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Abstract

For any a, b, c of a ∗-ring R, the element a is called right (b, c)-core invertible
if there exists some x ∈ bR such that caxc = c and (cax)∗ = cax. In this
paper, several criteria of right (b, c)-core inverses are established. It is shown
that a is right (b, c)-core invertible if and only if a is right (b, c)-invertible
and c is {1, 3}-invertible. In addition, the matrix representation of right
(b, c)-core inverses is presented. Finally, we present the relations of right
(b, c)-core inverses and other generalized inverses. As applications, several
known results on right core inverses and right w-core inverses are given as
corollaries.
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1. Introduction

The inverse along an element [9] and the (b, c)-inverse [5] are two impor-
tant classes of outer generalized inverses, which recover the Drazin inverse
[7] and the Moore-Penrose inverse [12]. They are intensively investigated by
lots of researchers (see [2, 3, 4, 10]). In 2016, one-sided inverses along an
element [15] were introduced. Shortly afterwards, one-sided (b, c)-inverses [6]
were given to extend one-sided inverses along an element and (b, c)-inverses.

In 2023, the present author Zhu in [14] seeking new ways to combine (b, c)-
inverses and {1, 3}-inverses to obtain the (b, c)-core inverse in the context of
∗-semigroups, generalizing the core inverse [1], the core-EP inverse [8] and
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the Moore-Penrose inverse, the w-core inverse [18], the right and left w-core
inverse [17, 19].

In this paper, we aim to introduce and investigate right (b, c)-core inverses
in a ∗-ring. This provides a framework for the theory of generalized inverses.

The paper is organized as follows. In Section 2, for any a, b, c of a ∗-ring
R, we define a right (b, c)-core inverse of a, and investigate the corresponding
properties. For instance, it is shown that a is right (b, c)-core invertible if
and only if a is right (b, c)-invertible and c is {1, 3}-invertible. Moreover,

a#©
r,(b,c) = a

(b,c)
r c(1,3). Then, we characterize right (b, c)-core inverses in terms

of properties of the left annihilators and ideals. Further, we present the ma-
trix representations of right (b, c)-core inverses by the Pierce decomposition.
In Section 3, we state that several generalized inverses, that is right invers-
es, right core inverses, right pseudo core inverses, right w-core inverses and
Moore–Penrose inverses, are instances of right (b, c)-core inverses. Precisely,
for any nonnegative integers m,n satisfying m + n ≥ 1, we establish the
following equivalences in a ∗-ring

(1) a is right invertible if and only if a is right (1, 1)-core invertible;
(2) a is right core invertible if and only if am is right (an, a)-core invertible;
(3) a is right pseudo core invertible if and only if am is right (an, ak)-core

invertible, for some positive integer k;
(4) a is right w-core invertible if and only if w is right (a, a)-core invertible;
(5) a is Moore-Penrose invertible if and only if a is right (a∗, a∗)-core

invertible if and only if a∗ is right (a, a)-core invertible.
As applications, we give several characterizations for right core inverses

and right w-core inverses and establish the connection between right pseudo
core inverses and right w-core inverses. The relation schema of right (b, c)-
core inverses and the aforementioned (right) inverses is provided as well.

Let us now recall several notions of generalized inverses.
Let R be an associative ring with unity 1. An element a ∈ R is called

(von Neumann) regular if there exists some x ∈ R such that axa = a. Such
an x is called an inner inverse or a {1}-inverse of a and denoted by a−. The
symbol a{1} stands for the set of all inner inverses of a. The set of all regular
elements in R is denoted by R−.

In [15], Zhu et al. extended inverses along an element to one-sided cases.
Let a, d ∈ R. An element a is called left invertible along d if there exists
some x ∈ R such that xad = d and x ∈ Rd. Such an element x is called
a left inverse of a along d, and is denoted by a

‖d
l . Dually, an element a is
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called right invertible along d if there exists some y ∈ R such that day = d
and y ∈ dR. Such an element y is called a right inverse of a along d, and is
denoted by a

‖d
r . We use the symbols R

‖d
l and R

‖d
r to denote the sets of all left

and right invertible elements along d in R, respectively. According to [15,
Theorems 2.3 and 2.4], a is left invertible along d if and only if d ∈ Rdad,
and a is right invertible along d if and only if d ∈ dadR.

In 2016, Drazin defined one-sided (b, c)-inverses [6]. Let a, b, c ∈ R. We
call a left (b, c)-invertible if b ∈ Rcab, or equivalently if there exists x ∈ Rc
such that xab = b, in which case, any such x will be called a left (b, c)-inverse

of a and denoted by a
(b,c)
l . Dually, a is right (b, c)-invertible if c ∈ cabR, or

equivalently if there exists y ∈ bR such that cay = c, in which case, any such
y will be called a right (b, c)-inverse of a and denoted by a

(b,c)
r . In particular,

a is called (b, c)-invertible [5] if it is both left and right (b, c)-invertible. We

denote by R
(b,c)
l , R

(b,c)
r and R(b,c) the sets of all left (b, c)-invertible, right

(b, c)-invertible and (b, c)-invertible elements in R. It should be pointed out
that a is right (d, d)-invertible if and only if it is right invertible along d.
Moreover, the right (d, d)-inverse of a is exactly the right inverse of a along
d.

