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Abstract. We give three families of q-supercongruences from a quadratic transformation
of Rahman. As a conclusion, we obtain the following supercongruence: for 0 < r < d 6 2r
and any prime p ≡ −1 (mod 2d),
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≡ 0 (mod p3),

where (a)n = a(a+ 1) · · · (a+ n− 1) is the Pochhammer symbol.
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1. Introduction

For any non-negative integer n and complex number a, let (a)n = a(a+1) · · · (a+n−1) be
the Pochhammer symbol. For any odd prime p and p-adic integer x, let Γp(x) denote the
p-adic Gamma function [11]. Motivated by Van Hamme’s work on supercongruenes [13],
He [7] gave the following supercongruence:

(p−1)/2∑
k=0

(6k + 1)
(1
2
)3k(1

4
)k

k!44k

≡

(−1)(p+3)/4pΓp(
1
2
)Γp(

1
4
)2 (mod p2), if p ≡ 1 (mod 4),

0 (mod p2), if p ≡ 3 (mod 4).
(1.1)

Liu [8] further proved that the above supercongruence is true modulo p3.
Recently, using the method of ‘creative microscoping’ introduced by Guo and Zudilin

[5], together with Rahman’s quadratic transformation (see (1.8)), Liu and Wang [10]
established the following q-analogue of Liu’s refinement of (1.1): for any positive odd
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integer n, modulo [n]Φn(q)2,

M∑
k=0

[6k + 1]
(q; q4)k(q; q2)3k

(q2; q2)k(q4; q4)3k
qk

2+k ≡


(q2; q4)(n−1)/4
(q4; q4)(n−1)/4

[n]q(1−n)/4, if n ≡ 1 (mod 4),

0, if n ≡ 3 (mod 4),

(1.2)

where M = n − 1 or (n − 1)/2. Here and in what follows, the q-shifted factorial is
defined by (a; q)0 = 1 and (a; q)n = (1 − a)(1 − aq) · · · (1 − aqn−1) for integers n > 1 or
n = ∞. For convenience, we also adopt the abbreviated notation (a1, a2, . . . , am; q)n =
(a1; q)n(a2; q)n · · · (am; q)n for integers n > 0 or n = ∞. The q-integer is defined as
[n] = [n]q = (1− qn)/(1− q). Moreover, the n-th cyclotomic polynomial Φn(q) is given by

Φn(q) =
∏

16k6n
gcd(k,n)=1

(q − ζk),

where ζ is an n-th primitive root of unity. We say that two rational functions A(q) and
B(q) in q are congruent modulo a polynomial P (q), denoted by A(q) ≡ B(q) (mod P (q)),
if the numerator of the reduced form of A(q)−B(q) is divisible by P (q) in the polynomial
ring Z[q]. For some other recent work on q-supercongruences, we refer the reader to
[1, 4, 6, 9, 10,12,14].

Very recently, Guo [3] gave some generalizations of (1.2) modulo Φn(q)3. Motivated
by Guo’s work, in this paper we shall give two new generalizations of the n ≡ 3 (mod 4)
case of (1.2) modulo Φn(q)3.

Theorem 1.1. Let d and r be positive integers with r < d 6 2r. Let n be a positive
integer with n ≡ −1 (mod 2d). Then

(rn+r−d)/d∑
k=0

[3dk + r]
(qr; q2d)k(qr, qr, qd−r; qd)k

(qd; qd)k(q2d, q2d, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)3). (1.3)

Theorem 1.2. Let d and r be positive integers with d > 2r and d ≡ r + 1 ≡ 0 (mod 2).
Let n be a positive integer with n ≡ d+ 1 (mod 2d). Then

(dn+rn−r)/(2d)∑
k=0

[3dk + r]
(qr; q2d)k(qr, qr, qd−r; qd)k

(qd; qd)k(q2d, q2d, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)3). (1.4)

