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Abstract. A partition is a cubic partition if its even parts come in two colors (blue and
red). Reti defined the rank of a cubic partition as the difference between the number of
even parts in blue color and the number of even parts in red color. Motivated by the works
on inequalities of rank and crank for certain partitions proved by Andrews and Lewis, and
Chern, Fu, Tang and Wang, we prove some inequalities for N

′
(r,m, n), which count the

number of cubic partitions of n whose rank is congruent to r modulo m. More precisely, we
establish the generating functions for N

′
(r,m, n) and determine the signs of the differences

N
′
(r,m, n) − N

′
(s,m, n) with m ∈ {2, 3, 4, 6} and 0 ≤ r < s ≤ m − 1 by utilizing q-series

technique in this paper.
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1 Introduction

A partition π of a positive integer n is a sequence of positive integers π1 ≥ π2 ≥ · · · ≥ πk > 0
such that π1 + π2 + · · · + πk = n. Let p(n) be the partition function, namely it counts the
number of partitions of n. The generating function for p(n) is

∞∑

n=0

p(n)qn =
1
J1

, (1.1)

where here and throughout the rest of the paper, we use the following notation

(a; q)∞ :=
∞∏

k=0

(1− aqk),

(a1, a2, . . . , ak; q)∞ :=(a1; q)∞(a2; q)∞ · · · (ak; q)∞,

Jm :=(qm; qm)∞.

In 1919, Ramanujan [23] found the following famous congruences for ordinary partition
function p(n):

p(5n + 4) ≡0 (mod 5),
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p(7n + 5) ≡0 (mod 7),
p(11n + 6) ≡0 (mod 11).

To provide combinatorial interpretations of Ramanujan’s congruences for p(n), two important
partition statistics of partitions, rank and crank, were defined by Dyson [9], and Andrews
and Garvan [1], respectively. In recent years, some equalities and inequalities on N(r,m, n)
and M(r,m, n) for some small m have been established by mathematicians [2, 10, 19, 20, 28],
where N(r,m, n) and M(r,m, n) denote the number of partitions of n with rank congruent
to r modulo m and the number of partitions of n with crank congruent to r modulo m,
respectively. For example, Andrews and Lewis [2] proved that for n ≥ 0,

M(0, 2, 2n) ≥M(1, 2, 2n),
M(0, 2, 2n + 1) ≤M(1, 2, 2n + 1).

In recent years, Chern, Tang and Wang [8], and Fu and Tang [11, 12] proved some inequalities
for Garvan’s bicrank function of 2-colored partitions and a generalized crank for k-colored
partitions, respectively.

In this paper, we are going to focus on ranks for cubic partitions. Recall that the partitions
in which even parts come in two colors blue (denoted by b) and red (denoted by r) are known
as cubic partitions. For instance, the nine cubic partitions of 4 are:

4b, 4r, 3 + 1, 2b + 2b, 2b + 2r, 2r + 2r, 2r + 1 + 1, 2b + 1 + 1, 1 + 1 + 1 + 1.

Let a(n) denote the number of cubic partitions of n. The generating function for a(n) is
∞∑

n=0

a(n)qn =
1

J1J2
.

In a series of papers, Chan [4, 5, 6] studied congruence properties for a(n) and proved
some congruences modulo powers of 3 for a(n). In particular, Chan [4] proved an analog of
Ramanujan’s “most beautiful identity”

∞∑

n=0

a(3n + 2)qn = 3
J3

3J3
6

J4
1J4

2

,

which implies that for n ≥ 0,

a(3n + 2) ≡ 0 (mod 3). (1.2)

Hirschhorn [14], Xiong [26] and Yao [27] deduced some congruences modulo powers of 5 and
7 for a(n). Chern and Dastidar [7] discovered two congruences modulo 11 for a(n). For more
details, see [22].