A map ∗ : R → R is an involution of R if it satisfies (x∗)∗ = x, (xy)∗ =
y∗x∗ and (x + y)∗ = x∗ + y∗ for all x, y ∈ R. Throughout this section, any
ring R is assumed to be a unital ∗-ring, that is a ring R with unity 1 and an
involution ∗.

An element a ∈ R is said to be Moore-Penrose invertible [12] if there
exists some x ∈ R such that axa = a, xax = x, (ax)∗ = ax and (xa)∗ = xa.
Such an x is called a Moore-Penrose inverse of a. It is unique if it exists,
and is denoted by a†. Generally, any solution x satisfying the equations
axa = a and (ax)∗ = ax (resp., (xa)∗ = xa) is called a {1, 3}-inverse (resp.,
{1, 4}-inverse) of a. The symbols a(1,3) and a(1,4) denote a {1, 3}-inverse and
a {1, 4}-inverse of a, respectively. We denote by a{1, 3} and a{1, 4} the
sets of all {1, 3}-inverses and {1, 4}-inverses of a. In general, the sets of all
{1, 3}-invertible, {1, 4}-invertible and Moore-Penrose invertible elements in
R will be denoted by R{1,3}, R{1,4} and R†, respectively. It is known that
a is Moore-Penrose invertible if and only if it is both {1, 3}-invertible and
{1, 4}-invertible. An element p ∈ R is called a projection if p2 = p = p∗.

An element a ∈ R is right pseudo core invertible if there exist x ∈ R and
positive integer k such that axak = ak, (ax)∗ = ax and ax2 = x. Such an x
is called a right pseudo core inverse of a and denoted by aD©

r . The smallest
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positive integer k, denoted by I(a), is called the right pseudo core index of
a. In particular, a is called right core invertible when a is right pseudo core
invertible with I(a) = 1. In general, R#©

r and RD©
r denote the sets of all right

core and right pseudo core invertible elements in R.
The right w-core inverse [19] was introduced in R, which unifies right

core inverses, right pseudo core inverses and Moore–Penrose inverses. For
any a, w ∈ R, we call a right w-core invertible if there exists some x ∈ R
such that awxa = a, (awx)∗ = awx and awx2 = x. Any such x is called a
right w-core inverse of a, and is denoted by a#©

r,w. The symbol R#©
r,w denotes

the set of all right w-core invertible elements in R. It was proved that a is
right w-core invertible if and only if w is right invertible along a and a is
{1, 3}-invertible, in which case, a#©

r,w = w
‖a
r a(1,3).

The (b, c)-core inverse was defined in a ∗-monoid M in [14]. For the
convenience, we next state this notion in R. Let a, b, c ∈ R. The element
a is called (b, c)-core invertible if there exists some x ∈ R such that caxc =
c, xR = bR and Rx = Rc∗. The (b, c)-core inverse of a is uniquely determined
(if it exists) and is denoted by a#©

(b,c). As usual, we denote by R#©
(b,c) the set of

all (b, c)-core invertible elements in R. It was proved in [14] that the (b, c)-
core inverse x of a is the unique solution to the system x ∈ bR, caxc = c,
(cax)∗ = cax and xcab = b. It follows from [14, Theorem 2.6] that a is (b, c)-
core invertible if and only if a is (b, c)-invertible and c is {1, 3}-invertible.

2. Right (b, c)-core inverses

Our main goal in this section is to introduce the right (b, c)-core inverse
in a unital ∗-ring R, and to give its several characterizations.

Definition 2.1. Let a, b, c ∈ R. We call a right (b, c)-core invertible if there
exists some x ∈ bR such that caxc = c and (cax)∗ = cax. Such an x is called
a right (b, c)-core inverse of a.

By the symbol a#©
r,(b,c) we denote a right (b, c)-core inverse of a. An element

a ∈ R could have different right (b, c)-core inverses. For instance, let R be a
unital ∗-ring. Take c = 0 6= b = 1 ∈ R. For any x ∈ R, we have caxc = c and
(cax)∗ = cax. Hence, any x ∈ R is a right (1, 0)-core inverse of a. However,
the product caa#©

r,(b,c) is invariant. Indeed, suppose z1, z2 ∈ R are any two

right (b, c)-core inverses of a. It is known that cx = cy for any x, y ∈ c{1, 3}
(see, e.g., [18, Remark 2.10]). Since az1, az2 ∈ c{1, 3}, we have caz1 = caz2.
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The symbol R#©
r,(b,c) stands for the set of all right (b, c)-core invertible elements

in R.
It is noteworthy to mention that every (b, c)-core invertible element is

right (b, c)-core invertible. The converse statement is not valid in general.
For instance, let R be the same as that of the previous example. Take
c = 0 6= b ∈ R and x ∈ bR, then a is right (b, c)-core invertible. Clearly,
xcab = 0 6= b, and so that a is not (b, c)-core invertible.

Given any a ∈ R, we write a0 = {x ∈ R : ax = 0}. It is known that (see,
e.g., [13]) Ra ⊆ Rb ensures b0 ⊆ a0 for any a, b ∈ R.

A list of characterizations for right (b, c)-core inverses are given by ideals
and annihilators.

Theorem 2.2. Let a, b, c ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,(b,c).

(ii) There exists some x ∈ bR such that caxc = c, (cax)∗ = cax and
xcax = x.

