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Abstract

For any a, b, ¢ of a *-ring R, the element a is called right (b, ¢)-core invertible
if there exists some = € bR such that cazc = ¢ and (cax)* = cax. In this
paper, several criteria of right (b, ¢)-core inverses are established. It is shown
that a is right (b, ¢)-core invertible if and only if a is right (b, ¢)-invertible
and ¢ is {1,3}-invertible. In addition, the matrix representation of right
(b, ¢)-core inverses is presented. Finally, we present the relations of right
(b, ¢)-core inverses and other generalized inverses. As applications, several
known results on right core inverses and right w-core inverses are given as
corollaries.
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1. Introduction

The inverse along an element [9] and the (b, ¢)-inverse [5] are two impor-
tant classes of outer generalized inverses, which recover the Drazin inverse
[7] and the Moore-Penrose inverse [12]. They are intensively investigated by
lots of researchers (see [2, 3, 4, 10]). In 2016, one-sided inverses along an
element [15] were introduced. Shortly afterwards, one-sided (b, ¢)-inverses [6]
were given to extend one-sided inverses along an element and (b, ¢)-inverses.

In 2023, the present author Zhu in [14] seeking new ways to combine (b, ¢)-
inverses and {1, 3}-inverses to obtain the (b, ¢)-core inverse in the context of
k-semigroups, generalizing the core inverse [1], the core-EP inverse [8] and
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the Moore-Penrose inverse, the w-core inverse [18], the right and left w-core
inverse [17, 19].

In this paper, we aim to introduce and investigate right (b, ¢)-core inverses
in a x-ring. This provides a framework for the theory of generalized inverses.

The paper is organized as follows. In Section 2, for any a, b, ¢ of a x-ring
R, we define a right (b, ¢)-core inverse of a, and investigate the corresponding
properties. For instance, it is shown that a is right (b, ¢)-core invertible if
and only if a is right (b, ¢)-invertible and ¢ is {1, 3}-invertible. Moreover,
apr)::agﬁhﬁLa.’Then,wmecharadﬁrme right (b, ¢)-core inverses in terms
of properties of the left annihilators and ideals. Further, we present the ma-
trix representations of right (b, ¢)-core inverses by the Pierce decomposition.
In Section 3, we state that several generalized inverses, that is right invers-
es, right core inverses, right pseudo core inverses, right w-core inverses and
Moore-Penrose inverses, are instances of right (b, ¢)-core inverses. Precisely,
for any nonnegative integers m,n satisfying m +n > 1, we establish the
following equivalences in a *-ring

(1) a is right invertible if and only if a is right (1, 1)-core invertible;

(2) a is right core invertible if and only if @™ is right (a™, a)-core invertible;

(3) a is right pseudo core invertible if and only if a™ is right (a™, a*)-core
invertible, for some positive integer k;

(4) a is right w-core invertible if and only if w is right (a, a)-core invertible;

(5) a is Moore-Penrose invertible if and only if a is right (a*,a*)-core
invertible if and only if a* is right (a, a)-core invertible.

As applications, we give several characterizations for right core inverses
and right w-core inverses and establish the connection between right pseudo
core inverses and right w-core inverses. The relation schema of right (b, c)-
core inverses and the aforementioned (right) inverses is provided as well.

Let us now recall several notions of generalized inverses.

Let R be an associative ring with unity 1. An element a € R is called
(von Neumann) regular if there exists some x € R such that axa = a. Such
an z is called an inner inverse or a {1}-inverse of a and denoted by a~. The
symbol a{1} stands for the set of all inner inverses of a. The set of all regular
elements in R is denoted by R™.

In [15], Zhu et al. extended inverses along an element to one-sided cases.
Let a,d € R. An element a is called left invertible along d if there exists
some z € R such that xad = d and © € Rd. Such an element x is called
a left inverse of a along d, and is denoted by a}'d. Dually, an element a is
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called right invertible along d if there exists some y € R such that day = d
and y € dR. Such an element y is called a right inverse of a along d, and is
denoted by al”. We use the symbols RlHd and R to denote the sets of all left
and right invertible elements along d in R, respectively. According to [15,
Theorems 2.3 and 2.4], a is left invertible along d if and only if d € Rdad,
and a is right invertible along d if and only if d € dadR.

In 2016, Drazin defined one-sided (b, ¢)-inverses [6]. Let a,b,c € R. We
call a left (b, c)-invertible if b € Recab, or equivalently if there exists © € Rc
such that zab = b, in which case, any such x will be called a left (b, ¢)-inverse
of a and denoted by al(b’c). Dually, a is right (b, ¢)-invertible if ¢ € cabR, or
equivalently if there exists y € bR such that cay = ¢, in which case, any such
y will be called a right (b, ¢)-inverse of a and denoted by a". In particular,
a is called (b, ¢)-invertible [5] if it is both left and right (b, ¢)-invertible. We
denote by Rl(b’c), R" and R®9 the sets of all left (b,c)-invertible, right
(b, ¢)-invertible and (b, ¢)-invertible elements in R. It should be pointed out
that a is right (d, d)-invertible if and only if it is right invertible along d.
Moreover, the right (d, d)-inverse of a is exactly the right inverse of a along
d.

