4.10])

By noticing the elements chosen in S in some concepts of S-versions of classical
ones are not “uniform” in general, Zhang [10] recently introduced the notions of
uniformly S-torsion modules, uniformly S-exact sequences etc. Utilizing the “uni-
form” ideas, Qi and Kim etc. [8] introduced the notions of uniformly S-Noetherian
rings and uniformly S-Noetherian modules, and then distinguished them from the
classical ones. The main motivation of this paper is to investigate some Cohen type
theorem and Eakin-Nagata type theorem for uniformly S-Noetherian rings and mod-
ules. More precisely, we showed that if S is anti-Archimedean, then an R-module
M is u-S-Noetherian if and only if there is an s € S such that M is s-finite, and for
every prime ideal p of R with Anng(M) C p, there exists an s-finite submodule NP
of M satisfying that pM C N® C M(p) (see Theorem 2.3); and if R C T be an ex-
tension of rings with 7" an S-finite R-module, then R is an uniformly S-Noetherian
ring if and only if so is T (see Theorem 2.7). Moreover, we obtain that if there exists
a faithful R-module M which is also (resp., uniformly) S-Noetherian, then R itself
is an (resp., a uniformly) S-Noetherian ring, solving the open problem proposed by
[5, Question 4.10] (See Theorem 2.8 and Theorem 2.9).

2. MAIN RESULTS

Let R be a ring. Recall from [1] that an R-module M is S-finite if for any
submodule N of M, there is an element s € S and a finitely generated R-module

F such that sN C F C N. In this case, we also say N is s-finite. Moreover, an
2
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R-module M is called an S-Noetherian module if every submodule of M is S-finite,
and a ring R is called an S-Noetherian ring if R itself is an S-Noetherian R-module.
Note that the choice of s in these two concepts is decided by the submodules or
ideals of the given module or ring.

To fill the gap of “uniformity” in the concept of S-Noetherian rings and S-
Noetherian modules, the authors in [8] introduced the notions of uniformly S-
Noetherian rings and uniformly S-Noetherian modules, and we restate them as

follows.

Definition 2.1. [8, Definition 2.1, Definition 2.6] Let R be a ring and S a multi-
plicative subset of R. An R-module M is called a uniformly S-Noetherian R-module
(with respect to s) provided the set of all submodules of M is s-finite for some s € S.
A ring R is called a uniformly S-Noetherian ring (with respect to s) if R itself is a
uniformly S-Noetherian R-module (with respect to s).

We obviously have the following implications for both rings and modules:

— |u-S-Notherian | = | S-Notherian |

However, the converses are not correct in general (see [8, Example 2.2, Example

2.5] respectively). Recall that a multiplicative subset S of R is said to be anti-

Archimedean if () s"R[)S # 0. The anti-Archimedean condition is very important
n>1
in some results of S-Noetherian rings, such as Hilbert Theorem for S-Noetherian

rings etc. (see [1, Proposition 9, Proposition 10]). It is easy to verify that the
multiplicative set given in [8, Example 2.5] is not anti-Archimedean. Now we give
an example of S-Noetherian ring which is not uniformly S-Noetherian when S is

anti-Archimedean.

Example 2.2. Let R be a valuation domain whose valuation group is the additive
group G = Rlz| of all polynomials with coefficients in the field R of real numbers, and
the order is defined by f(x) > 0 if its leading coefficient > 0. Let S = R\ {0} the set
of all nonzero elements of R. Then S is anti-Archimedean, and R is S-Noetherian

but not uniformly S-Noetherian.

Proof. First, we will show S is anti-Archimedean. Denote by v the valuation of
R\ {0} to G. Let s be a nonzero element in R. Let s’ be an nonzero element in
R such that deg(v(s’)) > deg(v(s)). Then we have v(s') > nv(s) = v(s") for any
positive integer n. So s’ € () s"R()S for any s € S, that is, S is anti-Archimedean.

n>1
3
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Then, we have that R is S-Noetherian. Indeed, let I be an nonzero ideal of R
and 0 # s € I. Then sI C sR C I. It follows that R is S-Noetherian.

Finally, we claim that R is not uniformly S-Noetherian. Suppose R is uniformly
S-Noetherian with respect to some s € S. Suppose deg(v(s)) = n. Then the R,-
ideal generated by {v=!(z"™), v~ (z"*?),...} is not finitely generated, where Ry is
the localization of R at S = {1,s,s% ... }. So R, is not Noetherian. Hence R is not
uniformly S-Noetherian by [8, Lemma 2.3]. O

Recently, Parkash and Kour [7] provided a Cohen type theorem to Noetherian
modules: a finitely generated R-module M is Noetherian if and only if for every
prime ideal p of R with Ann(M) C p, there exists a finitely generated submodule
NP of M such that pM C N* C M(p), where M (p) := {x € M | sx € pM for some
s € R\ p}. Later, Zhang [11] extended this result to S-Noetherian modules and w-
Noetherian modules. In the following, we give the result for uniformly S-Noetherian

modules when S is anti-Archimedean.