(iii) There exists some x ∈ R such that caxc = c, xR ⊆ bR and Rx = Rc∗.
(iv) There exists some x ∈ R such that caxc = c, xR ⊆ bR and x0 = (c∗)0.
(v) There exists some x ∈ R such that caxc = c, xR ⊆ bR and Rx ⊆ Rc∗.
(vi) There exists some x ∈ R such that caxc = c, xR ⊆ bR and (c∗)0 ⊆ x0.
(vii) There exist a projection p ∈ R and an idempotent q ∈ R such that

cR ⊆ pR ⊆ caR, qR ⊆ bR and Rq ⊇ Rca.
In this case, a#©

r,(b,c) = q(ca)−p for any (ca)− ∈ (ca){1}.

Proof. (iii) ⇒ (iv) and (v) ⇒ (vi) are obvious.
(i) ⇒ (ii) Assume a ∈ R#©

r,(b,c). Then there exists some y ∈ bR such that

cayc = c and (cay)∗ = cay. Let x = ycay. We get cax = ca(ycay) =
(cayc)ay = cay = (cax)∗, caxc = cayc = c and xcax = xcay = (ycay)cay =
ycay = x.

(ii) ⇒ (iii) From caxc = c and (cax)∗ = cax, it follows that c∗ = c∗cax ∈
Rx. Also, xcax = x implies x = x(cax)∗ = xx∗a∗c∗ ∈ Rc∗, as required.

(iv) ⇒ (v) Since c∗ = c∗(cax)∗, we have 1− (cax)∗ ∈ (c∗)0 = x0, so that
x = x(cax)∗ = xx∗a∗c∗ ∈ Rc∗.

(vi) ⇒ (vii) By c∗ = c∗(cax)∗ and (c∗)0 ⊆ x0, we obtain x = x(cax)∗.
This in turn gives cax = cax(cax)∗ = (cax)∗. Set p = cax and q = xca, then
p2 = p = p∗ and q2 = q. Therefore, cR = pcR ⊆ pR ⊆ caR, qR ⊆ bR and
Rca = Rcaq ⊆ Rq.
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(vii) ⇒ (i) Given Rq ⊇ Rca, then ca = caq. From cR ⊆ pR ⊆ caR, it
follows that c = pc and p = caz for some z ∈ R. Therefore, ca = pca = cazca,
so that ca ∈ R−. Let x = q(ca)−p for any (ca)− ∈ (ca){1}. Then

(1) x = q(ca)−p ∈ bR by qR ⊆ bR.
(2) cax = caq(ca)−p = ca(ca)−caz = caz = p = (cax)∗.
(3) caxc = pc = c.
Thus, a ∈ R#©

r,(b,c) and a#©
r,(b,c) = q(ca)−p for any (ca)− ∈ (ca){1}. �

Lemma 2.3. [20, Lemma 2.2] Let a ∈ R. Then
(i) a ∈ R{1,3} if and only if a ∈ Ra∗a. In particular, if xa∗a = a for some

x ∈ R, then x∗ is a {1, 3}-inverse of a.
(ii) a ∈ R{1,4} if and only if a ∈ aa∗R. In particular, if aa∗y = a for some

y ∈ R, then y∗ is a {1, 4}-inverse of a.

Suppose a ∈ R#©
r,(b,c) with a right (b, c)-core inverse x. Then caxc = c, we

hence deduce that cax = (cax)n for any positive integer n. It is concluded
that a ∈ R#©

r,(b,c) implies x ∈ bR, (cax)nc = c and ((cax)n)∗ = (cax)n for any
positive integer n. One may ask whether the converse implication holds. The
following theorem gives a positive answer.

Theorem 2.4. Let a, b, c ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,(b,c).

(ii) c ∈ R(cab)∗c.
(iii) c ∈ cabR ∩Rc∗c.
(iv) There exists some x ∈ bR such that (cax)nc = c and ((cax)n)∗ =

(cax)n for any positive integer n.
(v) There exists some x ∈ bR such that (cax)nc = c and ((cax)n)∗ =

(cax)n for some positive integer n.
In this case, a#©

r,(b,c) = x(cax)n−1.

Proof. (i) ⇒ (ii) Given a ∈ R#©
r,(b,c), then there exists some x ∈ bR such

that caxc = c, (cax)∗ = cax. As a result, c = caxc = (cax)∗c ∈ (cabR)∗c =
R(cab)∗c.

(ii) ⇔ (iii) by [14, Lemma 2.8 (I)].
(iii) ⇒ (iv) As c ∈ cabR ∩ Rc∗c, then c = cabt = sc∗c for some t, s ∈ R,

in which case, s∗ ∈ c{1, 3} by Lemma 2.3. Let x = bts∗. Then x ∈ bR,
cax = cabts∗ = cs∗ = (cax)∗ and caxc = cs∗c = c. One hence gets cax =
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caxc · ax = (cax)2 = · · · = (cax)n for any positive integer n. In consequence,
c = caxc = (cax)nc and (cax)n = cax = ((cax)n)∗.

(iv) ⇒ (v) is clear.
(v) ⇒ (i) Suppose that there exists some x ∈ bR such that (cax)nc = c

and ((cax)n)∗ = (cax)n for some positive integer n. Then y = x(cax)n−1 is a
right (b, c)-core inverse of a. Indeed,

(1) y = x(cax)n−1 ∈ bR.
(2) cayc = (cax)nc = c.
(3) cay = (cax)n = ((cax)n)∗ = (cay)∗. �

Let us present a lemma which will be useful in the upcoming results.