It is obvious that both (1.3) and (1.4) for (d, r) = (2, 1) reduce to the second case of
(1.2) modulo Φn(q)3. Moreover, letting n = p be a prime and q → 1 in (1.3) and (1.4),
we obtain the following two supercongruences: for 0 < r < d 6 2r and any prime p ≡ −1
(mod 2d),

(rp+r−d)/d∑
k=0

(3dk + r)
( r
2d

)k( r
d
)2k(d−r

d
)k

k!3(d+2r
2d

)k4k
≡ 0 (mod p3), (1.5)
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and for d > 2r and any prime p ≡ d+ 1 (mod 2d),

(dp+rp−r)/(2d)∑
k=0

(3dk + r)
( r
2d

)k( r
d
)2k(d−r

d
)k

k!3(d+2r
2d

)k4k
≡ 0 (mod p3). (1.6)

It is clear that both (1.5) and (1.6) are generalizations of (1.1) for p ≡ 3 (mod 4).
We shall also give a new generalization of the n ≡ 1 (mod 4) case of (1.2) modulo

Φn(q)2 as follows.

Theorem 1.3. Let d and r be positive integers with d > 2r. Let n be a positive integer
with n ≡ 1 (mod 2d). Then

n−1∑
k=0

[3dk + r]
(qr; q2d)k(qr, qr, qd−r; qd)k

(qd; qd)k(q2d, q2d, qd+2r; q2d)k
qd(k

2+k)/2

≡ [rn]
(qd; q2d)r(n−1)/(2d)

(qd+2r; q2d)r(n−1)/(2d)
q(r−d)r(n−1)/(2d) (mod Φn(q)2). (1.7)

Likewise, the first case of (1.2) modulo Φn(q)2 follows from (1.7) by taking (d, r) =
(2, 1). Moreover, letting n = p be a prime and q → 1 in (1.7), we arrive at the following
supercongruence: for 0 < 2r 6 d and any prime p ≡ 1 (mod 2d),

p−1∑
k=0

(3dk + r)
( r
2d

)k( r
d
)2k(d−r

d
)k

k!3(d+2r
2d

)k4k
≡ rp

(1
2
)r(p−1)/(2d)

(d+2r
2d

)r(p−1)/(2d)
(mod p2).

Note that the q-supercongruences in Theorems 1.1–1.3 do not hold modulo [n] in
general. When r = 1 the supercongruence (1.7) seems to be true modulo Φn(q)3 (which
is the N = n− 1 and e→ 0 case of [10, Theorem 4], but the proof of the N = n− 1 case
of [10, Theorem 4] is not correct). However, this is not the case for general r.

Recall that the basic hypergeometric series r+1φr (see [2]) is defined as

r+1φr

[
a1, a2, . . . , ar+1

b1, b2, . . . , br
; q, z

]
=
∞∑
k=0

(a1, a2, . . . , ar+1; q)kz
k

(q, b1, . . . , br; q)k
.

A quadratic transformation of Rahman [2, (3.8.13)] may be stated as follows:

∞∑
k=0

(1− aq3k)(a, d, aq/d; q2)k(b, c, aq/bc; q)k
(1− a)(aq/d, d, q; q)k(aq2/b, aq2/c, bcq; q2)k

qk

=
(aq2, bq, cq, aq2/bc; q2)∞
(q, aq2/b, aq2/c, bcq; q2)∞

3φ2

[
b, c, aq/bc
dq, aq2/d

; q2, q2
]
, (1.8)

provided that d and aq/d are not of the form q−2n (n is a non-negative integer).
We shall prove Theorems 1.1–1.3 by employing the method of ‘creative microscoping’

and Rahman’s transformation (1.8) again.
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2. Proof of Theorem 1.1

We first give a generalization of Theorem 1.1 with an additional parameter a.