A map * : R — R is an involution of R if it satisfies (z*)* = z, (zy)* =
y*r* and (z 4+ y)* = z* + y* for all z,y € R. Throughout this section, any
ring R is assumed to be a unital x-ring, that is a ring R with unity 1 and an
involution .

An element @ € R is said to be Moore-Penrose invertible [12] if there
exists some z € R such that aza = a, xax = z, (ax)* = ax and (za)* = za.
Such an z is called a Moore-Penrose inverse of a. It is unique if it exists,
and is denoted by a'. Generally, any solution x satisfying the equations
axa = a and (ax)* = az (resp., (za)* = xa) is called a {1, 3}-inverse (resp.,
{1, 4}-inverse) of a. The symbols a® and a** denote a {1, 3}-inverse and
a {1,4}-inverse of a, respectively. We denote by a{l,3} and a{l,4} the
sets of all {1,3}-inverses and {1,4}-inverses of a. In general, the sets of all
{1, 3}-invertible, {1,4}-invertible and Moore-Penrose invertible elements in
R will be denoted by R R4 and RY, respectively. It is known that
a is Moore-Penrose invertible if and only if it is both {1, 3}-invertible and
{1, 4}-invertible. An element p € R is called a projection if p* = p = p*.

An element a € R is right pseudo core invertible if there exist x € R and
positive integer k such that ara® = o, (az)* = az and az® = x. Such an x
is called a right pseudo core inverse of a and denoted by aP. The smallest
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positive integer k, denoted by I(a), is called the right pseudo core index of
a. In particular, a is called right core invertible when a is right pseudo core
invertible with I(a) = 1. In general, R® and R® denote the sets of all right
core and right pseudo core invertible elements in R.

The right w-core inverse [19] was introduced in R, which unifies right
core inverses, right pseudo core inverses and Moore—Penrose inverses. For
any a,w € R, we call a right w-core invertible if there exists some x € R
such that awza = a, (awz)* = awzr and awx? = z. Any such x is called a
right w-core inverse of a, and is denoted by a®,. The symbol RZ, denotes
the set of all right w-core invertible elements in R. It was proved that a is
right w-core invertible if and only if w is right invertible along a and a is
{1, 3}-invertible, in which case, a2, = wla(3).

The (b, c)-core inverse was defined in a x-monoid M in [14]. For the
convenience, we next state this notion in R. Let a,b,c € R. The element
a is called (b, ¢)-core invertible if there exists some x € R such that cazc =
¢, R = bR and Rx = Rc*. The (b, ¢)-core inverse of a is uniquely determined
(if it exists) and is denoted by af . As usual, we denote by Rf} , the set of
all (b, c)-core invertible elements in R. It was proved in [14] that the (b, c)-
core inverse x of a is the unique solution to the system x € bR, caxc = ¢,
(cax)* = cax and xcab = b. It follows from [14, Theorem 2.6] that a is (b, ¢)-

core invertible if and only if a is (b, ¢)-invertible and ¢ is {1, 3}-invertible.

2. Right (b, c¢)-core inverses

Our main goal in this section is to introduce the right (b, ¢)-core inverse
in a unital *-ring R, and to give its several characterizations.

Definition 2.1. Let a,b,c € R. We call a right (b, c)-core invertible if there
exists some x € bR such that caxc = ¢ and (cax)* = cax. Such an x is called
a right (b, ¢)-core inverse of a.

By the symbol a;ef(bvc) we denote a right (b, ¢)-core inverse of a. An element
a € R could have different right (b, c)-core inverses. For instance, let R be a
unital *-ring. Take c=0# b =1 € R. For any x € R, we have caxrc = ¢ and
(cax)* = cax. Hence, any = € R is a right (1,0)-core inverse of a. However,
the product caaf(hc) is invariant. Indeed, suppose 21,29 € R are any two
right (b, ¢)-core inverses of a. It is known that cx = ¢y for any z,y € {1, 3}
(see, e.g., [18, Remark 2.10]). Since az;,az; € ¢{1,3}, we have caz; = caz,.

4
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The symbol Rf?f(b’c) stands for the set of all right (b, ¢)-core invertible elements
in R.

It is noteworthy to mention that every (b, c)-core invertible element is
right (b, ¢)-core invertible. The converse statement is not valid in general.
For instance, let R be the same as that of the previous example. Take
¢c=0%#b¢€ R and z € bR, then a is right (b, c)-core invertible. Clearly,
xcab =0 # b, and so that a is not (b, ¢)-core invertible.

Given any a € R, we write a° = {z € R: ax = 0}. Tt is known that (see,
e.g., [13]) Ra C Rb ensures b° C a° for any a,b € R.

A list of characterizations for right (b, ¢)-core inverses are given by ideals
and annihilators.

Theorem 2.2. Let a,b,c € R. The following conditions are equivalent:
(i) a € RE, -
(ii) There exists some x € bR such that caxc = ¢, (cax)* = cax and
xrear = .
(iii) There exists some x € R such that caxc = ¢, tR C bR and Rx = Rc*.
(iv) There exists some x € R such that caxc = ¢, tR C bR and 2° = (c*)°.
(v) There ezists some x € R such that caxc = ¢, xR C bR and Rx C Rc*.
(vi) There exists some x € R such that cazc = ¢, tR C bR and (c*)? C x°.
(vii) There exist a projection p € R and an idempotent ¢ € R such that
cR CpR CcaR, qR C bR and Rq O Rca.
In this case, af?f(b’c) = ¢(ca)~p for any (ca)~ € (ca){1}.