In his thesis, Reti [24] defined the rank of a cubic partition as the difference between the
number of even parts in blue color and the number of even parts in red color. Let N

′
(m,n)

denote the number of cubic partitions of n whose rank is m and let N
′
(r,m, n) denote the

number of cubic partitions of n whose rank is congruent to r modulo m, namely,

N
′
(m,n) :=

∑
λ∈C(n),

rank(λ)=m

1, and N
′
(r,m, n) :=

∑
λ∈C(n),

rank(λ)≡r (mod m)

1, (1.3)
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where C (n) denote the set of cubic partitions of n. The generating function for N
′
(m,n),

due to Reti [24, Theorem 1, eqn. (15)], is

∞∑

n=0

∞∑
m=−∞

N
′
(m,n)xmqn =

∞∑

n=0

∑

λ∈C (n)

xrank(λ)qn =
1

(q; q2)∞(xq2; q2)∞(q2/x; q2)∞
. (1.4)

Reti [24] proved that

N
′
(0, 3, 3n + 2) = N

′
(1, 3, 3n + 2) = N

′
(2, 3, 3n + 2),

which provided a combinatorial interpretation of (1.2).

Motivated by the works on inequalities for ranks and cranks for certain partitions, such
as [2, 8, 11], we prove some inequalities on N

′
(r,m, n) in this paper. More precisely, we

establish the generating functions for N
′
(r,m, n) and determine the signs of the differences

N
′
(r,m, n) − N

′
(s,m, n) with m ∈ {2, 3, 4, 6} and 0 ≤ r < s ≤ m − 1 by utilizing q-series

technique.

From (1.3) and (1.4), we obtain

N
′
(r,m) = N

′
(−r,m), N

′
(r,m, n) = N

′
(m− r,m, n).

Therefore, we only list the inequalities on N
′
(r,m, n) with m ∈ {2, 3, 4, 6} and 0 ≤ r ≤ m

2 in
the following theorems which parallels the results proved by Andrews and Lewis [2].

Theorem 1.1 For n ≥ 0,

N
′
(0, 2, 4n) ≥N

′
(1, 2, 4n), (1.5)

N
′
(0, 2, 4n + 1) ≥N

′
(1, 2, 4n + 1), (1.6)

N
′
(0, 2, 4n + 2) ≤N

′
(1, 2, 4n + 2), (1.7)

N
′
(0, 2, 4n + 3) ≤N

′
(1, 2, 4n + 3). (1.8)

Theorem 1.2 For n ≥ 0,

N
′
(0, 3, 3n) ≥ N

′
(1, 3, 3n), (1.9)

N
′
(0, 3, 3n + 1) ≥ N

′
(1, 3, 3n + 1), (1.10)

N
′
(0, 3, 3n + 2) = N

′
(1, 3, 3n + 2). (1.11)

Remark. Identity (1.11) was first proved by Reti [24, Theorem 1, p. 9] by using a different
method; see also [12].

Theorem 1.3 For n ≥ 0,

N
′
(0, 4, n) ≥ N

′
(1, 4, n), (1.12)

N
′
(1, 4, n) ≥ N

′
(2, 4, n). (1.13)
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Theorem 1.4 For n ≥ 0,

N
′
(j, 6, n) ≥ N

′
(j + 1, 6, n), (1.14)

where j ∈ {0, 1, 2}.

The rest of the paper is organized as follows. In Section 2, we establish the generating
functions for N

′
(r,m, n) with m ∈ {2, 3, 4, 6} and 0 ≤ r ≤ m− 1 which will be used to prove

the main results of this paper. Sections 3–5 are devoted to the proofs of Theorems 1.1–1.4.
We conclude in the last section with some remarks.

2 Generating functions for N
′
(r,m, n)

The aim of this section is to establish the generating functions for N
′
(r,m, n) with m ∈

{2, 3, 4, 6} and 0 ≤ r ≤ m− 1.

