New q-supercongruences from a quadratic transformation of Rahman

Na Tang
School of Mathematics and Statistics, Huaiyin Normal University, Huai'an 223300, Jiangsu, People's Republic of China
hytn999@126.com

Abstract. We give three families of q-supercongruences from a quadratic transformation of Rahman. As a conclusion, we obtain the following supercongruence: for $0<r<d \leqslant 2 r$ and any prime $p \equiv-1(\bmod 2 d)$,

$$
\sum_{k=0}^{(r p+r-d) / d}(3 d k+r) \frac{\left(\frac{r}{2 d}\right)_{k}\left(\frac{r}{d}\right)_{k}^{2}\left(\frac{d-r}{d}\right)_{k}}{k!^{3}\left(\frac{d+2 r}{2 d}\right)_{k} 4^{k}} \equiv 0 \quad\left(\bmod p^{3}\right)
$$

where $(a)_{n}=a(a+1) \cdots(a+n-1)$ is the Pochhammer symbol.
Keywords: q-supercongruences; supercongruences; Rahman's transformation; creative microscoping

AMS Subject Classifications: 33D15, 11A07, 11B65

1. Introduction

For any non-negative integer n and complex number a, let $(a)_{n}=a(a+1) \cdots(a+n-1)$ be the Pochhammer symbol. For any odd prime p and p-adic integer x, let $\Gamma_{p}(x)$ denote the p-adic Gamma function [11]. Motivated by Van Hamme's work on supercongruenes [13], He [7] gave the following supercongruence:

$$
\begin{align*}
& \sum_{k=0}^{(p-1) / 2}(6 k+1) \frac{\left(\frac{1}{2}\right)_{k}^{3}\left(\frac{1}{4}\right)_{k}}{k!^{4} 4^{k}} \\
& \quad \equiv\left\{\begin{array}{lll}
(-1)^{(p+3) / 4} p \Gamma_{p}\left(\frac{1}{2}\right) \Gamma_{p}\left(\frac{1}{4}\right)^{2} & \left(\bmod p^{2}\right), & \text { if } p \equiv 1 \quad(\bmod 4), \\
0 \quad\left(\bmod p^{2}\right), & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right. \tag{1.1}
\end{align*}
$$

Liu [8] further proved that the above supercongruence is true modulo p^{3}.
Recently, using the method of 'creative microscoping' introduced by Guo and Zudilin [5], together with Rahman's quadratic transformation (see (1.8)), Liu and Wang [10] established the following q-analogue of Liu's refinement of (1.1): for any positive odd
integer n, modulo $[n] \Phi_{n}(q)^{2}$,

$$
\sum_{k=0}^{M}[6 k+1] \frac{\left(q ; q^{4}\right)_{k}\left(q ; q^{2}\right)_{k}^{3}}{\left(q^{2} ; q^{2}\right)_{k}\left(q^{4} ; q^{4}\right)_{k}^{3}} k^{k^{2}+k} \equiv\left\{\begin{array}{lll}
\frac{\left(q^{2} ; q^{4}\right)_{(n-1) / 4}}{\left(q^{4} ; q^{4}\right)_{(n-1) / 4}}[n] q^{(1-n) / 4}, & \text { if } n \equiv 1 & (\bmod 4) \tag{1.2}\\
0, & \text { if } n \equiv 3 & (\bmod 4)
\end{array}\right.
$$

where $M=n-1$ or $(n-1) / 2$. Here and in what follows, the q-shifted factorial is defined by $(a ; q)_{0}=1$ and $(a ; q)_{n}=(1-a)(1-a q) \cdots\left(1-a q^{n-1}\right)$ for integers $n \geqslant 1$ or $n=\infty$. For convenience, we also adopt the abbreviated notation $\left(a_{1}, a_{2}, \ldots, a_{m} ; q\right)_{n}=$ $\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \cdots\left(a_{m} ; q\right)_{n}$ for integers $n \geqslant 0$ or $n=\infty$. The q-integer is defined as $[n]=[n]_{q}=\left(1-q^{n}\right) /(1-q)$. Moreover, the n-th cyclotomic polynomial $\Phi_{n}(q)$ is given by

$$
\Phi_{n}(q)=\prod_{\substack{1 \leqslant k \leqslant n \\ \operatorname{gcd}(k, n)=1}}\left(q-\zeta^{k}\right)
$$

where ζ is an n-th primitive root of unity. We say that two rational functions $A(q)$ and $B(q)$ in q are congruent modulo a polynomial $P(q)$, denoted by $A(q) \equiv B(q)(\bmod P(q))$, if the numerator of the reduced form of $A(q)-B(q)$ is divisible by $P(q)$ in the polynomial ring $\mathbb{Z}[q]$. For some other recent work on q-supercongruences, we refer the reader to $[1,4,6,9,10,12,14]$.