PROOF. (iii) = (iv) and (v) = (vi) are obvious.

(i) = (ii) Assume a € Rf?(bﬁ). Then there exists some y € bR such that
cayc = ¢ and (cay)* = cay. Let x = ycay. We get cax = ca(ycay) =
(cayc)ay = cay = (cax)*, caxc = cayc = ¢ and zcax = xcay = (ycay)cay =
ycay = x.

(ii) = (iii) From cazc = ¢ and (cazx)* = caz, it follows that ¢* = c¢*cax €
Rz. Also, xcaxr = x implies x = z(cax)* = xx*a*c* € Rc*, as required.

(iv) = (v) Since ¢* = ¢*(caz)*, we have 1 — (cax)* € (c*)° = 2°, so that
x = z(cax)* = xa*a*c* € Re*.

(vi) = (vil) By ¢* = ¢*(caz)* and (¢*)° C z° we obtain x = x(caz)*.
This in turn gives caxr = cax(cax)* = (cax)*. Set p = cax and ¢ = xca, then
p?* = p = p* and ¢*> = ¢q. Therefore, cR = pcR C pR C caR, ¢gR C bR and
Rca = Reaq C Rgq.
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(vii) = (i) Given Rq 2 Rca, then ca = caq. From cR C pR C caR, it
follows that ¢ = pc and p = caz for some z € R. Therefore, ca = pca = cazca,
so that ca € R™. Let © = q(ca)”p for any (ca)~ € (ca){1}. Then

(1) x = gq(ca)"p € bR by qR C bR.

(2) cax = caq(ca)”p = ca(ca) caz = caz = p = (cax)*.

(3) caxc = pc = c.

Thus, a € RY, ) and af, ., = q(ca) p for any (ca)” € (ca){1}. O

Lemma 2.3. [20, Lemma 2.2] Let a € R. Then

(i) @ € RU3Y if and only if a € Ra*a. In particular, if xa*a = a for some
x € R, then x* is a {1, 3}-inverse of a.

(ii) @ € R if and only if a € aa*R. In particular, if aa*y = a for some
y € R, then y* is a {1,4}-inverse of a.

Suppose a € Ri@(b o With a right (b, ¢)-core inverse z. Then cazc = ¢, we
hence deduce that cax = (caz)”™ for any positive integer n. It is concluded
that a € Rf?f(b@ implies x € bR, (cax)"c = ¢ and ((cazx)")* = (cax)™ for any
positive integer n. One may ask whether the converse implication holds. The
following theorem gives a positive answer.

Theorem 2.4. Let a,b,c € R. The following conditions are equivalent:

(i) a € R?f(b’c).

(ii) ¢ € R(cab)*c.

(iii) ¢ € cabR N Re*e.

(iv) There exists some © € bR such that (cax)"c = ¢ and ((cax)")* =
(cazx)™ for any positive integer n.

(v) There exists some © € bR such that (cax)*c = ¢ and ((cax)")* =
(cazx)™ for some positive integer n.

; @ — n—1
In this case, a;’y, , = x(cax)"™".

PRrROOF. (i) = (ii) Given a € Rf(b’c), then there exists some x € bR such
that caxc = ¢, (cax)* = cax. As a result, ¢ = caxc = (cax)*c € (cabR)*c =
R(cab)*c.

(i) < (iii) by [14, Lemma 2.8 (I)].

(iii) = (iv) As ¢ € cabR N Rc*c, then ¢ = cabt = sc*c for some t,s € R,
in which case, s* € ¢{1,3} by Lemma 2.3. Let x = bts*. Then = € bR,

*

car = cabts* = ¢s* = (cax)* and caxc = c¢s*c = ¢. One hence gets car =
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caxc-ax = (cax)? = - -+ = (caz)" for any positive integer n. In consequence,
¢ = caxc = (cax)"c and (cax)" = cax = ((cax)™)*.

(iv) = (v) is clear.

(v) = (i) Suppose that there exists some = € bR such that (cax)"c = ¢
and ((caz)™)* = (cax)™ for some positive integer n. Then y = x(cax)" ! is a
right (b, ¢)-core inverse of a. Indeed,

(1) y = z(cax)""! € bR.
(2) cayc = (cax)*c = c.
(3) cay = (cax)" = ((cax)")” = (cay)". m

Let us present a lemma which will be useful in the upcoming results.

Lemma 2.5. [6, Definition 1.2] Let a,b,c € R. Then

(i) a is left (b, c)-invertible if and only if b € Rcab. In this case, al(b’c) = sc,
where s € R satisfies b = scab.

(ii) a is right (b, c)-invertible if and only if ¢ € cabR. In this case, o™ =
bt, where t € R satisfies ¢ = cabt.

Let a,b,c € R. From [14, Theorem 2.6], Zhu showed that a is (b, c)-
core invertible if and only if a is (b, ¢)-invertible and ¢ (ca or cab) is {1,3}-
invertible. An analogous result on right (b, c)-core inverses can be obtained.