Lemma 2.5. [6, Definition 1.2] Let a, b, c ∈ R. Then

(i) a is left (b, c)-invertible if and only if b ∈ Rcab. In this case, a
(b,c)
l = sc,

where s ∈ R satisfies b = scab.
(ii) a is right (b, c)-invertible if and only if c ∈ cabR. In this case, a

(b,c)
r =

bt, where t ∈ R satisfies c = cabt.

Let a, b, c ∈ R. From [14, Theorem 2.6], Zhu showed that a is (b, c)-
core invertible if and only if a is (b, c)-invertible and c (ca or cab) is {1, 3}-
invertible. An analogous result on right (b, c)-core inverses can be obtained.

Theorem 2.6. Let a, b, c ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,(b,c).

(ii) a ∈ R
(b,c)
r and c ∈ R{1,3}.

(iii) a ∈ R
(b,c)
r and ca ∈ R{1,3}.

(iv) a ∈ R
(b,c)
r and cab ∈ R{1,3}.

In this case, a#©
r,(b,c) = a

(b,c)
r c(1,3) = a

(b,c)
r a(ca)(1,3) = b(cab)(1,3)cab(cab)(1,3).

Proof. (i) ⇔ (ii) directly by Lemmas 2.3, 2.5 and Theorem 2.4 (i) ⇔ (iii).
(ii)⇒ (iii) As c ∈ R{1,3}, one gets c ∈ Rc∗c by Lemma 2.3. This gives ca ∈

Rc∗ca, which together with a ∈ R
(b,c)
r ensures ca ∈ Rc∗ca ⊆ R(cabR)∗ca =

R(cab)∗ca ⊆ R(ca)∗ca. So, ca ∈ R{1,3}.
(iii) ⇒ (iv) can be proved by a similar way of (ii) ⇒ (iii).
(iv) ⇒ (ii) Given cab ∈ R{1,3}, then cab ∈ R(cab)∗cab by Lemma 2.3.

From a ∈ R
(b,c)
r , we get c ∈ cabR by Lemma 2.5. Then there exists some t ∈ R

such that c = cabt ∈ R(cab)∗cabt = R(cab)∗c ⊆ Rc∗c, so that c ∈ R{1,3}.
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We next show that y = a
(b,c)
r c(1,3) is a right (b, c)-core inverse of a.

(1) y = a
(b,c)
r c(1,3) ∈ bR.

(2) cay = caa
(b,c)
r c(1,3) = cc(1,3) = (cay)∗.

(3) cayc = cc(1,3)c = c.
In addition, it is necessary to prove a(ca)(1,3) ∈ c{1, 3}. Indeed, ca(ca)(1,3) =

(ca(ca)(1,3))∗, and ca(ca)(1,3)c = ca(ca)(1,3)cabt = cabt = c by the impli-
cation of (iv) ⇒ (ii). Analogously, ab(cab)(1,3) ∈ c{1, 3}. We hence have

c = cab(cab)(1,3)c, and whence a
(b,c)
r = b(cab)(1,3)c by Lemma 2.5.

So, a#©
r,(b,c) = a

(b,c)
r c(1,3) = a

(b,c)
r a(ca)(1,3) = b(cab)(1,3)cab(cab)(1,3). �

Suppose a ∈ R#©
r,(b,c). Theorem 2.6 guarantees cab ∈ R{1,3}, and therefore,

cab ∈ R−. Again as a ∈ R#©
r,(b,c), then, by Theorem 2.4, c ∈ cabR and c = cabt

for some t ∈ R. It follows that c = cab(cab)−cabt = cab(cab)−c for any

(cab)− ∈ (cab){1}. This implies a
(b,c)
r = b(cab)−c from Lemma 2.5. Hence,

another representation of a#©
r,(b,c) can be presented.

Proposition 2.7. Let a, b, c ∈ R with a ∈ R#©
r,(b,c). Then a#©

r,(b,c) = b(cab)−cc(1,3),

for any (cab)− ∈ (cab){1} and c(1,3) ∈ c{1, 3}.

Remark 2.8. In Theorem 2.4, the right (b, c)-core inverse of a can be rep-
resented as bz∗cabz∗ provided that z ∈ R satisfies c = z(cab)∗c by Theorem
2.6. Indeed, since c = z(cab)∗c = z(ab)∗c∗c ∈ Rc∗c, we have abz∗ ∈ c{1, 3}
by Lemma 2.3. Thus, c = cabz∗c ∈ cabR, it follows that a

(b,c)
r = bz∗c from

Lemma 2.5. So, a#©
r,(b,c) = a

(b,c)
r c(1,3) = bz∗cabz∗ by Theorem 2.6.

Characterizations for (b, c)-core inverses are described in terms of proper-
ties of the left (right) annihilators and ideals in [14]. It was shown that
a ∈ R#©

(b,c) if and only if R = R(cab)∗ ⊕ 0c = Rca ⊕ 0b if and only if

R = R(cab)∗ + 0c = Rca + 0b. Inspired by this, we consider to derive the
characterization for right (b, c)-core inverse of a in R.

Theorem 2.9. Let a, b, c ∈ R. Then the following statements are equivalent:
(i) a ∈ R#©

r,(b,c).

