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Abstract. We give three families of g-supercongruences from a quadratic transformation
of Rahman. As a conclusion, we obtain the following supercongruence: for 0 < r < d < 2r
and any prime p = —1 (mod 2d),

o e ()(5)2(5E),
2d d d _ 3
2 (3dk + 1) k!3(d;rd2”)k4k =0 (mod p°),

where (a), =a(a+1)---(a+n —1) is the Pochhammer symbol.
Keywords: g-supercongruences; supercongruences; Rahman’s transformation; creative mi-
croscoping

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

For any non-negative integer n and complex number a, let (a), = a(a+1)---(a+n—1) be
the Pochhammer symbol. For any odd prime p and p-adic integer z, let I',(x) denote the
p-adic Gamma function [11]. Motivated by Van Hamme’s work on supercongruenes [13],
He [7] gave the following supercongruence:

(p—1)/2 1\3/1
(2)2(2)k
; (6k +1) =2 T

(=1)P3/Apr (Ir,(4)?  (mod p*), ifp=1 (mod 4),

(1.1)
0 (mod p?), ifp=3 (mod 4).

Liu [8] further proved that the above supercongruence is true modulo p?.

Recently, using the method of ‘creative microscoping’ introduced by Guo and Zudilin
[5], together with Rahman’s quadratic transformation (see (1.8)), Liu and Wang [10]
established the following g-analogue of Liu’s refinement of (1.1): for any positive odd
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integer n, modulo [n|®,(q)?,

2. 4
M 4 2\3 (0% 4 -1y (1-n)/4
49" k(g q [n]q :
E [6k + 1](<2' 2%’“% = i’;3qk2+k =< (%4 (n-1)
k=0 TRk 0, ifn=3 (mod4),
(1.2)

ifn=1 (mod 4),

where M = n — 1 or (n — 1)/2. Here and in what follows, the g¢-shifted factorial is
defined by (a;q)o = 1 and (a;q), = (1 —a)(1 —aq)--- (1 — ag"™!) for integers n > 1 or
n = oo. For convenience, we also adopt the abbreviated notation (aq,as, ..., am;q)n =
(a1;9)n(a2;q)n -+ - (am; q)n for integers n = 0 or n = oo. The g-integer is defined as
n] = [n], = (1—¢")/(1 —q). Moreover, the n-th cyclotomic polynomial ®,,(q) is given by

Ou(q)= [ (a—¢

1<k<n
ged(k,n)=1

where ( is an n-th primitive root of unity. We say that two rational functions A(q) and
B(q) in ¢ are congruent modulo a polynomial P(q), denoted by A(q) = B(q) (mod P(q)),
if the numerator of the reduced form of A(q) — B(q) is divisible by P(g) in the polynomial
ring Z[q]. For some other recent work on g¢-supercongruences, we refer the reader to
[1,4,6,9,10,12,14].

Very recently, Guo [3] gave some generalizations of (1.2) modulo ®,(q)*>. Motivated
by Guo’s work, in this paper we shall give two new generalizations of the n = 3 (mod 4)
case of (1.2) modulo @, (q)>.

Theorem 1.1. Let d and r be positive integers with r < d < 2r. Let n be a positive
integer with n = —1 (mod 2d). Then

(rn+r—d)/d

(@G0 a7 50Dk agein 2 3
3dk +r ¢MFR2 =0 (mod @,(q)%). 1.3
,; | e, ( 0

Theorem 1.2. Let d and r be positive integers with d > 2r and d=r+1 =0 (mod 2).
Let n be a positive integer withn =d+ 1 (mod 2d). Then

(dn+rn—r)/(2d)

(@5 PNe(da" a7 50N, apean
3dk +r ’ = : (K+R)/2 =0 (mod ®,(¢)%). (1.4
; [ ](qd; qd)k(q2d7q2d’qd+2r;q2d)kq ( (¢)°). (1.4)