Theorem 2.6. Let a,b,c € R. The following conditions are equivalent:

(i) a € R® (bo)-

(ii) a € Rrb ? and c € RS

(iii) a € R" and ca € RS}

(iv) a € R and cab € R13Y,

In this case, af’f(b,c) = a3 = a,(ﬂb’c)a(ca)(lﬁ) = b(cab) 3 cab(cab)?).
PROOF. (i) < (ii) directly by Lemmas 2.3, 2.5 and Theorem 2.4 (i) < (iii).

(ii) = (iii) As ¢ € RH3} one gets ¢ € Rc*c by Lemma 2.3. This gives ca €
Rc*ca, which together with a € R ensures ca € Re*ca C R(cabR)*ca =
R(cab)*ca C R(ca)*ca. So, ca € RIM3}

(iii) = (iv) can be proved by a similar way of (ii) = (iii).

(iv) = (ii) Given cab € RY3}, then cab € R(cab)*cab by Lemma 2.3.
Froma € Ry(«b’c), we get ¢ € cabR by Lemma 2.5. Then there exists some t € R
such that ¢ = cabt € R(cab)*cabt = R(cab)*c C Rc*c, so that ¢ € RIS},
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We next show that y = a"?¢(?) is a right (b, ¢)-core inverse of a.

(1) y = al"?¢c13) ¢ bR,

(2) cay = caa™ ¥ = 19 = (cay)*.

(3) cayc = ccM¥e = c.

In addition, it is necessary to prove a(ca)*® € ¢{1,3}. Indeed, ca(ca)* =
(ca(ca))*, and ca(ca)™¥e = ca(ca)PPcabt = cabt = ¢ by the impli-
cation of (iv) = (ii). Analogously, ab(cab)™® € ¢{1,3}. We hence have

¢ = cab(cab) ™3¢, and whence al”® = b(cab)*3)¢ by Lemma 2.5.
So, afiye = a&b 13 = ¢"(ca)13) = b(cab) ¥ cab(cab) ). O

Suppose a € Rf(b,c). Theorem 2.6 guarantees cab € R}, and therefore,
cab € R™. Again as a € R?f(b,c)’ then, by Theorem 2.4, ¢ € cabR and ¢ = cabt
for some t € R. It follows that ¢ = cab(cab)cabt = cab(cab)” ¢ for any
(cab)~ € (cab){1}. This implies a\"” = b(cab)~c from Lemma 2.5. Hence,
another representation of a?f(b@ can be presented.

Proposition 2.7. Leta,b,c € R witha € R?(b o- Then aZ,

be) = b(cab)~ccH?)
for any (cab)™ € (cab){1} and 3 € ¢{1,3}.

Y

Remark 2.8. In Theorem 2.4, the right (b, ¢)-core inverse of a can be rep-
resented as bz*cabz* provided that z € R satisfies ¢ = z(cab)*c by Theorem
2.6. Indeed, since ¢ = z(cab)*c = z(ab)*c*c € Rc*c, we have abz* € ¢{1,3}
by Lemma 2.3. Thus c= cabz c € cabR, it follows that a") = b2*c from
Lemma 2.5. So, a? rbe) = a3 = pzrcab* by Theorem 2.6.

Characterizations for (b, ¢)-core inverses are described in terms of proper-
ties of the left (right) annihilators and ideals in [14]. It was shown that
a € RE‘Z,C) if and only if R = R(cab)* & % = Rca @ b if and only if
R = R(cab)* + % = Rca + °b. Inspired by this, we consider to derive the
characterization for right (b, ¢)-core inverse of a in R.

Theorem 2.9. Leta,b,c € R. Then the following statements are equivalent:
(i) a € R® (o)
(ii) R = R(cab) ® %%
(iii) R = R(cab)* + °c
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PROOF. (i) = (ii) Since a € Rf(bﬁ), we have ¢ € R(cab)*c by Theorem 2.4,
hence ¢ = r(cab)*c = rb*a*c*c for some r € R and 1 — r(cab)* € %°c. For any
s € R, we have s = s[(1 — r(cab)*) + r(cab)*] = s(1 — r(cab)*) + sr(cab)* €
%¢ + R(cab)*, so that R = ¢+ R(cab)*. Note also that abr* € ¢{1,3}. Then
for any z € R(cab)* N %, then zc = 0 and there exists some ¢ € R such that
z = t(cab)* = t(ccM¥cab)* = t(cabr*cab)* = t(cab)*(cabr*)* = zcabr* = 0.
So, R = R(cab)* & ’c.

(i) = (iii) is trivial.

(iii) = (i) Given R = R(cab)*+ ¢, then ¢ € Rc C R(cab)*c. So, a € Rf(bﬁ)
by Theorem 2.4.

For any p? = p € R, any element a € R can be written as

a = pap + pa(l —p) + (1 — p)ap + (1 — p)a(l — p)
or the matrix form
a; Qs
a= )
|fl3 a4:|p

where a; = pap, as = pa(l — p), a3 = (1 — p)ap and ay = (1 — p)a(l — p).
The above decomposition is well known as the Pierce decomposition.

If p?> = p = p*, then
ay Q4]

We next give the matrix representations of right (b, ¢)-core inverses.