Very recently, Guo [3] gave some generalizations of (1.2) modulo $\Phi_{n}(q)^{3}$. Motivated by Guo's work, in this paper we shall give two new generalizations of the $n \equiv 3(\bmod 4)$ case of (1.2) modulo $\Phi_{n}(q)^{3}$.

Theorem 1.1. Let d and r be positive integers with $r<d \leqslant 2 r$. Let n be a positive integer with $n \equiv-1(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{(r n+r-d) / d}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r}, q^{r}, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d}, q^{2 d}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{3}\right) \tag{1.3}
\end{equation*}
$$

Theorem 1.2. Let d and r be positive integers with $d \geqslant 2 r$ and $d \equiv r+1 \equiv 0(\bmod 2)$. Let n be a positive integer with $n \equiv d+1(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{(d n+r n-r) /(2 d)}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r}, q^{r}, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d}, q^{2 d}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{3}\right) \tag{1.4}
\end{equation*}
$$

It is obvious that both (1.3) and (1.4) for $(d, r)=(2,1)$ reduce to the second case of (1.2) modulo $\Phi_{n}(q)^{3}$. Moreover, letting $n=p$ be a prime and $q \rightarrow 1$ in (1.3) and (1.4), we obtain the following two supercongruences: for $0<r<d \leqslant 2 r$ and any prime $p \equiv-1$ $(\bmod 2 d)$,

$$
\begin{equation*}
\sum_{k=0}^{(r p+r-d) / d}(3 d k+r) \frac{\left(\frac{r}{2 d}\right)_{k}\left(\frac{r}{d}\right)_{k}^{2}\left(\frac{d-r}{d}\right)_{k}}{k!^{3}\left(\frac{d+2 r}{2 d}\right)_{k} 4^{k}} \equiv 0 \quad\left(\bmod p^{3}\right) \tag{1.5}
\end{equation*}
$$

and for $d \geqslant 2 r$ and any prime $p \equiv d+1(\bmod 2 d)$,

$$
\begin{equation*}
\sum_{k=0}^{(d p+r p-r) /(2 d)}(3 d k+r) \frac{\left(\frac{r}{2 d}\right)_{k}\left(\frac{r}{d}\right)_{k}^{2}\left(\frac{d-r}{d}\right)_{k}}{k!^{3}\left(\frac{d+2 r}{2 d}\right)_{k} 4^{k}} \equiv 0 \quad\left(\bmod p^{3}\right) . \tag{1.6}
\end{equation*}
$$

It is clear that both (1.5) and (1.6) are generalizations of (1.1) for $p \equiv 3(\bmod 4)$.
We shall also give a new generalization of the $n \equiv 1(\bmod 4)$ case of (1.2) modulo $\Phi_{n}(q)^{2}$ as follows.

Theorem 1.3. Let d and r be positive integers with $d \geqslant 2 r$. Let n be a positive integer with $n \equiv 1(\bmod 2 d)$. Then

$$
\begin{align*}
& \sum_{k=0}^{n-1}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r}, q^{r}, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d}, q^{2 d}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& \quad \equiv[r n] \frac{\left(q^{d} ; q^{2 d}\right)_{r(n-1) /(2 d)}}{\left(q^{d+2 r} ; q^{2 d}\right)_{r(n-1) /(2 d)}} q^{(r-d) r(n-1) /(2 d)} \quad\left(\bmod \Phi_{n}(q)^{2}\right) \tag{1.7}
\end{align*}
$$