(ii) R = R(cab)∗ ⊕ 0c.
(iii) R = R(cab)∗ + 0c.
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Proof. (i) ⇒ (ii) Since a ∈ R#©
r,(b,c), we have c ∈ R(cab)∗c by Theorem 2.4,

hence c = r(cab)∗c = rb∗a∗c∗c for some r ∈ R and 1− r(cab)∗ ∈ 0c. For any
s ∈ R, we have s = s[(1 − r(cab)∗) + r(cab)∗] = s(1 − r(cab)∗) + sr(cab)∗ ∈
0c + R(cab)∗, so that R = 0c + R(cab)∗. Note also that abr∗ ∈ c{1, 3}. Then
for any z ∈ R(cab)∗ ∩ 0c, then zc = 0 and there exists some t ∈ R such that
z = t(cab)∗ = t(cc(1,3)cab)∗ = t(cabr∗cab)∗ = t(cab)∗(cabr∗)∗ = zcabr∗ = 0.
So, R = R(cab)∗ ⊕ 0c.

(ii) ⇒ (iii) is trivial.
(iii)⇒ (i) Given R = R(cab)∗+0c, then c ∈ Rc ⊆ R(cab)∗c. So, a ∈ R#©

r,(b,c)

by Theorem 2.4. �

For any p2 = p ∈ R, any element a ∈ R can be written as

a = pap + pa(1− p) + (1− p)ap + (1− p)a(1− p)

or the matrix form

a =

[
a1 a2
a3 a4

]
p

,

where a1 = pap, a2 = pa(1 − p), a3 = (1 − p)ap and a4 = (1 − p)a(1 − p).
The above decomposition is well known as the Pierce decomposition.

If p2 = p = p∗, then

a∗ =

[
a∗1 a∗3
a∗2 a∗4

]
p

.

We next give the matrix representations of right (b, c)-core inverses.

Theorem 2.10. Let a, b, c ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,(b,c) and x ∈ R is a right (b, c)-core inverse of a.

(ii) There exists a projection p ∈ R such that

a =

[
a1 a2
a3 a4

]
p

, b =

[
b1 b2
b3 b4

]
p

, c =

[
c1 c2
0 0

]
p

and x =

[
x1 x2

x3 x4

]
p

, (2.1)

where (c1a1+c2a3)x1+(c1a2+c2a4)x3 = p, (c1a1+c2a3)x2+(c1a2+c2a4)x4 = 0
and R(x) ⊆ R(b) (R(b) denotes the column space of b).

(iii) There exists a projection q ∈ R such that

a =

[
a1 a2
a3 a4

]
q

, b =

[
b1 b2
b3 b4

]
q

, c =

[
0 0
c3 c4

]
q

and x =

[
x1 x2

x3 x4

]
q

,
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where (c3a1+c4a3)x1+(c3a2+c4a4)x3 = 0, (c3a1+c4a3)x2+(c3a2+c4a4)x4 =
1− q and R(x) ⊆ R(b).

Proof. (i) ⇒ (ii) Suppose a ∈ R#©
r,(b,c) with a right (b, c)-core inverse x.

Then x ∈ bR, caxc = c and (cax)∗ = cax. Let p = cax. Then p2 = p = p∗.
So, a, b, c and x can be represented as (2.1). From x ∈ bR, it follows that
R(x) ⊆ R(b). By the Pierce decomposition, we have

(c1a1 + c2a3)x1 + (c1a2 + c2a4)x3

= (pcp · pap + pc(1− p) · (1− p)ap)pxp

+(pcp · pa(1− p) + pc(1− p) · (1− p)a(1− p))(1− p)xp

= (cpap + c(1− p)ap)pxp + (cpa(1− p) + c(1− p)a(1− p))(1− p)xp

= capxp + ca(1− p)xp

= caxp = p2

= p.

The equality (c1a1 + c2a3)x2 + (c1a2 + c2a4)x4 = 0 can be proved similarly.

(ii) ⇒ (i) By cax =

 (c1a1 + c2a3)x1 (c1a1 + c2a3)x2

+(c1a2 + c2a4)x3 +(c1a2 + c2a4)x4

0 0


p

=

[
p 0
0 0

]
p

=

p, one can verify caxc = c and (cax)∗ = cax. Besides, R(x) ⊆ R(b) gives
x ∈ bR. Consequently, a ∈ R#©

r,(b,c) and x is a right (b, c)-core inverse of a.

(i) ⇔ (iii) is analogous to (i) ⇔ (ii) for q = 1− cax. �

It should be noted that p and q are invariant in Theorem 3.5, under the
choice of x.

It is proved in Theorem 3.1 below that right w-core inverses are instances
of right (b, c)-core inverses. As a consequence, we get the matrix representa-
tion of right w-core inverses as follows.

Corollary 2.11. Let a, w ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,w and x ∈ R is a right w-core inverse of a.
(ii) There exists a projection p ∈ R such that

a =

[
a1 a2
0 0

]
p

, w =

[
w1 w2

w3 w4

]
p

and x =

[
x1 x2

0 0

]
p

,
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where (a1w1 + a2w3)x1 = p and (a1w1 + a2w3)x2 = 0.
(iii) There exists a projection q ∈ R such that

a =

[
0 0
a3 a4

]
q

, w =

[
w1 w2

w3 w4

]
q

and x =

[
0 0
x3 x4

]
q

,

where (a3w2 + a4w4)x3 = 0 and (a3w2 + a4w4)x4 = 1− q.

Following [7], an element a ∈ R is Drazin invertible if there exists some
x ∈ R such that ax = xa, xax = x and ak = ak+1x for some nonnegative
integer k. Such an x is called the Drazin inverse of a. It uniquely exists, and
is denoted by aD. The smallest nonnegative integer k is called the Drazin
index of a. If the Drazin index of a is 1, then a is called group invertible and
the group inverse of a is denoted by a#. RD and R# will stand for the sets
of all Drazin invertible and group invertible elements in R, respectively.