It is obvious that both (1.3) and (1.4) for (d,r) = (2,1) reduce to the second case of
(1.2) modulo ®,(q)*. Moreover, letting n = p be a prime and ¢ — 1 in (1.3) and (1.4),

we obtain the following two supercongruences: for 0 < r < d < 2r and any prime p = —1
(mod 2d),
(rp+r—d)/d r N2 der
(5a) k(@ (T )n 3
(3dk + r)-2 . =0 (mod p°), (1.5)
2 (i
2
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and for d > 2r and any prime p =d + 1 (mod 2d),

(dp+rp—r)/(2d) ( r )k(T)i(diT)k
3dk + d " =0 (modp?). 1.6
kZ:O ( ) k|3(d+2r>k4k ( ) ( )

It is clear that both (1.5) and (1.6) are generalizations of (1.1) for p =3 (mod 4).
We shall also give a new generalization of the n = 1 (mod 4) case of (1.2) modulo
®,,(q)? as follows.

Theorem 1.3. Let d and r be positive integers with d > 2r. Let n be a positive integer
withn =1 (mod 2d). Then

n—1 r. ror —r.
Z[3dk+7ﬂ (¢ e(d",q" a5 4 qd(k2+k)/2
= (4% q)r(??, @, q™2r; ¢*4)i

B (@ Drn-1/d) (- ayrin-1)/20) o, (q)2
= [rn T . (mod ®,(q)?). (1.7)

Likewise, the first case of (1.2) modulo ®,(q)? follows from (1.7) by taking (d,r) =
(2,1). Moreover, letting n = p be a prime and ¢ — 1 in (1.7), we arrive at the following
supercongruence: for 0 < 2r < d and any prime p =1 (mod 2d),

pi Sk + 1) 2 G (57w _ rp (3)ro-/2 (mod p?)
=0 k'g(dﬁ’") 4 (G2 r(o-1)/(24)

Note that the g-supercongruences in Theorems 1.1-1.3 do not hold modulo [n] in
general. When 7 = 1 the supercongruence (1.7) seems to be true modulo ®@,,(¢)* (which
is the N =n —1 and e — 0 case of [10, Theorem 4], but the proof of the N =n — 1 case
of [10, Theorem 4] is not correct). However, this is not the case for general r.

Recall that the basic hypergeometric series ,1¢, (see [2]) is defined as

o0 k
a1,02,...,0r41 (a17(12, cee 7ar+1;Q)kz
1 4, 2| = :
r+ ¢T|: bl,b2>'-'7br ] ; (q,bl,...,bT;Q)k

A quadratic transformation of Rahman [2, (3.8.13)] may be stated as follows:
(1 - aqgk)(aa d? G‘Q/d7 q2>k(b7 C, CLQ/bC, Q)k qk’
(1 —a)(aq/d, d, q4;q)r(aq?/b, ag?/c, beg; ¢*)x

_ (aq2abq7 Cg7aq2/bc; q2)oo ¢ b, C, aq/bc .q2 g
(4,a¢%/b, ag? /e, beg; ¢?) dg,aq?/d """

1M

(1.8)

provided that d and aq/d are not of the form ¢=2" (n is a non-negative integer).
We shall prove Theorems 1.1-1.3 by employing the method of ‘creative microscoping’
and Rahman’s transformation (1.8) again.
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2. Proof of Theorem 1.1

We first give a generalization of Theorem 1.1 with an additional parameter a.