Likewise, the first case of (1.2) modulo $\Phi_{n}(q)^{2}$ follows from (1.7) by taking $(d, r)=$ $(2,1)$. Moreover, letting $n=p$ be a prime and $q \rightarrow 1$ in (1.7), we arrive at the following supercongruence: for $0<2 r \leqslant d$ and any prime $p \equiv 1(\bmod 2 d)$,

$$
\sum_{k=0}^{p-1}(3 d k+r) \frac{\left(\frac{r}{2 d}\right)_{k}\left(\frac{r}{d}\right)_{k}^{2}\left(\frac{d-r}{d}\right)_{k}}{k!^{3}\left(\frac{d+2 r}{2 d}\right)_{k} 4^{k}} \equiv r p \frac{\left(\frac{1}{2}\right)_{r(p-1) /(2 d)}}{\left(\frac{d+2 r}{2 d}\right)_{r(p-1) /(2 d)}} \quad\left(\bmod p^{2}\right)
$$

Note that the q-supercongruences in Theorems 1.1-1.3 do not hold modulo $[n]$ in general. When $r=1$ the supercongruence (1.7) seems to be true modulo $\Phi_{n}(q)^{3}$ (which is the $N=n-1$ and $e \rightarrow 0$ case of [10, Theorem 4], but the proof of the $N=n-1$ case of [10, Theorem 4] is not correct). However, this is not the case for general r.

Recall that the basic hypergeometric series ${ }_{r+1} \phi_{r}$ (see [2]) is defined as

$$
{ }_{r+1} \phi_{r}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{r+1} \\
b_{1}, b_{2}, \ldots, b_{r}
\end{array} ; q, z\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}, a_{2}, \ldots, a_{r+1} ; q\right)_{k} z^{k}}{\left(q, b_{1}, \ldots, b_{r} ; q\right)_{k}} .
$$

A quadratic transformation of Rahman $[2,(3.8 .13)]$ may be stated as follows:

$$
\begin{align*}
& \sum_{k=0}^{\infty} \frac{\left(1-a q^{3 k}\right)\left(a, d, a q / d ; q^{2}\right)_{k}(b, c, a q / b c ; q)_{k}}{(1-a)(a q / d, d, q ; q)_{k}\left(a q^{2} / b, a q^{2} / c, b c q ; q^{2}\right)_{k}} q^{k} \\
& =\frac{\left(a q^{2}, b q, c q, a q^{2} / b c ; q^{2}\right)_{\infty}}{\left(q, a q^{2} / b, a q^{2} / c, b c q ; q^{2}\right)_{\infty}}{ }_{3} \phi_{2}\left[\begin{array}{c}
b, c, a q / b c \\
d q, a q^{2} / d
\end{array} ; q^{2}, q^{2}\right], \tag{1.8}
\end{align*}
$$

provided that d and $a q / d$ are not of the form $q^{-2 n}$ (n is a non-negative integer).
We shall prove Theorems 1.1-1.3 by employing the method of 'creative microscoping' and Rahman's transformation (1.8) again.

2. Proof of Theorem 1.1

We first give a generalization of Theorem 1.1 with an additional parameter a.
Theorem 2.1. Let d and r be positive integers with $r<d \leqslant 2 r$. Let n be a positive integer with $n \equiv-1(\bmod 2 d)$ and a an indeterminate. Then, modulo $\Phi_{n}(q)\left(1-a q^{(d-r) n}\right)(a-$ $\left.q^{(d-r) n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(r n+r-d) / d}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(a q^{2 d}, q^{2 d} / a, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 . \tag{2.1}
\end{equation*}
$$

Proof. Letting $d \rightarrow 0$ in (1.8), we get

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(1-a q^{3 k}\right)\left(a ; q^{2}\right)_{k}(b, c, a q / b c ; q)_{k}}{(1-a)(q ; q)_{k}\left(a q^{2} / b, a q^{2} / c, b c q ; q^{2}\right)_{k}} q^{\left(k^{2}+k\right) / 2}=\frac{\left(a q^{2}, b q, c q, a q^{2} / b c ; q^{2}\right)_{\infty}}{\left(q, a q^{2} / b, a q^{2} / c, b c q ; q^{2}\right)_{\infty}} \tag{2.2}
\end{equation*}
$$