Theorem 2.1 We have
∞∑

n=0

N
′
(0, 4, n)qn =

1
4J1J2

+
J2J4

2J1J8
+

J3
2

4J1J2
4

, (2.1)

∞∑

n=0

N
′
(1, 4, n)qn =

∞∑

n=0

N
′
(3, 4, n)qn =

1
4J1J2

− J3
2

4J1J2
4

, (2.2)

∞∑

n=0

N
′
(2, 4, n)qn =

1
4J1J2

− J2J4

2J1J8
+

J3
2

4J1J2
4

. (2.3)

By Theorem 2.1 and the fact that

N
′
(r,m, n) = N

′
(r, 2m,n) + N

′
(r + m, 2m,n), (2.4)

we can deduce the generating functions for N
′
(r, 2, n).

Corollary 2.2 We have
∞∑

n=0

N
′
(0, 2, n)qn =

1
2J1J2

+
J3

2

2J1J2
4

, (2.5)

∞∑

n=0

N
′
(1, 2, n)qn =

1
2J1J2

− J3
2

2J1J2
4

. (2.6)

Proof of Theorem 2.1. Here and throughout this paper, we always set ζm = e2πi/m. In view
of (1.3), (1.4) and the fact that

m−1∑

j=0

ζkj
m =

{
m, if k ≡ 0 (mod m),
0, if k 6≡ 0 (mod m),

(2.7)

4
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we deduce that for any integer r and any positive integer m,

∑

n≥0

N
′
(r,m, n)qn =

∞∑

n=0




∑
λ∈C(n),

rank(λ)≡r (mod m)

1


 qn

=
∞∑

n=0

∑

λ∈C (n)


 1

m

m−1∑

j=0

ζ(rank(λ)−r)j
m


 qn

=
1
m

m−1∑

j=0

ζ−rj
m

∞∑

n=0

∑

λ∈C (n)

ζrank(λ)j
m qn

=
1
m

m−1∑

j=0

ζ−rj
m

1

(q; q2)∞(ζj
mq2; q2)∞(q2/ζj

m; q2)∞
. (by (1.4)) (2.8)

In particular, setting m = 4 and r ∈ {0, 1, 2, 3} in (2.8) yields

∞∑

n=0

N
′
(r, 4, n)qn =

1
4

3∑

j=0

ζ−rj
4

1

(q; q2)∞(ζj
4q

2; q2)∞(q2/ζj
4 ; q2)∞

. (2.9)

From the following identity,

(1− ζj
4q

k)(1− qk/ζj
4) = 1− (ζj

4 + ζ−j
4 )qk + q2k,

we arrive at

1

(q; q2)∞(ζj
4q

2; q2)∞(q2/ζj
4 ; q2)∞

=





1
J1J2

, if j = 0,

J2J4

J1J8
, if j ∈ {1, 3},

J3
2

J1J2
4

, if j = 2.

(2.10)

By (2.9) and (2.10) and the fact that ζ4 = i, we arrive at (2.1)–(2.3). The proof of Theorem
2.1 is complete.

Theorem 2.3 We have
∞∑

n=0

N
′
(0, 6, n)qn =

1
6J1J2

+
J4J6

3J1J12
+

J2
2

3J1J6
+

J3
2

6J1J2
4

, (2.11)

∞∑

n=0

N
′
(1, 6, n)qn =

∞∑

n=0

N
′
(5, 6, n)qn =

1
6J1J2

+
J4J6

6J1J12
− J2

2

6J1J6
− J3

2

6J1J2
4

, (2.12)

∞∑

n=0

N
′
(2, 6, n)qn =

∞∑

n=0

N
′
(4, 6, n)qn =

1
6J1J2

− J4J6

6J1J12
− J2

2

6J1J6
+

J3
2

6J1J2
4

, (2.13)

∞∑

n=0

N
′
(3, 6, n)qn =

1
6J1J2

− J4J6

3J1J12
+

J2
2

3J1J6
− J3

2

6J1J2
4

. (2.14)

5
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In view of (2.4) and Theorem 2.3, we obtain the following corollary.