Theorem 2.1. Let d and r be positive integers with r < d 6 2r. Let n be a positive integer
with n ≡ −1 (mod 2d) and a an indeterminate. Then, modulo Φn(q)(1 − aq(d−r)n)(a −
q(d−r)n),

(rn+r−d)/d∑
k=0

[3dk + r]
(qr; q2d)k(aqr, qr/a, qd−r; qd)k

(qd; qd)k(aq2d, q2d/a, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0. (2.1)

Proof. Letting d→ 0 in (1.8), we get

∞∑
k=0

(1− aq3k)(a; q2)k(b, c, aq/bc; q)k
(1− a)(q; q)k(aq2/b, aq2/c, bcq; q2)k

q(k
2+k)/2 =

(aq2, bq, cq, aq2/bc; q2)∞
(q, aq2/b, aq2/c, bcq; q2)∞

. (2.2)

We then take q 7→ qd, a = qr, b = qr+(d−r)n, c = qr−(d−r)n in the above formula to obtain

(dn−rn−r)/d∑
k=0

(1− q3dk+r)(qr; q2d)k(qr+(d−r)n, qr−(d−r)n, qd−r; qd)k
(1− qr)(qd; qd)k(q2d−(d−r)n, q2d+(d−r)n, qd+2r; q2d)k

qd(k
2+k)/2

=
(q2d+r, qd+r+(d−r)n, qd+r−(d−r)n, q2d−r; q2d)∞

(qd, q2d−(d−r)n, q2d+(d−r)n, qd+2r; q2d)∞

= 0, (2.3)

where we have used the fact that (qr−(d−r)n; qd)k = 0 for k > (dn − rn − r)/d, and
(qd+r−(d−r)n; q2d)∞ = 0. Since (rn+ r− d)/d > (dn− rn− r)/d, we see that the left-hand
side of (2.1) is equal to 0 for a = q−(d−r)n or a = q(d−r)n. Namely, the q-congruence (2.1)
is true modulo 1− aq(d−r)n and a− q(d−r)n.

On the other hand, letting q 7→ qd, a = qr−rn, b = aqr, c = qr/a in (1.8), we get

(rn+r−d)/d∑
k=0

(1− q3dk+r−rn)(qr−rn; q2d)k(aqr, qr/a, qd−r−rn; qd)k
(1− qr−rn)(qd; qd)k(q2d−rn/a, aq2d−rn, qd+2r; q2d)k

qd(k
2+k)/2

=
(q2d+r−rn, aqd+r, qd+r/a, q2d−r−rn; q2d)∞

(qd, q2d−rn/a, aq2d−rn, qd+2r; q2d)∞

= 0, (2.4)

where we have utilized (q2d−r−rn; q2d)∞ = 0 and (qd−r−rn; qd)k = 0 for k > (rn+ r− d)/d.
Since n ≡ −1 (mod 2d), we have gcd(2d, n) = 1. Thus, the minimal positive integer
k such that (qm; q2d)k ≡ 0 (mod Φn(q)) is (2d − m)(n + 1)/(2d) for m in the range
0 < m < 2d. This means that the polynomial (qd+2r; q2d)k is always relatively prime to
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Φn(q) for 0 6 k 6 (rn + r − d)/d (since 0 6 (d + 2r) − 2d < 2d − r according to the
condition in the theorem). In view of qn ≡ 1 (mod Φn(q)), we conclude from (2.4) that

(rn+r−d)/d∑
k=0

[3dk + r]
(qr; q2d)k(aqr, qr/a, qd−r; qd)k

(qd; qd)k(aq2d, q2d/a, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)).

Since 1 − aqn, a − qn and Φn(q) are pairwise relatively prime polynomials in q, we
complete the proof of the theorem. 2

Proof of Theorem 1.1. Note that the polynomial (q2d; q2d)k is relatively prime to Φn(q)
for any 0 6 k 6 n − 1. Moreover, the polynomial (1 − qn)2 has the factor Φn(q)2. The
proof of (1.3) then follows from (2.1) by specializing a = 1. 2

3. Proof of Theorem 1.2

Similarly as before, we first establish the following parametric generalization of Theo-
rem 1.2.