Theorem 2.10. Let a,b,c € R. The following conditions are equivalent:
(i) a € Rf’f(bjc) and x € R is a right (b, c)-core inverse of a.
(ii) There exists a projection p € R such that

o o R BRI R P R
ay s b ) T3 Ta],
where (c1a1+coa3)r1+(cras+caaq)xs = p, (cra1+caas)ra+(cras+coay)ry =0

and R(z) € R(b) (R(b) denotes the column space of b).
(iii) There exists a projection g € R such that

a; Qs bl b2 0 0 r1 X2
a= , b= , c= and r = ,
az as], b3 ba], €3 C4], T3 T4,
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where (cza1+cqaz)r1+ (czas+cqaq)rs = 0, (c3a1 +cga3)xa+ (czas+cgaq)rs =
1 —q and R(z) C R(b).

PROOF. (i) = (ii) Suppose a € Rf(bﬁ) with a right (b, c)-core inverse .
Then z € bR, cazc = ¢ and (cax)* = cax. Let p = cax. Then p* = p = p*.
So, a,b,c and = can be represented as (2.1). From x € bR, it follows that
R(z) € R(b). By the Pierce decomposition, we have

(cra1 + coaz)xy + (cras + coaq)xs
= (pep - pap + pe(1 —p) - (1 — p)ap)pxp

+(pep - pa(l —p) + pe(l —p) - (1 = pla(l —p))(1 — p)ap

(cpap + c(1 = p)ap)pzp + (cpa(l — p) + ¢(1 — p)a(l — p))(1 — p)zp
= capzp + ca(l — p)ap
= caxp = p*

The equality (cia; + caa3)xe + (c1as + coaq4)r4 = 0 can be proved similarly.

(Clal + 02a3)l’1 (01a1 =+ 02a3)1’2 » 0
(il) = (i) By cax = |+(c1a2 + caa4)x3 +(cra9 + coaq)xy| = {O O} _
0 0 »

p, one can verify caxc = ¢ and (cax)* = cax. Besides, R(z) C R(b) gives
x € bR. Consequently, a € R?(b 0 and z is a right (b, ¢)-core inverse of a.
(i) < (iii) is analogous to (i) < (ii) for ¢ = 1 — cax. O

It should be noted that p and ¢ are invariant in Theorem 3.5, under the
choice of z.

It is proved in Theorem 3.1 below that right w-core inverses are instances
of right (b, ¢)-core inverses. As a consequence, we get the matrix representa-
tion of right w-core inverses as follows.

Corollary 2.11. Let a,w € R. The following conditions are equivalent:
(i) a € RE, and x € R is a right w-core inverse of a.
(ii) There exists a projection p € R such that

a1 a2 (w1 W d [T X2
“Tlo o) YT lws w T T 0 0]
p p p
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where (aywy + asws)xy = p and (ajwy + aswsz)ry = 0.
(iii) There exists a projection q € R such that

a = , W= and x = ,
a3 Gy . Wz Wy q X3 T4 q

where (azwy + aqwy)zs = 0 and (azwe + agwy)ry =1 — q.

Following [7], an element a € R is Drazin invertible if there exists some
x € R such that ax = za, zax = x and a* = a"'z for some nonnegative
integer k. Such an x is called the Drazin inverse of a. It uniquely exists, and
is denoted by a”. The smallest nonnegative integer k is called the Drazin
index of a. If the Drazin index of a is 1, then a is called group invertible and
the group inverse of a is denoted by a#. RP and R* will stand for the sets
of all Drazin invertible and group invertible elements in R, respectively.

Let a € RP with the Drazin index k. Then a = ¢, + n, is called the core
nilpotent decomposition [11] of a, where ¢, = aa”a is the core part of a and
ne = (1 —aaP)a is the nilpotent part of a. Moreover, ¢, € R with ¢ = a?,
n'j =0 and c,n, = ngc, = 0.

The following theorem shows a similar result for right w-core inverses.

Theorem 2.12. Let a,w € R with a € RE,. Then aw = ay + az, where

(1) ay € R?7

(i) a3 = 0,

(111) a1a§ =0= o0 .

In addition, (aw)*a®, € R® with a right core inverse a%,,.
PROOF. Suppose a € RZ, with a right w-core inverse x. Then awza = a,
(awz)* = awx and awz? = x. Let a; = (aw)?*z and ay = aw(1 — awz). Then
aw = a; + ay. It is sufficient to prove (i) as (ii) and (iii) follow directly.

(i) We have

(1) ez = (aw)?z - * = awz = (a1z)*.

(2) a1ra; = awzra; = awx - (aw)*x = (aw)*z = a,.

(3) a12? = awx® = x.

Hence, a; € R? with a right core inverse a2,,. O

From [19] and Proposition 3.2 below, it is known that right core inverses,
Moore-Penrose inverses and right pseudo core inverses of a coincide with
right 1-core inverses of a, right a*-core inverses of a and right 1-core inverses

11
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of a¥, for some positive integer k, respectively. Moreover, a® is a right 1-core
inverse of a, (a")*a' is a right a*-core inverses of a and (a?)* is a right 1-core
inverses of a*. We hence have the following corollaries.

Corollary 2.13. Let a € R'. Then aa* = a, + as, where
(1) a; € Rq@,
(i) a3 = 0,
(111) a1a§ =0= Qo0 .
In addition, aa* € R® with a right core inverse (a')*a'.

Corollary 2.14. Let a € R® with I(a) = k. Then a* = a; + as, where
(1) a; € R?,
(ii) a3 =0,
(iii) a1a5 = 0 = agay.
In addition, a*™a® € R® with a right core inverse (a®)*.