Theorem 2.1. Let d and r be positive integers with r < d < 2r. Let n be a positive integer

with n = —1 (mod 2d) and a an indeterminate. Then, modulo ®,(q)(1 — aq="")(a —
(d—r)n

¢\,

(rn+r—d)/d

3k 4+ 1] AL CORG /00" gz _ (2.1)
— <qd’ qd)k(CLQQd, qu/a’ qd+27'; q2d)k:

Proof. Letting d — 0 in (1.8), we get

i (1—-ag’ ) 1@ )k(b, ¢ aq/be; )i gzigye  (ag?,bq, cq, ag” /b ¢%) o 22)
=0

(= a) (@ Q)w(ad /b, ad/e, bos s = (g, ag?/b, ag?/c, beq; ¢2)o

r—(d—r)n

We then take ¢ — ¢%, a =¢", b= ¢ 4" c=g¢ in the above formula to obtain

(dn—rn—r)/d r r. T —r)n ,r—(d-r)n —r.
2: (1—qwm_ﬂqtf%(q+w )Al(d)7qd,QQkfw%mm
(1= q")(q% q?)u(g?dldmrin, qPdHd=rn, gdtar; g2d),,

2d+r

qd—i—r-i-(d—r)n qd+r—(d—r)n q2d—r. q2d)oo
(qd7 q2d—(d—r)n’ q2d+(d—r)n’ qd+2r; qzd)oo

=0, (2.3)

(q

where we have used the fact that (¢"~@ " ¢%), = 0 for k > (dn — rn — r)/d, and
(qHr=ld=rn. g2d) = 0. Since (rn+7r —d)/d > (dn —rn —r)/d, we see that the left-hand
side of (2.1) is equal to 0 for a = ¢~@ " or a = ¢!*". Namely, the g-congruence (2.1)
is true modulo 1 — ag¢@ " and a — ¢,
On the other hand, letting ¢ — ¢%,a = ¢"7™,b = aq", ¢ = ¢"/a in (1.8), we get
(rn+r—d)/d r—rn\( r—rn roor r—rn
Z (1 — @y *Nelaq”, q" Ja, ¢ "™ q )kqd(k2+k)/2
pare (1 _ qrfrn)(qd. qd) (q2d rn/a aq2dfrn, qd+2r’ q2d)k
_ (@M ag /a.q 1% oo
- (qd’qum/a’aqzd rn’qd+2r;q2d)oo
=0, (2.4)

d+7’ d—l—r 2d—r—rn.

where we have utilized (¢?¢="""™; ¢*") o, = 0 and (¢*"""™;¢%)x = 0 for k > (rn+r —d)/d.
Since n = —1 (mod 2d), we have ged(2d,n) = 1. Thus, the minimal positive integer
k such that (¢™;¢*¥)r = 0 (mod ®,(q)) is (2d — m)(n + 1)/(2d) for m in the range

0 < m < 2d. This means that the polynomial (¢%*%";¢*®); is always relatively prime to
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®,(q) for 0 < k < (rm+1r —d)/d (since 0 < (d+ 2r) — 2d < 2d — r according to the
condition in the theorem). In view of ¢" =1 (mod ®,(¢)), we conclude from (2.4) that

(rn+r—d)/d

(¢" Yi(aq™, q" Ja, ¢ 50Nk aoean
3dk +r K+K)/2 = 0 (mod ®,(q)).
kZ; [ ] (¢4 ¢))n(ag?, 24 [a, gd+2r; q2d)kq ( (9))

Since 1 — aq™, a — ¢" and ®,(q) are pairwise relatively prime polynomials in ¢, we
complete the proof of the theorem. O

Proof of Theorem 1.1. Note that the polynomial (¢?%;¢*?),, is relatively prime to ®,(q)
for any 0 < k < n — 1. Moreover, the polynomial (1 — ¢™)? has the factor ®,(¢)?. The
proof of (1.3) then follows from (2.1) by specializing a = 1. O

3. Proof of Theorem 1.2

Similarly as before, we first establish the following parametric generalization of Theo-
rem 1.2.