Theorem 3.1. Let d and r be positive integers with d > 2r and d ≡ r + 1 ≡ 0 (mod 2).
Let n be a positive integer with n ≡ d+1 (mod 2d) and a an indeterminate. Then, modulo
Φn(q)(1− aqrn)(a− qrn),

(dn+rn−r)/(2d)∑
k=0

[3dk + r]
(qr; q2d)k(aqr, qr/a, qd−r; qd)k

(qd; qd)k(aq2d, q2d/a, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0. (3.1)

Proof. The proof is similar to that of Theorem 2.1. This time we take q 7→ qd, a = qr,
b = qr+rn, c = qr−rn in (2.2) to obtain

r(n−1)/d∑
k=0

(1− q3dk+r)(qr; q2d)k(qr+rn, qr−rn, qd−r; qd)k
(1− qr)(qd; qd)k(q2d−rn, q2d+rn, qd+2r; q2d)k

qd(k
2+k)/2

=
(q2d+r, qd+r+rn, qd+r−rn, q2d−r; q2d)∞

(qd, q2d−rn, q2d+rn, qd+2r; q2d)∞

= 0, (3.2)

where we have used the fact that (qr−rn; qd)k = 0 for k > r(n−1)/d, and (qd+r−rn; q2d)∞ =
0. This proves that the left-hand side of (3.1) is equal to 0 for a = q−rn or a = qrn (since
r(n− 1)/d < (dn+ rn− r)/(2d)). Namely, the q-congruence (3.1) is true modulo 1− aqrn
and a− qrn.
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On the other hand, letting q 7→ qd, a = qr−(d+r)n, b = aqr, c = qr/a in (1.8), we get

(dn+rn−r)/(2d)∑
k=0

(1− q3dk+r−dn−rn)(qr−dn−rn; q2d)k(aqr, qr/a, qd−r−dn−rn; qd)k
(1− qr−dn−rn)(qd; qd)k(q2d−dn−rn/a, aq2d−dn−rn, qd+2r; q2d)k

qd(k
2+k)/2

=
(q2d+r−dn−rn, aqd+r, qd+r/a, q2d−r−dn−rn; q2d)∞

(qd, q2d−dn−rn/a, aq2d−dn−rn, qd+2r; q2d)∞

= 0, (3.3)

where we have utilized (q2d+r−dn−rn; q2d)∞ = 0 and (qr−dn−rn; q2d)k = 0 for k > (dn +
rn − r)/(2d). It is easy to see that gcd(2d, n) = 1, and the minimal positive integer k
such that (qd+2r; q2d)k ≡ 0 (mod Φn(q)) is (d + 2r)(n − 1)/(2d), which is greater than
(dn+ rn− r)/(2d). Thus, the polynomial (qd+2r; q2d)k is always relatively prime to Φn(q)
for 0 6 k 6 (dn + rn − r)/(2d). In view of qn ≡ 1 (mod Φn(q)), we conclude from (3.3)
that

(dn+rn−r)/(2d)∑
k=0

[3dk + r]
(qr; q2d)k(aqr, qr/a, qd−r; qd)k

(qd; qd)k(aq2d, q2d/a, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)).

This proves (3.1). 2

Proof of Theorem 1.3. Since gcd(2d, n) = 1 and qn ≡ 1 (mod Φn(q)), the proof of (1.4)
immediately follows from the a = 1 case of (3.1). 2

4. Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3 as follows.

Theorem 4.1. Let d and r be positive integers with d > r. Let n be a positive integer
with n ≡ 1 (mod 2d) and a an indeterminate. Then, modulo (1− aqrn)(a− qrn),

n−1∑
k=0

[3dk + r]
(qr; q2d)k(aqr, qr/a, qd−r; qd)k

(qd; qd)k(aq2d, q2d/a, qd+2r; q2d)k
qd(k

2+k)/2

≡ [rn]
(qd; q2d)r(n−1)/(2d)

(qd+2r; q2d)r(n−1)/(2d)
q(r−d)r(n−1)/(2d). (4.1)