Corollary 2.4 We have

∞∑

n=0

N
′
(0, 3, n)qn =

1
3J1J2

+
2J2

2

3J1J6
, (2.15)

∞∑

n=0

N
′
(1, 3, n)qn =

∞∑

n=0

N
′
(2, 3, n)qn =

1
3J1J2

− J2
2

3J1J6
. (2.16)

Proof of Theorem 2.3. Setting m = 6 and r ∈ {0, 1, 2, 3, 4, 5} in (2.8), we deduce that

∞∑

n=0

N
′
(r, 6, n)qn =

1
6

5∑

j=0

ζ−rj
6

1

(q; q2)∞(ζj
6q

2; q2)∞(q2/ζj
6 ; q2)∞

. (2.17)

Moreover, it is easy to verify that

1

(q; q2)∞(ζj
6q

2; q2)∞(q2/ζj
6 ; q2)∞

=





1
J1J2

, if j = 0,

J4J6

J1J12
, if j ∈ {1, 5},

J2
2

J1J6
, if j ∈ {2, 4},

J3
2

J1J2
4

, if j = 3.

(2.18)

In light of (2.17), (2.18) and the fact that ζ6 = 1
2 +

√
3

2 i, we get (2.11)–(2.14). This completes
the proof of Theorem 2.3.

3 Proof of Theorem 1.1

Throughout this paper, for two power series p1(q) :=
∑∞

n=−∞ b1(n)qn and p2(q) :=
∑∞

n=−∞ b2(n)qn,
we say that p1(q) º p2(q) if b1(n) ≥ b2(n) holds for any integer n.

It follows from (2.5) and (2.6) that

∞∑

n=0

(N
′
(0, 2, n)−N

′
(1, 2, n))qn =

J3
2

J1J2
4

. (3.1)

In [25], Xia and Yao proved that

J3
2

J1J4
=

J4

(−q2; q16)∞(q8; q16)∞(−q14; q16)∞
+ q

J4

(−q6; q16)∞(q8; q16)∞(−q10; q16)∞
. (3.2)

6
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Substituting (3.2) into (3.1) and then extracting the terms of the form q2n and q2n+1, we
arrive at

∞∑

n=0

(N
′
(0, 2, 2n)−N

′
(1, 2, 2n))qn =

1
(−q; q8)∞(q4; q8)∞(−q7; q8)∞

=
f(−q,−q7)

(q2, q14; q16)∞(q4; q4)∞
(3.3)

and
∞∑

n=0

(N
′
(0, 2, 2n + 1)−N

′
(1, 2, 2n + 1))qn =

1
(−q3; q8)∞(q4; q8)∞(−q5; q8)∞

=
f(−q3,−q5)

(q6, q10; q16)∞(q4; q4)∞
, (3.4)

where

f(a, b) = (−a,−b, ab; ab)∞. (3.5)

The following identity follows from [3, Entry 30, (ii) and (iii), p. 46]:

f(a, b) = f(a3b, ab3) + af(b/a, a5b3). (3.6)

Setting a = −q and b = −q7 in (3.6) yields

f(−q,−q7) = f(q10, q22)− qf(q6, q26). (3.7)

Substituting (3.7) into (3.3) and then extracting the terms of the form q2n and q2n+1, we
arrive at

∞∑

n=0

(N
′
(0, 2, 4n)−N

′
(1, 2, 4n))qn =

(−q5,−q11, q16; q16)∞
(q, q7; q8)∞(q2; q2)∞

(3.8)

and
∞∑

n=0

(N
′
(0, 2, 4n + 2)−N

′
(1, 2, 4n + 2))qn =− (−q3,−q13, q16; q16)∞

(q, q7; q8)∞(q2; q2)∞
. (3.9)

Inequalities (1.5) and (1.7) follow from (3.8) and (3.9), respectively.