We then take $q \mapsto q^{d}, a=q^{r}, b=q^{r+(d-r) n}, c=q^{r-(d-r) n}$ in the above formula to obtain

$$
\begin{align*}
& \sum_{k=0}^{(d n-r n-r) / d} \frac{\left(1-q^{3 d k+r}\right)\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r+(d-r) n}, q^{r-(d-r) n}, q^{d-r} ; q^{d}\right)_{k}}{\left(1-q^{r}\right)\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d-(d-r) n}, q^{2 d+(d-r) n}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& =\frac{\left(q^{2 d+r}, q^{d+r+(d-r) n}, q^{d+r-(d-r) n}, q^{2 d-r} ; q^{2 d}\right)_{\infty}}{\left(q^{d}, q^{2 d-(d-r) n}, q^{2 d+(d-r) n}, q^{d+2 r} ; q^{2 d}\right)_{\infty}} \\
& =0 \tag{2.3}
\end{align*}
$$

where we have used the fact that $\left(q^{r-(d-r) n} ; q^{d}\right)_{k}=0$ for $k>(d n-r n-r) / d$, and $\left(q^{d+r-(d-r) n} ; q^{2 d}\right)_{\infty}=0$. Since $(r n+r-d) / d \geqslant(d n-r n-r) / d$, we see that the left-hand side of (2.1) is equal to 0 for $a=q^{-(d-r) n}$ or $a=q^{(d-r) n}$. Namely, the q-congruence (2.1) is true modulo $1-a q^{(d-r) n}$ and $a-q^{(d-r) n}$.

On the other hand, letting $q \mapsto q^{d}, a=q^{r-r n}, b=a q^{r}, c=q^{r} / a$ in (1.8), we get

$$
\begin{align*}
& \sum_{k=0}^{(r n+r-d) / d} \frac{\left(1-q^{3 d k+r-r n}\right)\left(q^{r-r n} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r-r n} ; q^{d}\right)_{k}}{\left(1-q^{r-r n}\right)\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d-r n} / a, a q^{2 d-r n}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& =\frac{\left(q^{2 d+r-r n}, a q^{d+r}, q^{d+r} / a, q^{2 d-r-r n} ; q^{2 d}\right)_{\infty}}{\left(q^{d}, q^{2 d-r n} / a, a q^{2 d-r n}, q^{d+2 r} ; q^{2 d}\right)_{\infty}} \\
& =0, \tag{2.4}
\end{align*}
$$

where we have utilized $\left(q^{2 d-r-r n} ; q^{2 d}\right)_{\infty}=0$ and $\left(q^{d-r-r n} ; q^{d}\right)_{k}=0$ for $k>(r n+r-d) / d$. Since $n \equiv-1(\bmod 2 d)$, we have $\operatorname{gcd}(2 d, n)=1$. Thus, the minimal positive integer k such that $\left(q^{m} ; q^{2 d}\right)_{k} \equiv 0\left(\bmod \Phi_{n}(q)\right)$ is $(2 d-m)(n+1) /(2 d)$ for m in the range $0<m<2 d$. This means that the polynomial $\left(q^{d+2 r} ; q^{2 d}\right)_{k}$ is always relatively prime to
$\Phi_{n}(q)$ for $0 \leqslant k \leqslant(r n+r-d) / d$ (since $0 \leqslant(d+2 r)-2 d<2 d-r$ according to the condition in the theorem). In view of $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, we conclude from (2.4) that

$$
\sum_{k=0}^{(r n+r-d) / d}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(a q^{2 d}, q^{2 d} / a, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right) .
$$

Since $1-a q^{n}, a-q^{n}$ and $\Phi_{n}(q)$ are pairwise relatively prime polynomials in q, we complete the proof of the theorem.

Proof of Theorem 1.1. Note that the polynomial $\left(q^{2 d} ; q^{2 d}\right)_{k}$ is relatively prime to $\Phi_{n}(q)$ for any $0 \leqslant k \leqslant n-1$. Moreover, the polynomial $\left(1-q^{n}\right)^{2}$ has the factor $\Phi_{n}(q)^{2}$. The proof of (1.3) then follows from (2.1) by specializing $a=1$.

3. Proof of Theorem 1.2

Similarly as before, we first establish the following parametric generalization of Theorem 1.2.