Theorem 2.3. (Cohen type theorem for uniformly S-Noetherian modules)
Let R be a ring and S an anti-Archimedean multiplicative subset of R. Then an R-
module M 1is uniformly S-Noetherian if and only if there exists s € S such that M
is s-finite, and for every prime ideal p of R with Anng(M) C p, there exists an
s-finite submodule N¥ of M satisfying that pM C N¥ C M(p), where M(p) = {z €
M | sx € pM for some s € R\ p}.

Proof. Suppose that M is a uniformly S-Noetherian R-module. Then there is s € §
such that the set of all submodules of M is s-finite. Let p be a prime ideal with
Anng(M) C p. If we take NP = pM, then NP is certainly an s-finite submodule of
M satisfying pM C NP C M(p).

On the other hand, let " € [ s"R()S. If M is uniformly S-Noetherian with re-

n>1
spect to s, then we are done. Otherwise, we will show M is uniformly S-Noetherian

with respect to s™ for some positive integer n. On contrary, suppose that M is not
uniformly S-Noetherian with respect to s* for any positive integer k. Let N be the
set of all submodules of M which are not s*-finite for any positive integer k. We
can assume N is non-empty. Indeed, on contrary assume that for each submodule
N of M, there exists a nonnegative integer ky such that N is s*V-finite. Since S
is anti-Archimedean, then there is an s € () s"R[)S such that all submodules of

n>1
4
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M are s'-finite. Hence M is uniformly S-Noetherian with respect to s’, and so the
conclusion holds.
Make a partial order on N by defining N; < N, if and only if Ny C N, in

N. Let {N; | i € A} be a chain in N. Set N := |J N;. Then N is not s*-
finite for any positive integer k. Indeed, suppose sko;\eng (x1,...,2,) € N for
some positive integer kg. Then there exists iy € A such that {z,...,2,} C N,.
Thus s*N;, € sN C {(x1,...,2,) € N;, implying that N;, is s*-finite, which is a
contradiction. By Zorn’s Lemma A has a maximal element, which is also denoted
by N. Set

p=(N:M)={reR|rM C N}.

(1) Claim that p is a prime ideal of R. Assume on the contrary that there
exist a,b € R\ p such that ab € p. Since a,b € R\ p, we have aM Z N and bM Z N.
Therefore N + aM is s*-finite for some nonnegative integer ko. Let {y1,...,Ym}
be a subset of N + aM such that s (N +aM) C (yy,...,Yn). Write y; = w; + az;
for some w; € N and z; € M (1 <i <m). Set L :={x € M | ax € N}. Then
N +bM C L, and hence L is also s*-finite for some nonnegative integer k;. Let

{x1,..., 2} be a subset of L such that s*'L C (z1,...,2;). Let n € N and write

m m m

skop = E TV = g TW; + a E Ti%.

i=1 i=1 i=1

m k
Then > r;2; € L. Thus sM =Y rix; forsomer, € R (i=1,...,k). So
i=1 i=1

m
Z"”izi

=1

m k
ghothuy, — g sTiw; + E riax;.
i—1 i—1

And thus st N C (wy, ..., wy,, a1, ..., ax;) € N implying that N is s**+*_finite,
which is a contradiction. Hence p is a prime ideal of R.

(2) Claim that M(p) C N. Suppose on the contrary that there exists y € M (p)
such that y € N. Then there exists t € R\ p such that ty € pM = (N : M)M C N.
Ast & p = (N: M), it follows that tM € N. Therefore N + tM is s*2-finite for
some nonnegative integer ko. Let {ui,...,un,} be a subset of N + tM such that
sk2(N +tM) C {(uy, ..., uy) for some s* € S. Write u; = w; +t2z; (i = 1,...,m)
with w; € N and z; € M. Set T :={x € M |tx € N}. Then N C N+ Ry C T,

and hence T is s*s-finite for some nonnegative integer k3. Then there exists a subset
5
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{vy,...,u} of T such that s*T C (vy,...,v;). Let n be an element in N. Then
skap = Znul Zriwi + th-zi.
i=1 i=1

m m l
Thus Y 72, € T. So s > riz; = > riv; for some i € R (i = 1,...,1). Hence
i=1 i=1 i=1

m l

sketkspn = N syraw; + ) ritv;. Thus sPTN C (wy, ..., Wy, tvy, ..., ty) implying
i=1 i=1

that N is s**ks_finite, which is a contradiction. Hence M (p) C N.