Setting a = −q3 and b = −q5 in (3.6) yields

f(−q3,−q5) = f(q14, q18)− q3f(q2, q30). (3.10)

If we substitute (3.10) into (3.4) and then extract the terms of the form q2n and q2n+1, we
obtain

∞∑

n=0

(N
′
(0, 2, 4n + 1)−N

′
(1, 2, 4n + 1))qn =

(−q7,−q9, q16; q16)∞
(q3, q5; q8)∞(q2; q2)∞

(3.11)

and
∞∑

n=0

(N
′
(0, 2, 4n + 3)−N

′
(1, 2, 4n + 3))qn =− q(−q,−q15, q16; q16)∞

(q3, q5; q8)∞(q2; q2)∞
. (3.12)

which imply (1.6) and (1.8). This completes the proof of Theorem 1.1.

7
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4 Proofs of Theorems 1.2 and 1.3

We first present a proof of Theorem 1.2.

Proof of Theorem 1.2. From [3, Corollary (ii), p. 49], we have

J2
2

J1
=

J6J
2
9

J3J18
+ q

J2
18

J9
. (4.1)

By (2.15), (2.16) and (4.1),

∞∑

n=0

(N
′
(0, 3, n)−N

′
(1, 3, n))qn =

J2
2

J1J6

=
1
J6

(
J6J

2
9

J3J18
+ q

J2
18

J9

)

=
1

J9J18

∞∑

n=0

t3(n)q3n +
q

J9J18

∞∑

n=0

t3(n)q6n, (4.2)

where ts(n) is the number of s-core partitions of n and the generating functions of ts(n) is

∞∑

n=0

ts(n)qn =
Js

s

J1
.

From [16, Theorem 1],

∞∑

n=0

t3(n)qn =
1
3

∞∑
m,n=−∞

qm2+mn+n2+m+n

Thus, t3(n) is nonnegative and Theorem 1.2 follows from (4.2). This completes the proof.

Now, we turn to prove Theorem 1.3.

Proof of Theorem 1.3. It follows from (2.1) and (2.2) that

2
∞∑

n=0

(N
′
(0, 4, n)−N

′
(1, 4, n))qn =

1
J4

(
J2J

2
4

J1J8
+

J3
2

J1J4

)
. (4.3)

Note that

J2J
2
4

J1
=

∞∑

n=0

t2(n)qn
∞∑

n=0

t2(n)q2n,

and since t2(n) ≥ 0 for all n ≥ 0 [13], we have

J2J
2
4

J1
º1 + q + q2 + 2q3 + q5 + 2q6 + q7 + q8 + q9 + q10 + 3q12,

and therefore,

J2J
2
4

J1J8
=

1
J8

J2J
2
4

J1

8
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º 1
J8

(1 + q + q2 + 2q3 + q5 + 2q6 + q7 + q8 + q9 + q10 + 3q12)

º1 + q + q2 + 2q3 + q5 + 2q6 + q7 + q8 +
∑

n≥9

qn. (4.4)

The following identity is the well-known Euler’s pentagonal number theorem:

J1 =
∞∑

n=0

(−1)nqn(3n+1)/2(1− q2n+1). (4.5)

Replacing q by −q in (4.5) and using the fact that

(−q;−q)∞ =
∞∏

n=1

(1− (−q)n) =

( ∞∏

n=1

(1 + q2n−1)

)( ∞∏

n=1

(1− q2n)

)
=

J3
2

J1J4

yields

J3
2

J1J4
=

∞∑

n=0

(−1)n(−q)n(3n+1)/2(1 + q2n+1)

= 1 + q − q2 − q5 − q7 − q12 +
∞∑

n=3

(−1)n(−q)n(3n+1)/2(1 + q2n+1). (4.6)

Combining (4.4) and (4.6), we arrive at

J2J
2
4

J1J8
+

J3
2

J1J4
º1 + q + q2 + 2q3 + q5 + 2q6 + q7 + q8 +

∑

n≥9

qn

+

(
1 + q − q2 − q5 − q7 − q12 +

∞∑

n=3

(−1)n(−q)n(3n+1)/2(1 + q2n+1)

)

º0,

which yields (1.12) after combining (4.3).