T

3. Connection with several classes of generalized inverses

In this section, we show that right (b, c)-core inverses encompass right
inverses, right core inverses, right pseudo core inverses, right w-core inverses
and Moore-Penrose inverses by picking different b and ¢. As shown in The-
orems 3.1 and 3.8, for any nonnegative integers m,n satisfying m +n > 1,
the right inverse, the right core inverse, the right pseudo core inverse and the
right w-core inverse of a coincide with the right (1, 1)-core inverse of a, the
right (a", a)-core inverse of a™, the right (a", a*)-core inverse of a™, for some
positive integer k, and the right (a, a)-core inverse of w; the Moore-Penrose
inverse of a coincides with the right (a*, a*)-core inverse of a and that of the
right (a, a)-core inverse of a*.

Theorem 3.1. Let a,w € R and let m,n be nonnegative integers such that
m-+n>1. Then
(i) a is right invertible if and only if a is right (1,1)-core invertible. In
this case, a; ' = a?f(u).
(ii) a is right pseudo core invertible if and only if a™ is right (a
invertible, for some positive integer k. In this case, a® = a**™ 1(a

and (a™)® . 4y = (@P)FHm.
(iii) @ is right core invertible if and only if a™ is right (a”, a)-core invert-

ible. In this case, a? = a™ (™) ) and (a™)F n o = (a@)" .

" a¥)-core

,a
m)@
’,"7((1”,&’6)
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(iv) a s right w-core invertible if and only if w is right (a, a)-core invert-

ible. In this case, a, = wy, .

PROOF. (i) is clear.

(ii) For the “only if” part. Suppose a € R® with I(a) = k. Then there
exists some x € R such that aza® = a*, (ax)* = ax and az? = z, whence
ar = a-ar® = a’2* = --- = a"a" for arbitrary positive integer n. Let
y = xFt™ Then

(1) y = xk-‘rm = aqx? - Ik-i—m—l = gt xk-‘rm—l — anxk:-i-m—i-n c a"R.

(2) akery — akerl,ker = ar = (ak+my)*.
(3) a**™ya* = axak = a.
Hence, a™ € R?( ) and (a™)® = (ap)**m.

b an7ak r7(an7ak) -
For the “if” part. Given a™ € R® ), we have (a™® . . € a"R,
7’7(01 ’a)

r,(a™,a*
a”‘;*m(am)jj"@f(an,ak)a’g = a* and (a“m(am()f(an’ak))* = ak+m(am)f(an,ak), then
(@™)7 gn ay) = a"z for some z € R. Let x = ak+m_1(am)i°f(an’ak). Then

b= (@™ k= aF

k+m(am)?(an7ak) = (aker(am)?i(an@k))* = (ax)*.
aw® = A (a) 7 g gy 8O B iy = ) gy
(ak+m(am)f(anyak)ak)(am+"_1z) = a1t (a"z) = a“m_l(am)f(an’ak) = 1.

_ ktm—1( m\@
So, a € R®? and a? = a"*t™ (@) am oy

—~
[\

— — ~—
IS
8
|
S

k+m71(

(iii) is clear by (ii).

(iv) By Theorem 2.6 and [19, Theorem 2.5], one has that a € R%, if and
only if w € RI* and a € R(3} if and only if w € R and a € R(3} if and
only if w € RY, . Moreover, a#, = wl*a®3) = g8 = W0 a): O

Let a € R and let m,n be nonnegative integers such that m +n > 1.
From Theorem 3.1 (iii), we derive that a” is right core invertible if and only
if a™ is right (a®, a*)-core invertible, for some positive integer k.

According to the items (ii) and (iv) of Theorem 3.1, we can establish the
relation between right pseudo core inverses and right w-core inverses.

Proposition 3.2. Let a € R and let m be a nonnegative integer. Then a is
right pseudo core invertible if and only if a* is right a™-core invertible, for
some positive integer k. In this case, a® = "™ Y(a*)&,.. and (a¥)E,. =
(a@)ker

¢ .
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It is known that if a is right pseudo core invertible with I(a) = 1, then a is
right core invertible. As a consequence, the following relation between right
core inverses and right w-core inverses is clear. Therein, the cases m = 0 and
m = 1 were given in [19].

Corollary 3.3. Let a € R and let m be a nonnegative integer. Then a is
right core invertible if and only if a is right a™-core invertible. In this case,
a? = a"afm and af,m = (a®)™.

As a special case of Theorem 3.1 (iii) and Corollary 3.3, we have the
following corollary.

Corollary 3.4. Let a € R. The following statements are equivalent:
(i) a € RZ.
(i) a is right (a,a)-core invertible.
(iii) a is right (1, a)-core invertible.
(iv) 1 is right (a,a)-core invertible.
(V) a is right a-core invertible.
(vi) a is right 1-core invertible.
(vii) a is right (a,a*)-invertible.

@

.
In this case, a® = aa = aa® = @ (a.a%)
r e r,(a,a) r,(1,a)

aa) = aa®, = a7 = ay

We remark the fact that any A € M, (C) is right pseudo core invertible.
Applying Theorem 3.1 (ii) and Proposition 3.2, we get the following result in
complex matrices. It should be pointed that [19, Corollary 2.25] is the case

m = 1 of the item (ii) below.