Finally, we will show M is uniformly S-Noetherian. Since M is s-finite, there exists
a finitely generated submodule F' = (my,...,my) of M such that sM C F. Claim
that p NS’ = 0 where S’ = {1,s,5%---}. Indeed, if s*# € p for some nonnegative
integer k4, then s¥M C N C M. So s'*kN C stk C shF C s M C N implies

that IV is s'™*-finite, which is a contradiction. Note that

p=(N-M)C(N:F)C(N:sM)=(p:s)=p

k
since p is a prime ideal of R. Sop = (N : F) = (N : (my,...,myg)) = (N :

i=1
Rm;). By [2, Proposition 1.11], p = (N : Rm;) for some 1 < j < k. Since

m; € N, it follows that N + Rm; is s™-finite for some nonnegative integer ks.
Let {y1,...,ym} be a subset of N + Rmj; such that s"(N + Rm;) C (y1,...,Ym)-
Write y; = wz—i-amj for some wz € N and al €ER@G=1,...,m). Let n € N.

Then s*5n = Z ri(w; + a;m;) = Z riw; + (Z ria;)m;. Thus (Z ria;)m; € N. So

=1 1=

Znaz € p. Thus s*N C (wy,...,w,) +pmj. As Anng(M) C (N : M) = p, there
=1

exists an s-finite submodule N of M such that pM C N? C M(p). Thus

SN C o (wi, . W) + pmy
C (wy,...,wy) +pM
C (wi,...,Wy)+ NP
C (wy, ... Wy + M(p)
cC N
Since NP + (wy,...,w,,) is s-finite, it follows that N is s'**s-finite, which is a

contradiction. Consequently, we have M is uniformly S-Noetherian with respect to
s for some nonnegative integer k’. O

6
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Remark 2.4. We do not know whether the condition “S is anti-Archimedean” in
Theorem 2.3 can be removed. Note that this condition is mainly used to show the

set NV in the proof of Theorem 2.3 can be assumed to be non-empty.
Taking S = {1}, we can recover Parkash and Kour’s result.

Corollary 2.5. [7, Theorem 2.1] Let R be a ring and M a finitely generated R-
module. Then M is Noetherian if and only if for every prime ideal p of R with
Anng(M) C p, there exists a finitely generated submodule N¥ of M such that pM C
NP C M(p).

There is a direct corollary of Theorem 2.3.

Corollary 2.6. Let R be a ring and S an anti-Archimedean multiplicative subset
of R. Then an R-module M is uniformly S-Noetherian if and only if there exists
s € S such that M is s-finite and pM 1is s-finite for every prime ideal p of R.

The well-known Eakin-Nagata theorem states that if R C T is an extension of
rings with 7" a finitely generated R-module, then R is a Noetherian ring if and only
if sois T' (see [4, 6]). Next, we give the Eakin-Nagata type theorem for uniformly

S-Noetherian rings.

Theorem 2.7. (Eakin-Nagata type theorem for uniformly S-Noetherian
rings) Let R be a ring, S an anti-Archimedean multiplicative subset of R and T a
ring extension of R. If T is S-finite as an R-module. Then the following statements

are equivalent.

(1) R is a uniformly S-Noetherian ring.

(2) T is a uniformly S-Noetherian ring.

(3) There is s € S such that pT is an s-finite T-ideal for every prime ideal p of
R.

(4) T is a uniformly S-Noetherian R-module.

Proof. (1) = (2) Suppose R is a uniformly S-Noetherian ring with respect to some
s1 € S. Let I be an ideal of T'. Since R C T, I is an R-submodule of T". Suppose
T is so-finite as an R-module for some sy € S. Then T is the image of a uniformly
S-epimorphism R™ — T. One can use the proof of [8, Lemma 2.12] to check R"
is a uniformly S-Noetherian R-module with respect to s{. So 7' is a uniformly S-

Noetherian R-module with respect to si'se by [8, Proposition 2.13]. Then there exist
7
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ay, ..., ay, € I such that sPsel C (ay,...,a,)R C I. Thus sTsel C (ay,...,am)T C
I. Consequently, T" is a uniformly S-Noetherian ring with respect to s} ss.

(2) = (3) Obvious.