Theorem 3.1. Let d and r be positive integers with $d \geqslant 2 r$ and $d \equiv r+1 \equiv 0(\bmod 2)$. Let n be a positive integer with $n \equiv d+1(\bmod 2 d)$ and a an indeterminate. Then, modulo $\Phi_{n}(q)\left(1-a q^{r n}\right)\left(a-q^{r n}\right)$,

$$
\begin{equation*}
\sum_{k=0}^{(d n+r n-r) /(2 d)}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(a q^{2 d}, q^{2 d} / a, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 . \tag{3.1}
\end{equation*}
$$

Proof. The proof is similar to that of Theorem 2.1. This time we take $q \mapsto q^{d}, a=q^{r}$, $b=q^{r+r n}, c=q^{r-r n}$ in (2.2) to obtain

$$
\begin{align*}
& \sum_{k=0}^{r(n-1) / d} \frac{\left(1-q^{3 d k+r}\right)\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r+r n}, q^{r-r n}, q^{d-r} ; q^{d}\right)_{k}}{\left(1-q^{r}\right)\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d-r n}, q^{2 d+r n}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& =\frac{\left(q^{2 d+r}, q^{d+r+r n}, q^{d+r-r n}, q^{2 d-r} ; q^{2 d}\right)_{\infty}}{\left(q^{d}, q^{2 d-r n}, q^{2 d+r n}, q^{d+2 r} ; q^{2 d}\right)_{\infty}} \\
& =0 \tag{3.2}
\end{align*}
$$

where we have used the fact that $\left(q^{r-r n} ; q^{d}\right)_{k}=0$ for $k>r(n-1) / d$, and $\left(q^{d+r-r n} ; q^{2 d}\right)_{\infty}=$ 0 . This proves that the left-hand side of (3.1) is equal to 0 for $a=q^{-r n}$ or $a=q^{r n}$ (since $r(n-1) / d<(d n+r n-r) /(2 d))$. Namely, the q-congruence (3.1) is true modulo $1-a q^{r n}$ and $a-q^{r n}$.

On the other hand, letting $q \mapsto q^{d}, a=q^{r-(d+r) n}, b=a q^{r}, c=q^{r} / a$ in (1.8), we get

$$
\begin{align*}
& \sum_{k=0}^{(d n+r n-r) /(2 d)} \frac{\left(1-q^{3 d k+r-d n-r n}\right)\left(q^{r-d n-r n} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r-d n-r n} ; q^{d}\right)_{k}}{\left(1-q^{r-d n-r n}\right)\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d-d n-r n} / a, a q^{2 d-d n-r n}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& =\frac{\left(q^{2 d+r-d n-r n}, a q^{d+r}, q^{d+r} / a, q^{2 d-r-d n-r n} ; q^{2 d}\right)_{\infty}}{\left(q^{d}, q^{2 d-d n-r n} / a, a q^{2 d-d n-r n}, q^{d+2 r} ; q^{2 d}\right)_{\infty}} \\
& =0 \tag{3.3}
\end{align*}
$$

where we have utilized $\left(q^{2 d+r-d n-r n} ; q^{2 d}\right)_{\infty}=0$ and $\left(q^{r-d n-r n} ; q^{2 d}\right)_{k}=0$ for $k>(d n+$ $r n-r) /(2 d)$. It is easy to see that $\operatorname{gcd}(2 d, n)=1$, and the minimal positive integer k such that $\left(q^{d+2 r} ; q^{2 d}\right)_{k} \equiv 0\left(\bmod \Phi_{n}(q)\right)$ is $(d+2 r)(n-1) /(2 d)$, which is greater than $(d n+r n-r) /(2 d)$. Thus, the polynomial $\left(q^{d+2 r} ; q^{2 d}\right)_{k}$ is always relatively prime to $\Phi_{n}(q)$ for $0 \leqslant k \leqslant(d n+r n-r) /(2 d)$. In view of $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, we conclude from (3.3) that

$$
\sum_{k=0}^{(d n+r n-r) /(2 d)}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(a q^{2 d}, q^{2 d} / a, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)\right)
$$

This proves (3.1).
Proof of Theorem 1.3. Since $\operatorname{gcd}(2 d, n)=1$ and $q^{n} \equiv 1\left(\bmod \Phi_{n}(q)\right)$, the proof of (1.4) immediately follows from the $a=1$ case of (3.1).