Theorem 3.1. Let d and r be positive integers with d > 2r and d =r+1 =0 (mod 2).
Let n be a positive integer withn = d+1 (mod 2d) and a an indeterminate. Then, modulo

®,(q)(1 —ag™)(a—q™),

(dn+rn—r)/(2d) - I .
Z [3dk’ + ] (q ;q2d)k(aq »q /CL, qd 7qd)k d(k2+k)/2 =0 (3 1)
r (qd’ qd)k(aq20l7 q2d/a7 qd+2r; q2d>kq - :

k=0

T

Proof. The proof is similar to that of Theorem 2.1. This time we take ¢ — ¢¢, a = ¢",
b=¢""™, c=¢""™ in (2.2) to obtain
r(n—1)/d r r. r+rn o r—rn —r.
3 (1 =" D@ ™ 0™ 0" 0% ape w2

(1 _ qr)(qd’ qd)k(qu—rn’ q2d—|—7‘n7 qd+2r; qu)k
2d+r

k=0

(q d+r+rn

d+r—rn 2d—r. 2d
. q .q T )

(qd’ q2d—7’n’ q2d+rn’ qd+2r; q2d)oo
—0, (3.2)

where we have used the fact that (¢"~™; ¢%), = 0 for k > r(n—1)/d, and (¢*7""; ¢*?) o, =
0. This proves that the left-hand side of (3.1) is equal to 0 for a = ¢~ or a = ¢"™ (since
r(n—1)/d < (dn+rn—r)/(2d)). Namely, the g-congruence (3.1) is true modulo 1 —ag™
and a — ¢"".
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On the other hand, letting ¢ — ¢%,a = ¢"~ ™" b = aq", ¢ = ¢’ /a in (1.8), we get

(dn+rn—r)/(2d)

(1 _ q3dk+r—dn—rn)(qr dn— 7"n7 q ) (aqr7 qr/a qd r—dn— Tnj q )k (k21 k) /2
Z (1 _ qr—dn—rn)(qd. qd> <q2d dn— rn/a aq2d—dn—rn qd+2r q2d)k
k=0 ) )
(q2d+7“7dnfrn aqd r d+r/a q2d r—dn—rn. q )
- <qd7q2d—dn—rn/a’ ag2d—dn—rn_qd+2r, g2d)
=0, (3.3)
where we have utilized (¢**t" 9= ¢?4) = 0 and (¢"~9" ™ ¢*!), = 0 for k > (dn +

rn —1)/(2d). It is easy to see that gcd(2d,n) = 1, and the minimal positive integer k
such that (¢4*";¢*?);, = 0 (mod ®,(q)) is (d + 2r)(n — 1)/(2d), which is greater than
(dn+1rn—r)/(2d). Thus, the polynomial (¢**2"; ¢*?),, is always relatively prime to ®,(q)
for 0 < k < (dn+rn—r)/(2d). In view of ¢" =1 (mod ®,(q)), we conclude from (3.3)
that

(dn+rn—r)/(2d)

(" @Ye(aq”, " /a, a7 50D agean) 2
3dk +1r M FFR2 =0 (mod ®,(q)).
; [ ] (qd, qd)k(and7 q2d/a7 qd+27”; QQd)k ( ( ))

This proves (3.1). O

Proof of Theorem 1.3. Since ged(2d,n) = 1 and ¢" = 1 (mod ®,(q)), the proof of (1.4)
immediately follows from the a = 1 case of (3.1). O

4. Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3 as follows.

Theorem 4.1. Let d and r be positive integers with d > r. Let n be a positive integer
withn =1 (mod 2d) and a an indeterminate. Then, modulo (1 — aq™)(a — ¢™),

n—1 AT -T.
3dk+r (q 'q2d) (aq",q"/a, qd ,qd)k d(k2+k)/2
p (q% q)ilag®, ¢**/a, g2 ¢*F)y,
(q aq )r(n—l)/(2d) (r—d)r(n—1)/(2d)
= [rn q r—d)r(n ] 4.1
| ]<qd+2r;q2d)r(n—1)/(2d) (4.)
Proof. We again take ¢ — ¢%, a = ¢", b = ¢""™, ¢ = ¢"™ in (2.2) as in the proof of
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Theorem 3.1. But this time
(1 _ q3dk+r>(qr; q2d)k(qr+rn’ qrfrn’ qdfr; qd)k (k2 k)2