Let a ∈ RD with the Drazin index k. Then a = ca + na is called the core
nilpotent decomposition [11] of a, where ca = aaDa is the core part of a and
na = (1−aaD)a is the nilpotent part of a. Moreover, ca ∈ R# with c#a = aD,
nk
a = 0 and cana = naca = 0.

The following theorem shows a similar result for right w-core inverses.

Theorem 2.12. Let a, w ∈ R with a ∈ R#©
r,w. Then aw = a1 + a2, where

(i) a1 ∈ R#©
r ,

(ii) a22 = 0,
(iii) a1a

∗
2 = 0 = a2a1.

In addition, (aw)2a#©
r,w ∈ R#©

r with a right core inverse a#©
r,w.

Proof. Suppose a ∈ R#©
r,w with a right w-core inverse x. Then awxa = a,

(awx)∗ = awx and awx2 = x. Let a1 = (aw)2x and a2 = aw(1−awx). Then
aw = a1 + a2. It is sufficient to prove (i) as (ii) and (iii) follow directly.

(i) We have
(1) a1x = (aw)2x · x = awx = (a1x)∗.
(2) a1xa1 = awxa1 = awx · (aw)2x = (aw)2x = a1.
(3) a1x

2 = awx2 = x.
Hence, a1 ∈ R#©

r with a right core inverse a#©
r,w. �

From [19] and Proposition 3.2 below, it is known that right core inverses,
Moore-Penrose inverses and right pseudo core inverses of a coincide with
right 1-core inverses of a, right a∗-core inverses of a and right 1-core inverses
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of ak, for some positive integer k, respectively. Moreover, a#©
r is a right 1-core

inverse of a, (a†)∗a† is a right a∗-core inverses of a and (aD©
r )k is a right 1-core

inverses of ak. We hence have the following corollaries.

Corollary 2.13. Let a ∈ R†. Then aa∗ = a1 + a2, where
(i) a1 ∈ R#©

r ,
(ii) a22 = 0,
(iii) a1a

∗
2 = 0 = a2a1.

In addition, aa∗ ∈ R#©
r with a right core inverse (a†)∗a†.

Corollary 2.14. Let a ∈ RD©
r with I(a) = k. Then ak = a1 + a2, where

(i) a1 ∈ R#©
r ,

(ii) a22 = 0,
(iii) a1a

∗
2 = 0 = a2a1.

In addition, ak+1aD©
r ∈ R#©

r with a right core inverse (aD©
r )k.

3. Connection with several classes of generalized inverses

In this section, we show that right (b, c)-core inverses encompass right
inverses, right core inverses, right pseudo core inverses, right w-core inverses
and Moore-Penrose inverses by picking different b and c. As shown in The-
orems 3.1 and 3.8, for any nonnegative integers m,n satisfying m + n ≥ 1,
the right inverse, the right core inverse, the right pseudo core inverse and the
right w-core inverse of a coincide with the right (1, 1)-core inverse of a, the
right (an, a)-core inverse of am, the right (an, ak)-core inverse of am, for some
positive integer k, and the right (a, a)-core inverse of w; the Moore-Penrose
inverse of a coincides with the right (a∗, a∗)-core inverse of a and that of the
right (a, a)-core inverse of a∗.

Theorem 3.1. Let a, w ∈ R and let m,n be nonnegative integers such that
m + n ≥ 1. Then

(i) a is right invertible if and only if a is right (1, 1)-core invertible. In
this case, a−1r = a#©

r,(1,1).

(ii) a is right pseudo core invertible if and only if am is right (an, ak)-core
invertible, for some positive integer k. In this case, aD©

r = ak+m−1(am)#©
r,(an,ak)

and (am)#©
r,(an,ak)

= (aD©
r )k+m.

(iii) a is right core invertible if and only if am is right (an, a)-core invert-
ible. In this case, a#©

r = am(am)#©
r,(an,a) and (am)#©

r,(an,a) = (a#©
r )m+1.
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(iv) a is right w-core invertible if and only if w is right (a, a)-core invert-
ible. In this case, a#©

r,w = w#©
r,(a,a).

Proof. (i) is clear.
(ii) For the “only if” part. Suppose a ∈ RD©

r with I(a) = k. Then there
exists some x ∈ R such that axak = ak, (ax)∗ = ax and ax2 = x, whence
ax = a · ax2 = a2x2 = · · · = anxn for arbitrary positive integer n. Let
y = xk+m. Then

(1) y = xk+m = ax2 · xk+m−1 = anxn+1 · xk+m−1 = anxk+m+n ∈ anR.
(2) ak+my = ak+mxk+m = ax = (ak+my)∗.
(3) ak+myak = axak = ak.
Hence, am ∈ R#©

r,(an,ak)
and (am)#©

r,(an,ak)
= (aD©

r )k+m.

For the “if” part. Given am ∈ R#©
r,(an,ak)

, we have (am)#©
r,(an,ak)

∈ anR,

ak+m(am)#©
r,(an,ak)

ak = ak and (ak+m(am)#©
r,(an,ak)

)∗ = ak+m(am)#©
r,(an,ak)

, then

(am)#©
r,(an,ak)

= anz for some z ∈ R. Let x = ak+m−1(am)#©
r,(an,ak)

. Then

(1) axak = ak+m(am)#©
r,(an,ak)

ak = ak.