In view of (2.2), (2.3), (4.4) and (4.6),

2
∞∑

n=0

(N
′
(1, 4, n)−N

′
(2, 4, n))qn =

1
J4

(
J2J

2
4

J1J8
− J3

2

J1J4

)

=
1
J4

(
1 + q + q2 + 2q3 + q5 + 2q6 + q7 + q8 +

∑

n≥9

qn

−
(

1 + q − q2 − q5 − q7 − q12 +
∞∑

n=3

(−1)n(−q)n(3n+1)/2(1 + q2n+1)

))

º0,

which yields (1.13). This completes the proof.
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5 Proof of Theorem 1.4

In order to prove Theorem 1.4, we first prove two lemmas.

Lemma 5.1 We have

J4J6

J1J12
− 6

J2
2

J1J6
º −5− 5q + 2q2 − 3q3 + 4q4 + 6q5 − 4q6. (5.1)

Proof. In [15], Hirschhorn and Sellers proved that

J2

J2
1

=
J4

6J6
9

J8
3J3

18

+ 2q
J3

6J3
9

J7
3

+ 4q2 J2
6J3

18

J6
3

. (5.2)

By (5.2),

J4J6

J1J12
− 6

J2
2

J1J6
=

J2
2

J1

(
J4J6

J2
2J12

− 6
J6

)

=
J2

2

J1

(
J6

J12

(
J4

12J
6
18

J8
6J3

36

+ 2q2 J3
12J

3
18

J7
6

+ 4q4 J2
12J

3
36

J6
6

)
− 6

J6

)

ºJ2
2

J1


∑

n≥0

r1(n)q6n +
∑

n≥0

q6n+2 +
∑

n≥0

q6n+4


 , (5.3)

where r1(n) is defined by

∑

n≥0

r1(n)qn :=
J3

2J6
3

J7
1J3

6

− 6
J1

. (5.4)

It is easy to check that

J3
2J6

3

J6
1J3

6

º 1 + 6q + 24q2 + 73q3 +
∑

n≥4

qn. (5.5)

Based on (1.1) and (5.5),

∑

n≥0

r1(n)qn =
J3

2J6
3

J6
1J3

6

∑

n≥0

p(n)qn − 6
J1

º
∑

n≥0

p(n)qn


1 + 6q + 24q2 + 73q3 +

∑

n≥4

qn


− 6

∑

n≥0

p(n)qn.

Thus,

r1(n) ≥− 5p(n) + 6p(n− 1) + 24p(n− 2) + 73p(n− 3) +
∑

k≥4

p(n− k)

=− 5(p(n)− 2p(n− 1) + p(n− 3))− 4(p(n− 1)− 2p(n− 2) + p(n− 4))
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+ 16p(n− 2) + 78p(n− 3) + 4p(n− 4) +
∑

k≥4

p(n− k). (5.6)

In [21], Merca proved for n ≥ 2,

p(n)− 2p(n− 1) + p(n− 3) ≤ 0. (5.7)

In view of (5.6) and (5.7), we find that for n ≥ 4

r1(n) ≥ 16p(n− 2) + 78p(n− 3) +
∑

k≥4

p(n− k) (5.8)

In addition,

r1(0) = −5, r1(1) = 1, r1(2) = 20, r1(3) = 95. (5.9)

Combining (5.8) and (5.9) yields

∑

n≥0

r1(n)qn º− 5 + q + 20q2 + 95q3 +
∑

n≥4

n∑

k=4

p(n− k)qn º −5 +
∑

n≥1

qn. (5.10)

In light of (5.3) and (5.10),

J4J6

J1J12
− 6

J2
2

J1J6
ºJ2

2

J1


−5 +

∑

n≥1

q6n + q2
∑

n≥0

q6n + q4
∑

n≥0

q6n




=
∑

k≥0

qk(k+1)/2


−5 +

∑

n≥1

q2n


 , (5.11)

where here we have used the following identity, due to Gauss [3, Entry 22, p. 36]:

∑

k≥0

qk(k+1)/2 =
J2

2

J1
. (5.12)

Define

∑

n≥0

w(n)qn :=
J4J6

J1J12
− 6

J2
2

J1J6
. (5.13)