(3) = (4) Let p be a prime ideal that satisfies Anng(7") C p. Then p7 is s-finite
as an T-ideal. So there exist pi,...,p, € p such that s(p7') C (p1,...,pm)T C pT.
Since T is S-finite, there exist ' € S and ty,...,t, such that T C (t1,...,t,)R C

T. Therefore, we have

s's(pT) S §'p,-.pm)T
= sp T+ +5sp,T
C pl(th—i----tnR)—f—---—i—pm(th—i----tnR)
C pT

Hence pT is s's-finite as an R-module. It follows by Corollary 2.6 that T is a
uniformly S-Noetherian R-module.

(4) = (1) Suppose T is a uniformly S-Noetherian R-module. Since R is an R-
submodule of T, R is also a uniformly S-Noetherian R-module by [8, Lemma 2.12].
It follows that R is a uniformly S-Noetherian ring. 0

Let R be a ring and M an R-module. Recall that M is faithful if Anng(M) = 0.
We say M is S-faithful if tAnng(M) = 0 for some ¢ € S. Hence faithful R-modules
are all S-faithful. It is well-known that if a faithful R-module M is Noetherian, then
R itself is a Noetherian ring (see [9, Exercise 2.32]).

Theorem 2.8. Let R be a ring, S a multiplicative subset of R and M an S-faithful
R-module. If M is a uniformly S-Noetherian R-module, then R is a uniformly

S-Noetherian ring.

Proof. Suppose M is a uniformly S-Noetherian R-module with respect to some
s € S. Then M is s-finite, and so there exist mq,...,m, € M such that sM C
(mq,...,mp) € M. Consider the R-homomorphism ¢ : R — M" given by ¢(r) =
(rma,...,rm,). We claim that sKer(¢) = 0. Indeed, let r € Ker(¢). Then rm; =0
for each i =1,...,n. Hence srM C r{my,...,m,) = 0. And hence sr € Anng(M).
Since M is an S-faithful R-module, we have tsr = 0 for some ¢t € S, and so
tsKer(¢) = 0. Note that the R-module M™ is uniformly S-Noetherian with re-

spect to s™ by the proof of [8, Lemma 2.12]. Hence the R-module Im(¢) is also
8

5 Dec 2023 16:46:08 PST
230218-Zhang-2 Version 2 - Submitted to Rocky Mountain J. Math.



uniformly S-Noetherian with respect to s™. Considering the exact sequence
0 — Ker(¢) - R — Im(¢) — 0,
we have R is a uniformly S-Noetherian ring with respect to ts"*1. O

Recently, the authors in [5, Proposition 3.7] showed that Theorem 2.8 also holds
for S-Noetherian ring (modules) when S consists of non-zero-divisors, and asked if
the condition “S consists of non-zero-divisors” is essential (see [5, Question 4.10]).
Inspired by the proof of Theorem 2.8, we can show the condition “S consists of

non-zero-divisors” in [5, Proposition 3.7] can be removed .

Theorem 2.9. Let R be a ring, S a multiplicative subset of R and M an S-faithful
R-module (for example, M is a faithful R-module). If M is an S-Noetherian R-

module, then R is an S-Noetherian ring.

Proof. Let M be an S-Noetherian faithful R-module. Then M is S-finite, and so
there exist s € S and my, ..., m, € M such that sM C (my,...,m,) C M. Consider
the R-homomorphism ¢ : R — M™ given by ¢(r) = (rmy,...,rm,). We claim that
sKer(¢) = 0. Indeed, let r € Ker(¢). Then rm; = 0 for each i = 1,...,n. Hence
srM C r(my,...,m,) = 0. And hence sr € Anng(M). Since M is an S-faithful
R-module, we have tsr = 0 for some t € S, and so tsKer(¢) = 0. Note that M" is
also an S-Noetherian R-module, and so is its submodule Im(¢). Let I be an ideal
of R. Then ¢(I) is a submodule of Im(¢), and so is S-finite. Thus there exist s’ € S
and rq,---7r, € I such that

SO(I) C p(rR+---+r,R) C o).

We claim that ss'I C ri R+ ---+ r,R. Indeed, for any x € I, we have s'¢(x) =
¢(rity+- - -+rpty,) forsomet; € R (i =1,...,n). Hence ¢(rity+- - -+ryt,—s'x) = 0.
So rity + -+ - + 1ty — sx € Ker(¢), and thus ts(rit; + -+ + rpt,) —tss'e = 0. It
follows that tss'I C ts(riR+---+r,R) CrR+---+r,R C I. Hence I is S-finite.
So R is an S-Noetherian ring. O
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