(2) ax = ak+m(am)#©
r,(an,ak)

= (ak+m(am)#©
r,(an,ak)

)∗ = (ax)∗.

(3) ax2 = ak+m(am)#©
r,(an,ak)

ak+m−1(am)#©
r,(an,ak)

= ak+m(am)#©
r,(an,ak)

ak+m−1(anz) =

(ak+m(am)#©
r,(an,ak)

ak)(am+n−1z) = ak+m−1(anz) = ak+m−1(am)#©
r,(an,ak)

= x.

So, a ∈ RD©
r and aD©

r = ak+m−1(am)#©
r,(an,ak)

.

(iii) is clear by (ii).
(iv) By Theorem 2.6 and [19, Theorem 2.5], one has that a ∈ R#©

r,w if and

only if w ∈ R
‖a
r and a ∈ R{1,3} if and only if w ∈ R

(a,a)
r and a ∈ R{1,3} if and

only if w ∈ R#©
r,(a,a). Moreover, a#©

r,w = w
‖a
r a(1,3) = w

(a,a)
r a(1,3) = w#©

r,(a,a). �

Let a ∈ R and let m,n be nonnegative integers such that m + n ≥ 1.
From Theorem 3.1 (iii), we derive that ak is right core invertible if and only
if am is right (an, ak)-core invertible, for some positive integer k.

According to the items (ii) and (iv) of Theorem 3.1, we can establish the
relation between right pseudo core inverses and right w-core inverses.

Proposition 3.2. Let a ∈ R and let m be a nonnegative integer. Then a is
right pseudo core invertible if and only if ak is right am-core invertible, for
some positive integer k. In this case, aD©

r = ak+m−1(ak)#©
r,am and (ak)#©

r,am =
(aD©

r )k+m.
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It is known that if a is right pseudo core invertible with I(a) = 1, then a is
right core invertible. As a consequence, the following relation between right
core inverses and right w-core inverses is clear. Therein, the cases m = 0 and
m = 1 were given in [19].

Corollary 3.3. Let a ∈ R and let m be a nonnegative integer. Then a is
right core invertible if and only if a is right am-core invertible. In this case,
a#©
r = ama#©

r,am and a#©
r,am = (a#©

r )m+1.

As a special case of Theorem 3.1 (iii) and Corollary 3.3, we have the
following corollary.

Corollary 3.4. Let a ∈ R. The following statements are equivalent:
(i) a ∈ R#©

r .
(ii) a is right (a, a)-core invertible.
(iii) a is right (1, a)-core invertible.
(iv) 1 is right (a, a)-core invertible.
(v) a is right a-core invertible.
(vi) a is right 1-core invertible.
(vii) a is right (a, a∗)-invertible.

In this case, a#©
r = aa#©

r,(a,a) = aa#©
r,(1,a) = 1#©

r,(a,a) = aa#©
r,a = a#©

r,1 = a
(a,a∗)
r .

We remark the fact that any A ∈ Mn(C) is right pseudo core invertible.
Applying Theorem 3.1 (ii) and Proposition 3.2, we get the following result in
complex matrices. It should be pointed that [19, Corollary 2.25] is the case
m = 1 of the item (ii) below.

Corollary 3.5. Let A ∈Mn(C) with I(A) = k. Then
(i) Am is right (An, Ak)-core invertible, for any nonnegative integers m,n

satisfying m + n ≥ 1. In this case, (AD©)k+m
r is a right (An, Ak)-core inverse

of Am.
(ii) Ak is right Am-core invertible, for any nonnegative integer m. In this

case, (AD©
r )k+m is a right Am-core inverse of Ak.

As shown in Theorem 3.1 (iv), right w-core inverses of a coincides with
right (a, a)-core inverses of w. We obtain the following existence criterion of
right w-core inverses in rings.
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Corollary 3.6. Let a, w ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r,w.
(ii) There exists some x ∈ aR such that awxa = a, (awx)∗ = awx and

xawx = x.
(iii) There exists some x ∈ R such that awxa = a, xR ⊆ aR and Rx =

Ra∗.
(iv) There exists some x ∈ R such that awxa = a, xR ⊆ aR and x0 =

(a∗)0.
(v) There exists some x ∈ R such that awxa = a, xR ⊆ aR and Rx ⊆

Ra∗.
(vi) There exists some x ∈ R such that awxa = a, xR ⊆ aR and (a∗)0 ⊆

x0.
(vii) There exist a projection p ∈ R and an idempotent q ∈ R such that

aR ⊆ pR ⊆ awR, qR ⊆ aR and Rq ⊇ Raw.
In this case, a#©

r,w = q(aw)−p for any (aw)− ∈ (aw){1}.

As a consequence of Corollary 3.6, we have the following result.

Corollary 3.7. Let a ∈ R. The following conditions are equivalent:
(i) a ∈ R#©

r .
(ii) There exists some x ∈ aR such that axa = a, (ax)∗ = ax and xax = x.
(iii) There exists some x ∈ R such that axa = a, xR ⊆ aR and Rx = Ra∗.
(iv) There exists some x ∈ R such that axa = a, xR ⊆ aR and x0 = (a∗)0.
(v) There exists some x ∈ R such that axa = a, xR ⊆ aR and Rx ⊆ Ra∗.
(vi) There exists some x ∈ R such that axa = a, xR ⊆ aR and (a∗)0 ⊆ x0.
(vii) There exist a projection p ∈ R and an idempotent q ∈ R such that

qR ⊆ aR = pR and Rq ⊇ Ra.
In this case, a#©

r = qa−p for any a− ∈ a{1}.

