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Abstract. Fractional differential equations extend ordinary differential
equations by including derivatives of non-integer order. This article in-
vestigates the existence of solutions for Ψ-Hilfer hybrid fractional differ-
ential equations using a measure of noncompactness technique to estab-
lish a fixed point of the sum of an L-contraction and a compact operator.
The contraction condition proposed in this article is not a generalized
contraction. Furthermore, a number of existing results in the literature
are also improved by the presented results.
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1. Introductions

The fixed point methods serve as an indispensable and versatile tool in ac-
tualizing the solution of wide range of problems arising in engineering, bi-
ology, economy, physical, chemical, mathematical and social sciences. These
problems can be represented with an appropriate mathematical model. The
investigation of fixed points plays a vital role in examination of existence
and uniqueness of solutions of the model determined from the formulated
problem. The Banach contraction principle [4] and Schauder fixed point the-
orem [34] are most celebrated and readily applicable results to several prob-
lems involving differential, integral or other functional equations. There are
several issues coming from different branches of natural science, when mod-
elled under the mathematical point of view, involve the study of solutions of
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nonlinear equations of the form

T κ + Sκ = κ for all κ ∈ C, (1.1)

where C is a nonempty closed, convex subset of a Banach space (X , ‖ · ‖) and
T ,S : C → X . Especially, many problems in differential and integral equa-
tions can be formulated in terms of Eq. (1.1). The Krasnosel’skii’s fixed point
theorem is a powerful method for solving equations of the form (1.1). It com-
bines two key concepts in fixed point theory, namely the Banach contraction
principle and the Schauder fixed point theorem, to provide an effective pat-
tern for finding fixed points. This theorem is named after mathematician
Mark Krasnosel’skii, and the original statement of the theorem can be found
in his published work [22] and we may read it as follows:

Theorem 1.1. Let C 6= ∅ be a convex and closed set in a Banach space X .
Suppose T ,S : C →M such that

(i) T is continuous and compact,
(ii) S is contraction,

(iii) T κ + Sϑ ∈ C ∀ κ, ϑ ∈ C. Then T + S admits fixed points.

However, numerous enhancements have been published in the literature over
the years, that modify the underlying assumptions. These improvements oc-
curred in different directions. The first direction in achieving improvement is
to weaken the condition (iii) in Theorem 1.1. A major breakthrough occurred
when the condition T (C) + S(C) ⊂ C is replaced by (T + S)(C) ⊂ C. This was
made possible due to use of measure noncompactness. The measures of non-
compactness are functions utilized to quantify the level of noncompactness
of a set. A quantitative characteristic ℵ(A) measuring the degree of non-
compactness of subset A in metric space, has connection with problems of
general topology. The Kuratowski and Hausdorff measure of noncompactness
in a metric space are well-known in the literature. Recall the following famous
notions of Housdorff measure of noncompactness.

Definition 1.1. [15] Let (X , d) be a metric space and B(X ) be the family of
all nonempty and bounded subsets of X . The function α : B(X ) → [0,∞)
defined as

ℵ(C) = inf{r > 0 : C ⊂ ∪Ni=1B(κi, r),κi ∈ X , i = 1, 2, ..., N},

∀ C ∈ B(X ), where B(κi, r) is ball with center κi and radius r. Then ℵ is
said to be Hausdorff measure of noncompactness.

The following are some of the fundamental properties of the Hausdorff
measure of noncompactness:

1◦ ℵ(U) = 0 if and only if U is relatively compact (i.e., U is compact),
2◦ ℵ(U) = ℵ(U), U ∈ B(X ), where U denotes closure of the set U ,
3◦ ℵ(con(U)) = ℵ(U), for all U ∈ B(X ),
4◦ U ⊂ V implies ℵ(U) ≤ ℵ(V), for all U ,V ∈ B(X ),
5◦ ℵ(U + V) ≤ ℵ(U) + ℵ(V).
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One of the most significant developments in fixed point theory comes from
Darbo, who applied this measure to expand the classical Schauder’s theorem
[34] to a wide class of operators called condensing operators which are more
general then the compact operators. Now, present the combine statement of
Darbo [10] and Sadovskii [33] results.

Theorem 1.2. [10,33] A continuous self-mapping T on a nonempty, bounded,
closed and convex subset C of a Banach space X , admits a fixed point. If for
every ∅ 6= U ⊂ C satisfying one of the following conditions:

(D) ∃ 0 ≤ Λ < 1 such that ℵ(T (U)) ≤ Λℵ(U),
(S) ℵ(U) > 0, ℵ(T (U)) < ℵ(U).

A mapping satisfying condition (D) is called Λ-set condensing (due to Darbo
[10]) whereas satisfying (S) is called as ℵ-condensing (due to Sadovskii [33]).
Secondly, weakening the compactness of mapping T is an important factor of
improvement. There is a lot of work going on in this direction (cf. [5, 11, 14,
27,28] and references therein). Generalizing the condition (ii) in Theorem 1.1
is the third significant area for development. Burton [6] successfully replaced
the contraction mapping in this direction with large contractions, which are
described as follows:

Definition 1.2. A self mapping T on a metric space (X , d) is said to be large
contraction if ∀ ε > 0, ∃ δ < 1 such that d(ϑ,κ) ≥ ε implies d(T ϑ, T κ) ≤
δd(ϑ,κ), ∀ϑ,κ ∈ X .

Successively, Przeradki [31] actualized the fixed points for the sum of ‘com-
pact operator’and ‘generalized contraction’ using the concept of Housdorff
measure of noncompactness and ℵ-condensing mapping.