4. Proof of Theorem 1.3

Likewise, we have a parametric generalization of Theorem 1.3 as follows.
Theorem 4.1. Let d and r be positive integers with $d>r$. Let n be a positive integer with $n \equiv 1(\bmod 2 d)$ and a an indeterminate. Then, modulo $\left(1-a q^{r n}\right)\left(a-q^{r n}\right)$,

$$
\begin{align*}
& \sum_{k=0}^{n-1}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(a q^{r}, q^{r} / a, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(a q^{2 d}, q^{2 d} / a, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& \quad \equiv[r n] \frac{\left(q^{d} ; q^{2 d}\right)_{r(n-1) /(2 d)}}{\left(q^{d+2 r} ; q^{2 d}\right)_{r(n-1) /(2 d)}} q^{(r-d) r(n-1) /(2 d)} \tag{4.1}
\end{align*}
$$

Proof. We again take $q \mapsto q^{d}, a=q^{r}, b=q^{r+r n}, c=q^{r-r n}$ in (2.2) as in the proof of

Theorem 3.1. But this time

$$
\begin{aligned}
& \sum_{k=0}^{n-1} \frac{\left(1-q^{3 d k+r}\right)\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r+r n}, q^{r-r n}, q^{d-r} ; q^{d}\right)_{k}}{\left(1-q^{r}\right)\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d-r n}, q^{2 d+r n}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \\
& =\frac{\left(q^{2 d+r}, q^{d+r+r n}, q^{d+r-r n}, q^{2 d-r} ; q^{2 d}\right)_{\infty}}{\left(q^{d}, q^{2 d-r n}, q^{2 d+r n}, q^{d+2 r} ; q^{2 d}\right)_{\infty}} \\
& =\frac{\left(q^{2 d+r}, q^{d+r-r n} ; q^{2 d}\right)_{r(n-1) /(2 d)}}{\left(q^{d+2 r}, q^{2 d-r n} ; q^{2 d}\right)_{r(n-1) /(2 d)}} \\
& =\frac{\left(1-q^{r n}\right)\left(q^{d} ; q^{2 d}\right)_{r(n-1) /(2 d)}}{\left(1-q^{r}\right)\left(q^{d+2 r} ; q^{2 d}\right)_{r(n-1) /(2 d)}^{(r-d) r(n-1) /(2 d)},}
\end{aligned}
$$

where we have used the fact that $\left(q^{r-r n} ; q^{d}\right)_{k}=0$ for $k>r(n-1) / d$. This proves that both sides of (4.1) are equal for $a=q^{-r n}$ or $a=q^{r n}$. Namely, the q-congruence (4.1) is true modulo $1-a q^{r n}$ and $a-q^{r n}$.

Proof of Theorem 1.3. In view of $n \equiv 1(\bmod 2 d)$, we have $\operatorname{gcd}(2 d, n)=1$. Thus, the minimal positive integer k such that $\left(q^{m} ; q^{2 d}\right)_{k} \equiv 0\left(\bmod \Phi_{n}(q)\right)$ is $m(n-1) /(2 d)+1$ for m in the range $0<m \leqslant 2 d$. This indicates that the denominator of the reduced form of $\left(q^{r} ; q^{2 d}\right)_{k} /\left(q^{d+2 r} ; q^{2 d}\right)_{k}$ is always relatively prime to $\Phi_{n}(q)$ for $0 \leqslant k \leqslant n-1$ (since $0<r<d+2 r \leqslant 2 d)$. The proof of (1.7) then follows from the $a=1$ case of (4.1).

5. Some open problems

Numerical calculation implies that the following stronger versions of Theorems 1.1-1.3 should be true.

Conjecture 5.1. Let d and r be positive integers with $d>r$. Let n be a positive integer with $n \equiv-1(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{n-1}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r}, q^{r}, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d}, q^{2 d}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{3}\right) \tag{5.1}
\end{equation*}
$$

Conjecture 5.2. Let d and r be positive integers with $d>r$ and $d \equiv r+1 \equiv 0(\bmod 2)$. Let n be a positive integer with $n \equiv d+1(\bmod 2 d)$. Then (5.1) holds.