It was shown in [19, Theorem 2.21] that a is Moore-Penrose invertible if
and only if a is right a∗-core invertible if and only if a∗ is right a-core invert-
ible. As right (b, c)-core invertible is right (b, c)-invertible, and hence right
invertible along an element. This allows us to derive several new existence
criteria for the Moore-Penrose inverse by right (b, c)-core inverses.

Theorem 3.8. Let a ∈ R. The following statements are equivalent:
(i) a ∈ R†.
(ii) a is right (a∗, a∗)-core invertible.
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(iii) a is right (a∗, a∗)-invertible.
(iv) a∗ is right (a, a)-core invertible.
(v) a∗ is right (a, a)-invertible.
(vi) a is right a∗-core invertible.
(vii) a∗ is right a-core invertible.

Proof. (i) ⇔ (vi) ⇔ (vii) by [19, Theorem 2.21].
(i)⇒ (ii) Since a ∈ R†, we have a∗ ∈ R{1,3}. Again, a ∈ R† guarantees a ∈

R
‖a∗
r by [15, Corollary 2.21 (iv)], which implies a ∈ R

(a∗,a∗)
r . Consequently,

a ∈ R#©
r,(a∗,a∗) by Theorem 2.6.

(ii) ⇒ (iii) by Theorem 2.6 (i) ⇒ (ii).

(iii) ⇒ (i) Given a ∈ R
(a∗,a∗)
r , then a∗ ∈ a∗aa∗R, whence a ∈ Raa∗a. One

can get a ∈ R† in terms of [16, Theorem 3.12].
(i) ⇔ (iv) ⇔ (v) follows dually since a ∈ R† if and only if a∗ ∈ R†. �

Theorem 3.9. Let a, b, c ∈ R. Then a is right (b, c)-core invertible if and
only if ca is right (b, c∗)-invertible. In this case, the right (b, c)-core inverse
of a coincides with the right (b, c∗)-inverse of ca.

Proof. Suppose that a is right (b, c)-core invertible with a right (b, c)-core
inverse x. Then x ∈ bR, caxc = c and (cax)∗ = cax. Thus, c∗cax =
c∗(cax)∗ = (caxc)∗ = c∗, as required.

Conversely, let x = (ca)
(b,c∗)
r . Then x ∈ bR and c∗cax = c∗. Consequently,

one has (cax)∗ = cax and c = caxc, i.e., a is right (b, c)-core invertible.
Moreover, x is a right (b, c)-core inverse of a. �

Recall that an element a ∈ R is strongly right (b, c)-invertible if c ∈ cabR
and cab is regular, or equivalently if there exists x ∈ R such that xax = x,
xR ⊆ bR and Rx = Rc, in which case, any such x will be called a strongly
right (b, c)-inverse of a. It is clear that every strongly right (b, c)-invertible
element a must be right (b, c)-invertible. Moreover, every strongly right (b, c)-
inverse of a is a right (b, c)-inverse of a.

Applying Theorem 3.9, one knows that if ca is strongly right (b, c∗)-
invertible, then a is right (b, c)-core invertible. The following theorem shows
that the converse also holds.

Theorem 3.10. Let a, b, c ∈ R. Then a is right (b, c)-core invertible if and
only if ca is strongly right (b, c∗)-invertible. In this case, every strongly right
(b, c∗)-inverse of ca is a right (b, c)-core inverse of a.
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Proof. The “if” part is clear, and every strongly right (b, c∗)-inverse of ca
is a right (b, c)-core inverse of a in view of Theorem 3.9.

For the “only if” part. Suppose that a is right (b, c)-core invertible with a
right (b, c)-core inverse y. Then y ∈ bR, cayc = c and (cay)∗ = cay, whence
y = bt for some t ∈ R. Consequently, c∗ = c∗cay = c∗cabt ∈ c∗cabR, and
hence, c∗cab = c∗cabt · (c∗cabt)∗ · ab = c∗cab · t(abt)∗ · c∗cab, which guarantees
c∗cab ∈ R−. So, ca is strongly right (b, c∗)-invertible. �

In terms of Corollary 3.4, Theorems 3.8 and 3.10, we have the following
corollaries.

Corollary 3.11. Let a ∈ R. The following statements are equivalent:
(i) a ∈ R#©

r .
(ii) a2 is strongly right (a, a∗)-invertible.
(iii) a2 is strongly right (1, a∗)-invertible.
(iv) a is strongly right (a, a∗)-invertible.

Corollary 3.12. Let a ∈ R. The following statements are equivalent:
(i) a ∈ R†.
(ii) a∗a is strongly right (a∗, a)-invertible.
(iii) aa∗ is strongly right (a, a∗)-invertible.

At the end of this section, a schema is provided to present the relations
between right (b, c)-core inverses and several other (right) generalized invers-
es.
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[11] P. Patŕıcio, R. Puystjens, Drazin-Moore-Penrose invertibility in rings,
Linear Algebra Appl. 389 (2004) 159-173.

18

29 Jul 2024 02:48:52 PDT
240321-ZhuHuihui Version 2 - Submitted to Rocky Mountain J. Math.



[12] R. Penrose, A generalized inverse for matrices, Proc. Camb. Phil. Soc.
51 (1955) 406-413.
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