(1 _ qr)<qd7 qd)k(qu—Tn7 qu—‘rrn7 qd+2r; q2d)k

2d+r ,d+r+rn
(°"".q . q

= 2d— 2 2. 2
(qd, g?d—rn g2d+mn g+l g2d)

b

ML
o —

d+r—rn  ,2d—r. ,2d
T )

(@, ™ ) 1)/ 24)

o (qd+2r7 q2d—rn; q2d)r(n—1)/(2d)
(1= q™)(a% @) rm-1)2a) - Dr(n=1)/(20)
(1= q") (@™ ¢*) 1)) (20)

)

where we have used the fact that (¢"™;q%), = 0 for k > r(n — 1)/d. This proves that
both sides of (4.1) are equal for a = ¢7™ or a = ¢"". Namely, the g-congruence (4.1) is
true modulo 1 — a¢™ and a — ¢™. O

Proof of Theorem 1.3. In view of n = 1 (mod 2d), we have ged(2d,n) = 1. Thus, the
minimal positive integer k such that (¢™;¢*?), = 0 (mod ®,(q)) is m(n — 1)/(2d) + 1
for m in the range 0 < m < 2d. This indicates that the denominator of the reduced
form of (¢"; ¢*")x/(¢4T?"; ¢*?)y, is always relatively prime to ®,(q) for 0 < k < n —1 (since
0 <r <d+2r < 2d). The proof of (1.7) then follows from the a =1 case of (4.1). O

5. Some open problems

Numerical calculation implies that the following stronger versions of Theorems 1.1-1.3
should be true.

Conjecture 5.1. Let d and r be positive integers with d > r. Let n be a positive integer
with n = —1 (mod 2d). Then

n—1

(@ PDd 0 d7 50D qean 2 3
3dk +r q (K+8)/2 = 0 (mod ®,.(q)°). 5.1
,;[ ](qd; ak(@®, ¢, g2 ) ( LR

Conjecture 5.2. Let d and r be positive integers with d > r and d =r+1 =0 (mod 2).
Let n be a positive integer with n = d+ 1 (mod 2d). Then (5.1) holds.

Conjecture 5.3. Let d be a positive odd integer, r = (d+ 1)/2, and n a positive integer
satisfying n = —1 (mod 2d). Then

(2n+2—d)(d—1)/(2d)

(@@ 00750 age w2 s
E 3dk +r ¢ HR/2 =0 (mod D,(¢)h).
e [ ](qd;qd>k<q2d7q2d7qd+2r;q2d)k ( (9)%)

(5.2)
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Conjecture 5.4. Let d and r be positive integers with d > r. Let n be a positive integer
withn =1 (mod 2d). Then (1.7) holds.

Conjecture 5.5. Let d > 1 be an odd integer, r = (d — 1)/2, and n a positive integer
satisfyingn = 1 (mod 2d). Then (1.7) holds modulo ®,(q)>.

Note that Conjecture 5.3 was provided by one of the referees, and it is a generalization
of [3, Conjecture 5.2]. This referee also asked us to find a similar conjecture related to
Theorem 1.3. After a simple try, we found the above Conjecture 5.5. However, we are
unable to confirm these two conjectures, since it is difficult to find the corresponding
parametric versions of the g-supercongruences (5.2) and the modulus ®,,(¢)® case of (1.7).
Finally, we point out that Conjectures 5.3 and 5.5 are not yet true modulo [n] in general,
For example, the g-congruence (5.2) does not hold modulo [n] for (d,r,n) = (3,2,35), and
the ¢g-congruence (1.7) does not hold modulo [n] for (d,r,n) = (5,2,51) either.

Acknowledgment. The author sincerely thanks one of the anonymous referees for help-
ful comments on this paper.
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