Proof. We again take q 7→ qd, a = qr, b = qr+rn, c = qr−rn in (2.2) as in the proof of
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Theorem 3.1. But this time

n−1∑
k=0

(1− q3dk+r)(qr; q2d)k(qr+rn, qr−rn, qd−r; qd)k
(1− qr)(qd; qd)k(q2d−rn, q2d+rn, qd+2r; q2d)k

qd(k
2+k)/2

=
(q2d+r, qd+r+rn, qd+r−rn, q2d−r; q2d)∞

(qd, q2d−rn, q2d+rn, qd+2r; q2d)∞

=
(q2d+r, qd+r−rn; q2d)r(n−1)/(2d)
(qd+2r, q2d−rn; q2d)r(n−1)/(2d)

=
(1− qrn)(qd; q2d)r(n−1)/(2d)

(1− qr)(qd+2r; q2d)r(n−1)/(2d)
q(r−d)r(n−1)/(2d),

where we have used the fact that (qr−rn; qd)k = 0 for k > r(n − 1)/d. This proves that
both sides of (4.1) are equal for a = q−rn or a = qrn. Namely, the q-congruence (4.1) is
true modulo 1− aqrn and a− qrn. 2

Proof of Theorem 1.3. In view of n ≡ 1 (mod 2d), we have gcd(2d, n) = 1. Thus, the
minimal positive integer k such that (qm; q2d)k ≡ 0 (mod Φn(q)) is m(n − 1)/(2d) + 1
for m in the range 0 < m 6 2d. This indicates that the denominator of the reduced
form of (qr; q2d)k/(q

d+2r; q2d)k is always relatively prime to Φn(q) for 0 6 k 6 n− 1 (since
0 < r < d+ 2r 6 2d). The proof of (1.7) then follows from the a = 1 case of (4.1). 2

5. Some open problems

Numerical calculation implies that the following stronger versions of Theorems 1.1–1.3
should be true.

Conjecture 5.1. Let d and r be positive integers with d > r. Let n be a positive integer
with n ≡ −1 (mod 2d). Then

n−1∑
k=0

[3dk + r]
(qr; q2d)k(qr, qr, qd−r; qd)k

(qd; qd)k(q2d, q2d, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)3). (5.1)

Conjecture 5.2. Let d and r be positive integers with d > r and d ≡ r+ 1 ≡ 0 (mod 2).
Let n be a positive integer with n ≡ d+ 1 (mod 2d). Then (5.1) holds.

Conjecture 5.3. Let d be a positive odd integer, r = (d+ 1)/2, and n a positive integer
satisfying n ≡ −1 (mod 2d). Then

(2n+2−d)(d−1)/(2d)∑
k=0

[3dk + r]
(qr; q2d)k(qr, qr, qd−r; qd)k

(qd; qd)k(q2d, q2d, qd+2r; q2d)k
qd(k

2+k)/2 ≡ 0 (mod Φn(q)4).

(5.2)
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Conjecture 5.4. Let d and r be positive integers with d > r. Let n be a positive integer
with n ≡ 1 (mod 2d). Then (1.7) holds.

Conjecture 5.5. Let d > 1 be an odd integer, r = (d − 1)/2, and n a positive integer
satisfying n ≡ 1 (mod 2d). Then (1.7) holds modulo Φn(q)3.

Note that Conjecture 5.3 was provided by one of the referees, and it is a generalization
of [3, Conjecture 5.2]. This referee also asked us to find a similar conjecture related to
Theorem 1.3. After a simple try, we found the above Conjecture 5.5. However, we are
unable to confirm these two conjectures, since it is difficult to find the corresponding
parametric versions of the q-supercongruences (5.2) and the modulus Φn(q)3 case of (1.7).
Finally, we point out that Conjectures 5.3 and 5.5 are not yet true modulo [n] in general,
For example, the q-congruence (5.2) does not hold modulo [n] for (d, r, n) = (3, 2, 35), and
the q-congruence (1.7) does not hold modulo [n] for (d, r, n) = (5, 2, 51) either.

Acknowledgment. The author sincerely thanks one of the anonymous referees for help-
ful comments on this paper.
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