Corollary 3.5. Let A € M,(C) with [(A) = k. Then

(i) A™ is right (A", A¥)-core invertible, for any nonnegative integers m,n
satisfying m +n > 1. In this case, (A®)5™ is a right (A", A¥)-core inverse
of A™.

(i) AF is right A™-core invertible, for any nonnegative integer m. In this
case, (A2)*+™ s q right A™-core inverse of AF.

As shown in Theorem 3.1 (iv), right w-core inverses of a coincides with

right (a, a)-core inverses of w. We obtain the following existence criterion of
right w-core inverses in rings.
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Corollary 3.6. Let a,w € R. The following conditions are equivalent:

(i) a € RE,.

(ii) There exists some x € aR such that awza = a, (awz)* = awx and
rawr = .

(iii) There exists some x € R such that awra = a, xR C aR and Rx =
Ra*.

(iv) There exists some x € R such that awra = a, xR C aR and 2° =
(a®)®.

(v) There ezists some x € R such that awxa = a, tR C aR and Rz C
Ra*.

(vi) There exists some x € R such that awza = a, xR C aR and (a*)" C
0
x.
(vii) There exist a projection p € R and an idempotent ¢ € R such that
aR C pR CawR, gR C aR and Rq O Raw.

In this case, a%,, = q(aw)p for any (aw)~ € (aw){1}.
As a consequence of Corollary 3.6, we have the following result.

Corollary 3.7. Let a € R. The following conditions are equivalent:
(i) a € R®.
(ii) There exists some x € aR such that axa = a, (ax)* = ax and xaxr = x.
(iii) There exists some x € R such that axa = a, xR C aR and Rx = Ra*.
(iv) There exists some x € R such that ara = a, xR C aR and 2° = (a*)°.
(v) There ezists some x € R such that axa = a, tR C aR and Rx C Ra*.
(vi) There exists some x € R such that axa = a, tR C aR and (a*)? C 2°.
(vii) There exist a projection p € R and an idempotent ¢ € R such that
qR C aR = pR and Rq O Ra.
In this case, a® = qa™p for any a~ € a{l}.

It was shown in [19, Theorem 2.21] that a is Moore-Penrose invertible if
and only if a is right a*-core invertible if and only if a* is right a-core invert-
ible. As right (b, ¢)-core invertible is right (b, ¢)-invertible, and hence right
invertible along an element. This allows us to derive several new existence
criteria for the Moore-Penrose inverse by right (b, ¢)-core inverses.

Theorem 3.8. Let a € R. The following statements are equivalent:

(i) a € R'.
(ii) a is right (a*,a*)-core invertible.
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(iii) a is right (a*, a*)-invertible.

(iv) a* is right (a,a)-core invertible.
(v) a* is right (a, a)-invertible.
(
(

vi) a is right a*-core invertible.
vii) a* is right a-core invertible.

PROOF. (i) < (vi) < (vii) by [19, Theorem 2.21].

(i) = (ii) Since @ € Rf, we have a* € R{!3}. Again, a € Rf guarantees a €
RI" by [15, Corollary 2.21 (iv)], which implies a € R Consequently,
a € Rf’f(a*’a*) by Theorem 2.6.

(ii) = (iii) by Theorem 2.6 (i) = (ii).

(iii) = (i) Given a € R"*) then a* € a*aa*R, whence a € Raa*a. One
can get a € R in terms of [16, Theorem 3.12].

(i) & (iv) & (v) follows dually since a € R if and only if a* € Rf. O

Theorem 3.9. Let a,b,c € R. Then a is right (b, c)-core invertible if and
only if ca is right (b, c*)-invertible. In this case, the right (b, c)-core inverse
of a coincides with the right (b, ¢*)-inverse of ca.

PROOF. Suppose that a is right (b, ¢)-core invertible with a right (b, ¢)-core
inverse . Then = € bR, caxc = ¢ and (cax)* = cazx. Thus, c*car =
c*(cax)* = (cazxc)* = ¢*, as required.

Conversely, let x = (ca)&b’c*). Then z € bR and c*cax = ¢*. Consequently,
one has (car)* = cax and ¢ = caxc, i.e., a is right (b, c)-core invertible.
Moreover, x is a right (b, ¢)-core inverse of a. U

Recall that an element a € R is strongly right (b, ¢)-invertible if ¢ € cabR
and cab is regular, or equivalently if there exists x € R such that zax = x,
xR C bR and Rx = Rc, in which case, any such x will be called a strongly
right (b, ¢)-inverse of a. It is clear that every strongly right (b, ¢)-invertible
element a must be right (b, ¢)-invertible. Moreover, every strongly right (b, ¢)-
inverse of a is a right (b, ¢)-inverse of a.

Applying Theorem 3.9, one knows that if ca is strongly right (b,c*)-
invertible, then a is right (b, ¢)-core invertible. The following theorem shows
that the converse also holds.

Theorem 3.10. Let a,b,c € R. Then a is right (b, c)-core invertible if and
only if ca is strongly right (b, ¢*)-invertible. In this case, every strongly right
(b, ¢*)-inverse of ca is a right (b, c)-core inverse of a.
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PROOF. The “if” part is clear, and every strongly right (b, ¢*)-inverse of ca
is a right (b, ¢)-core inverse of a in view of Theorem 3.9.