Thanks to (5.11) and (5.13),

w(n) ≥ −5|{r|r(r + 1)/2 = n, r ≥ 0}|+ |S(n)|
≥ |S(n)| − 5, (5.14)

where
S(n) := {(r, s)|r(r + 1)/2 + 2s = n, r ≥ 0, s ≥ 1}

Note that if n is odd with n ≥ 68, then

{(1, (n− 1)/2), (2, (n− 3)/2), (5, (n− 15)/2), (6, (n− 21)/2), (9, (n− 45)/2)} ⊆ S(n)
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and if n is even with n ≥ 68, then

{(3, (n− 6)/2), (4, (n− 10)/2), (7, (n− 28)/2), (8, (n− 36)/2), (11, (n− 66)/2)} ⊆ S(n).

Therefore, for n ≥ 68, |S(n)| ≥ 5 and

w(n) ≥ 0. (5.15)

With Maple, we find that

w(0) = −5, w(1) = −5, w(2) = 2, w(3) = −3, w(4) = 4, w(5) = 6, w(6) = −4 (5.16)

and for 7 ≤ n ≤ 67,

w(n) ≥ 0. (5.17)

Lemma 5.1 follows from (5.15)–(5.17). This completes the proof of this lemma.

Lemma 5.2 We have

J4J6

J1J12
+ 4

J3
2

J1J2
4

º5 + 5q − 2q2 + 3q3 + 8q4 + 6q5 + 4q6 + 7q7, (5.18)

J4J6

J1J12
+ 2

J3
2

J1J2
4

º3 + 3q + 3q3 + 6q4 + 6q5 + 6q6 + 9q7. (5.19)

Proof. Here we only prove (5.18). Inequality (5.19) can be shown analogously, so we omit
the details. It is easy to check that

J2
4J6

J1
=

J6

J2

∞∑

n=0

t2(n)qn
∞∑

n=0

t2(n)q2n º F (q), (5.20)

where

F (q) =1 + q + 2q2 + 3q3 + 3q4 + 5q5 + 6q6 + 8q7 + 9q8 + 12q9 + 15q10 + 18q11

+ 22q12 + 26q13 + 31q14 + 37q15 + 45q16 + 52q17. (5.21)

By (5.20) and (4.6),

J2
4J6

J1J12
+ 4

J3
2

J1J4
=

1
J12

J2
4J6

J1
+ 4

∞∑
n=−∞

(−1)n(−q)n(3n−1)/2

ºF (q)
J12

+ 4


1 + q − q2 − q5 −

∑

n≥7

qn




º

1 + q + 2q2 + 3q3 + 3q4 + 5q5 + 6q6 + 4

∑

n≥7

qn



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+ 4


1 + q − q2 − q5 −

∑

n≥7

qn




=5 + 5q − 2q2 + 3q3 + 3q4 + q5 + 6q6. (5.22)

Define

∑

n≥0

r2(n)qn :=
J4J6

J1J12
+ 4

J3
2

J1J2
4

. (5.23)

In light of (1.1), (5.22) and (5.23),

∑

n≥0

r2(n)qn º 1
J4

(5 + 5q − 2q2 + 3q3 + 3q4 + q5 + 6q6)

=
∑

n≥0

p(n)q4n(5 + 5q − 2q2 + 3q3 + 3q4 + q5 + 6q6),

which implies that for n ≥ 0,

r2(4n) ≥5p(n) + 3p(n− 1), (5.24)
r2(4n + 1) ≥5p(n) + p(n− 1), (5.25)
r2(4n + 2) ≥− 2p(n) + 6p(n− 1), (5.26)
r2(4n + 3) ≥3p(n). (5.27)

By (5.7) and (5.24)–(5.27), we see that for n ≥ 2 and 0 ≤ i ≤ 3,

r2(4n + i) ≥ 0. (5.28)

In addition,

r2(0) = 5, r2(1) = 5, r2(2) = −2, r2(3) = 3, r2(4) = 8, r2(5) = 6, r2(6) = 4, r2(7) = 7,

from which with (5.28), (5.18) follows. The proof of Lemma 5.2 is complete.