Conjecture 5.3. Let d be a positive odd integer, $r=(d+1) / 2$, and n a positive integer satisfying $n \equiv-1(\bmod 2 d)$. Then

$$
\begin{equation*}
\sum_{k=0}^{(2 n+2-d)(d-1) /(2 d)}[3 d k+r] \frac{\left(q^{r} ; q^{2 d}\right)_{k}\left(q^{r}, q^{r}, q^{d-r} ; q^{d}\right)_{k}}{\left(q^{d} ; q^{d}\right)_{k}\left(q^{2 d}, q^{2 d}, q^{d+2 r} ; q^{2 d}\right)_{k}} q^{d\left(k^{2}+k\right) / 2} \equiv 0 \quad\left(\bmod \Phi_{n}(q)^{4}\right) \tag{5.2}
\end{equation*}
$$

Conjecture 5.4. Let d and r be positive integers with $d>r$. Let n be a positive integer with $n \equiv 1(\bmod 2 d)$. Then (1.7) holds.

Conjecture 5.5. Let $d>1$ be an odd integer, $r=(d-1) / 2$, and n a positive integer satisfying $n \equiv 1(\bmod 2 d)$. Then (1.7) holds modulo $\Phi_{n}(q)^{3}$.

Note that Conjecture 5.3 was provided by one of the referees, and it is a generalization of [3, Conjecture 5.2]. This referee also asked us to find a similar conjecture related to Theorem 1.3. After a simple try, we found the above Conjecture 5.5. However, we are unable to confirm these two conjectures, since it is difficult to find the corresponding parametric versions of the q-supercongruences (5.2) and the modulus $\Phi_{n}(q)^{3}$ case of (1.7). Finally, we point out that Conjectures 5.3 and 5.5 are not yet true modulo $[n]$ in general, For example, the q-congruence (5.2) does not hold modulo $[n]$ for $(d, r, n)=(3,2,35)$, and the q-congruence (1.7) does not hold modulo $[n]$ for $(d, r, n)=(5,2,51)$ either.

Acknowledgment. The author sincerely thanks one of the anonymous referees for helpful comments on this paper.

References

[1] M. El Bachraoui, On supercongruences for truncated sums of squares of basic hypergeometric series, Ramanujan J. 54 (2021), 415-426.
[2] G. Gasper and M. Rahman, Basic Hypergeometric Series, second edition, Encyclopedia of Mathematics and Its Applications 96, Cambridge University Press, Cambridge, 2004.
[3] V.J.W. Guo, Three families of q-supercongruences from a quadratic transformation of Rahman, preprint, 2022.
[4] V.J.W. Guo and M.J. Schlosser, Some q-supercongruences from transformation formulas for basic hypergeometric series, Constr. Approx. 53 (2021), 155-200.
[5] V.J.W. Guo and W. Zudilin, A q-microscope for supercongruences, Adv. Math. 346 (2019), 329-358.
[6] V.J.W. Guo and W. Zudilin, Dwork-type supercongruences through a creative q microscope, J. Combin. Theory, Ser. A 178 (2021), Art. 105362.
[7] B. He, Supercongruences and truncated hypergeometric series, Proc. Amer. Math. Soc. 145 (2017), 501-508.
[8] J.-C. Liu, A p-adic supercongruence for truncated hypergeometric series ${ }_{7} F_{6}$, Results Math. 72 (2017), 2057-2066.
[9] J.-C. Liu and X.-T. Jiang, On the divisibility of sums of even powers of q-binomial coefficients, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), Art. 76.
[10] Y. Liu and X. Wang, Some q-supercongruences from a quadratic transformation by Rahman, Results Math. 77 (2022), Art. 44.
[11] Y. Morita, A p-adic analog of the Γ-function, J. Fac. Sci. Univ. Tokyo 22 (1975), 255-266.
[12] H.-X. Ni and L.-Y. Wang, Two q-supercongruences from Watson's transformation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 116 (2022), Art. 30.
[13] L. Van Hamme, Some conjectures concerning partial sums of generalized hypergeometric series, in: p-Adic Functional Analysis (Nijmegen, 1996), Lecture Notes in Pure and Appl. Math. 192, Dekker, New York, 1997, pp. 223-236.
[14] C. Wei, Some q-supercongruences modulo the fourth power of a cyclotomic polynomial, J. Combin. Theory, Ser. A 182 (2021), Art. 105469.