For the “only if” part. Suppose that a is right (b, ¢)-core invertible with a
right (b, ¢)-core inverse y. Then y € bR, cayc = ¢ and (cay)* = cay, whence
y = bt for some t € R. Consequently, ¢* = c*cay = c*cabt € c*cabR, and
hence, c*cab = c*cabt - (c*cabt)* - ab = c*cab - t(abt)* - ¢*cab, which guarantees
c*cab € R™. So, ca is strongly right (b, ¢*)-invertible. O

In terms of Corollary 3.4, Theorems 3.8 and 3.10, we have the following
corollaries.

Corollary 3.11. Let a € R. The following statements are equivalent:
(i) a € R®.
(i) a® is strongly right (a,a*)-invertible.
(iii) a® is strongly right (1,a*)-invertible.
(iv) a is strongly right (a,a*)-invertible.

Corollary 3.12. Let a € R. The following statements are equivalent:
(i) a € RT.
(ii) a*a is strongly right (a*,a)-invertible.
(iii) aa* is strongly right (a,a*)-invertible.

At the end of this section, a schema is provided to present the relations
between right (b, ¢)-core inverses and several other (right) generalized invers-

€s.
right inverses
strongly right
b obwv. (b, c)-inverses
e 3.10
right [19] obv.
core inverses \
by 3.3 “fl'?:gtre - (bJr;g)]:’}ore = b,c riir:fttarses
5 inverses inverses (b.)-
right pseudo
core inverses
[19] abv.
right
Moore-Penrose Mary’s inverses
inverses

29 Jul 2024 02:48:52 PDT
240321-ZhuHuihui Version 2 - Submitted to Rocky Mountain J. Math.



ACKNOWLEDGMENTS

The authors are highly grateful to the referee for his/her valuable com-
ments and suggestions which greatly improved this paper. This research
is supported by the National Natural Science Foundation of China (No.
11801124).

References

[1] O.M. Baksalary, G. Trenkler, Core inverse of matrices, Linear Multilin-
ear Algebra 58 (2010) 681-697.

[2] J. Benitez, E. Boasso, The inverse along an element in rings, Electron.
J. Linear Algebra 31 (2016) 572-592.

[3] J. Benitez, E. Boasso, The inverse along an element in rings with an

involution, Banach algebras and C*-algebras, Linear Multilinear Algebra
65 (2017) 284-299.

[4] D.S. Cvetkovié-lié, Y.M. Wei, Algebraic properties of generalized in-
verses, Series: Developments in Mathematics, Vol. 52, Springer, 2017.

[5] M.P. Drazin, A class of outer generalized inverses, Linear Algebra Appl.
436 (2012) 1909-1923.

[6] M.P. Drazin, Left and right generalized inverses, Linear Algebra Appl.
510 (2016) 64-78.

[7] M.P. Drazin, Pseudo-inverses in associative rings and semigroups, Amer.
Math. Monthly 65 (1958) 506-514.

[8] K. Manjunatha Prasad, K.S. Mohana, Core-EP inverse, Linear Multi-
linear Algebra 62 (2014) 792-802.

[9] X. Mary, On generalized inverses and Green’s relations, Linear Algebra
Appl. 434 (2011) 1836-1844.

[10] X. Mary, P. Patricio, Generalized inverses modulo H in semigroups and
rings, Linear Multilinear Algebra 61 (2013) 1130-1135.

[11] P. Patricio, R. Puystjens, Drazin-Moore-Penrose invertibility in rings,
Linear Algebra Appl. 389 (2004) 159-173.

18

29 Jul 2024 02:48:52 PDT
240321-ZhuHuihui Version 2 - Submitted to Rocky Mountain J. Math.



[12] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc.
51 (1955) 406-413.

[13] D.S. Rakié¢, N.C. Din¢i¢, D.S. Djordjevié¢, Group, Moore-Penrose, core
and dual core inverse in rings with involution, Linear Algebra Appl. 463
(2014) 115-133.

[14] H.H. Zhu, The (b, ¢)-core inverse and its dual in semigroups with invo-
lution, J. Pure Appl. Algebra 228 (2024) 107526.

[15] H.H. Zhu, J.L. Chen, P. Patricio, Further results on the inverse along an
element in semigroups and rings, Linear Multilinear Algebra 64 (2016)
393-403.

[16] H.H. Zhu, J.L. Chen, P. Patricio, X. Mary, Centralizer’s applications to
the inverse along an element, Appl. Math. Comput. 315 (2017) 27-33.

[17) H.H. Zhu, C.C. Wang, Q-W. Wang, Left w-core inverses in rings with in-
volution, Mediterr. J. Math. 20 (2023) https://doi.org/10.1007 /s00009-
023-025410-9.

[18] H.H. Zhu, L.Y. Wu, J.L. Chen, A new class of generalized inverses in
semigroups and rings with involution, Comm. Algebra 51 (2023) 2098-
2113.

[19] H.H. Zhu, LY. Wu, D. Mosi¢, One-sided w-core inverses in rings with
involution, Linear Multilinear Algebra 71 (2023) 528-544.

[20] H.H. Zhu, X.X. Zhang, J.L.. Chen, Generalized inverses of a factorization
in a ring with involution, Linear Algebra Appl. 472 (2015) 142-150.

19

29 Jul 2024 02:48:52 PDT
240321-ZhuHuihui Version 2 - Submitted to Rocky Mountain J. Math.