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By (2.11), (2.12), (5.12) and (5.19), it follows that

∑

n≥0

(N
′
(0, 6, n)−N

′
(1, 6, n))qn =

J4J6

6J1J12
+

J2
2

2J1J6
+

J3
2

3J1J2
4

º 0,

which implies that for n ≥ 0,

N
′
(0, 6, n)−N

′
(1, 6, n) ≥ 0. (5.29)

By (2.12), (2.13), (4.6) and (5.20),

3
∑

n≥0

(N
′
(1, 6, n)−N

′
(2, 6, n))qn =

1
J4

(
J2

4J6

J1J12
− J3

2

J1J4

)
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=
1
J4

(
1

J12

J2
4J6

J1
−

∞∑
n=−∞

(−1)n(−q)n(3n−1)/2

)

º 1
J4


F (q)

J12
−


1 + q − q2 − q5 +

∑

n≥7

qn







º 1
J4





1 + q + 2

∑

n≥2

qn


−


1 + q − q2 − q5 +

∑

n≥7

qn







º0,

where F (q) is defined by (5.21). The above inequality implies that for n ≥ 0,

N
′
(1, 6, n)−N

′
(2, 6, n) ≥ 0. (5.30)

Thanks to (2.13), (2.14), (5.1) and (5.18),

∑

n≥0

(N
′
(2, 6, n)−N

′
(3, 6, n))qn =

1
12

(
J4J6

J1J12
− 6

J2
2

J1J6

)
+

1
12

(
J4J6

J1J12
+ 4

J3
2

J1J2
4

)
º 0,

which yields that for n ≥ 0,

N
′
(2, 6, n)−N

′
(3, 6, n) ≥ 0. (5.31)

Theorem 1.4 follows from (5.29)–(5.31). The proof is complete.

6 Conclusions

As seen in Introduction, equalities and inequalities on statistics of certain partition functions
have received a lot of attention in the past decade. In this paper, we establish the generating
functions for N

′
(r,m, n) and then prove some inequalities between N

′
(r,m, n) and N

′
(s,m, n)

with m ∈ {2, 3, 4, 6} and 0 ≤ r < s ≤ m − 1 by utilizing q-series technique. In [19], Lewis
presented combinatorial proofs of the following two inequalities:

N(0, 2, 2n) < N(1, 2, 2n), n ≥ 2,

N(0, 2, 2n + 1) > N(1, 2, 2n + 1), n ≥ 1.

Therefore, it would be interesting to find combinatorial proofs of Theorems 1.1–1.4.

In 2011, Kim [17] introduced a cubic partition crank which explains infinitely many con-
gruences for powers of 3. As a precise definition of crank for the cubic partition function is
quite complicated and not necessary for the rest of the paper, we do not give it here. One
may find a precise definition in [17]. Define

M
′
(m,n) :=

∑
λ∈C(n),

crank(λ)=m

1, and M
′
(r,m, n) :=

∑
λ∈C(n)

crank(λ)≡r (mod m)

1, (6.1)

14

9 May 2023 05:50:40 PDT
220905-ErnestXia Version 2 - Submitted to Rocky Mountain J. Math.



where C (n) is the set of cubic partitions of n. In 2016, Kim, Kim and Namc [18] deduced
asymptotic formulas for M

′
(m,n) and N

′
(m,n) and proved that for a fixed integer m,

N
′
(m,n) > M

′
(m,n)

holds for large enough integers n. Using the same method given in this paper, we can
deduce the generating functions for M

′
(r,m, n) with m ∈ {2, 3, 4, 6} and 0 ≤ r ≤ m − 1.

Unfortunately, we can not determine the signs of the differences M
′
(r,m, n) − M

′
(s,m, n)

with m ∈ {2, 3, 4, 6} and 0 ≤ r < s ≤ m − 1 by utilizing q-series technique. One may use
asymptotic formulas to determine the signs.
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