Definition 1.3. The self mapping T on (X , d) is said to be a generalized
contraction if there exists a function γ : X × X → [0,∞) such that

sup
(a≤d(ϑ,κ)≤b)

γ(ϑ,κ) < 1 for all b ≥ a > 0

and ∀ κ, ϑ ∈ X
d(T ϑ, T κ) ≤ γ(ϑ,κ)d(ϑ,κ).

Przeradzki [31] demonstrated that the generalized contractions are a proper
generalization of large contractions. Together with Sadovskii’s and condition
(T + S)(C) ⊂ C, Przeradzki in [31] also shown that generalized contractions
are ℵ-condensing, which led to a major improvement of Krasnosel’skii’s re-
sult. This way he succeed in improving Krasnosel’skii’s as well as Burton’s
result [7]. Park [29] made a significant contribution in this direction as well.
Recently, Wardowski [41] further extended the Krasnosel’skii’s result by ap-
plying ϕ-F -contraction. Patle et al. has assured in [13, 30] that the sum of a
Z-contraction and a compact operator admits a fixed point.

On the other hand, the Hilfer in [17] presented the idea of the fractional

derivative operator HDµ̌,ν̌p+ with two parameters µ̌ ∈ (n − 1, n), n ∈ N and

ν̌(0 ≤ ν̌ ≤ 1), which includes the theory of fractional differential equations
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(FDEs) involving RL fractional derivative (ν̌ = 0) and Caputo fractional
derivative (ν̌ = 1). Later on, the fundamental work on the initial value prob-
lems involving Hilfer fractional derivatives were studied by Furati et al. [12].
Wang and Zhang [40], discussed the existence of solutions to nonlocal ini-
tial value problem for differential equations with Hilfer fractional derivative.
In [2], Almeida presented Ψ-Caputo fractional derivative and investigated
many fascinating properties of this operator. The discovery of new physical
phenomena and the study of chaotic systems have given rise to the proposi-
tion of new fractional differential and integral operators that would allow a
better description of such systems [9, 16, 32, 38]. In this context, Sousa and
Oliveira [37] have recently proposed a fractional derivative operator, which
they called Ψ-Hilfer operator that has the spacial property of unifying sev-
eral different fractional operators, that is, of generalizing those fractional
operators. The Ψ-Hilfer derivative allows for a more flexible characterization
of memory effects and non-local behaviors and better analytical properties
compared to Riemann-Liouville and Caputo derivatives. This flexibility often
leads to more accurate modeling of complex systems exhibiting anomalous
diffusion or non-local behaviors [3, 18]. The existence and uniqueness of the
solution to fractional boundary value problems (BVPs) have acquired a lots
of interest due to its qualitative properties. Mali and Kucche [26] considered
the nonlocal boundary value problem for implicit Ψ-Hilfer FDEs to discuss
the existence and Ulam stability results on the problem. Besides, Shatanawi
et al. [35] implemented the Krasnoselskii’s fixed point approach and Banach
contraction principle to obtained a solution for generalized Hilfer operators.
The detailed study about existence and uniqueness of the solution to Ψ-Hilfer
FDEs and development of Ψ-Hilfer FDEs can be seen in [20,23,39].

Motivated by the above study, in the present paper, we consider the
following Ψ-Hilfer hybrid FDEs of the form{

HDµ̌,ν̌;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))] = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

I1−η;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))](p) = ϑp ∈ R.

(1.2)

where HDµ̌,ν̌;Ψ
p+ (·) denotes the Ψ-Hilfer fractional derivative of order 0 < µ̌ < 1

and type 0 ≤ ν̌ ≤ 1, I1−η;Ψ
p+ is the Ψ-RL fractional integral of order 1−η, η =

µ̌ + ν̌(1 − µ̌) with respect to function Ψ [21]. For f(·, ϑ(·)) and g(·, ϑ(·)) ∈
C([p, T ]× R,R) with p < T ≤ q.

The structure of this paper is organized as follows. Section 2 introduces
the necessary notations, basic definitions, and preliminary facts that will be
utilized in subsequent sections. In Section 3, we investigate L-contractions
and obtain Krasnosel’skii type fixed point results by utilizing the Hausdorff
measure of noncompactness and condensing mappings. In Section 4, our focus
is on examining the existence of solutions for hybrid Hilfer fractional differen-
tial equations (1.2). Additionally, in Section 5, we present several illustrative
examples to demonstrate the applicability and effectiveness of our results.
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2. Preliminaries

2.1. Mathematical Background (from L-contraction)

To establish an extension of Krasnoselskii’s fixed point theorem, we utilize
the following concepts.

Definition 2.1. (Jleli and Samet [19]) Let Γ be the collection of all functions
Θ : (0,∞)→ (1,∞) fulfilling the conditions:

(Θ1) Θ(υ1) ≤ Θ(υ2) for all υ1 < υ2,
(Θ2) for each sequence {υi} ⊂ (0,∞), lim

i→∞
Θ(υi) = 1⇔ lim

i→∞
υi = 0+,

(Θ3) there exist k ∈ (0, 1) and ` ∈ (0,∞) such that

Θ(υ)− 1

υk
= `.

Ahmad et al. [1] substituted condition (Θ3) with the requirement that Θ be
continuous on the interval (0,∞). This idea is utilised in the current paper
as well.

For example,

(i) Consider the function Θ : (0,∞) → (1,∞) defined by Θ(υ) := e
√
υ

belong to Γ.

(ii) The function Θ : (0,∞) → (1,∞) defined by Θ(υ) := e
√
υeυ belong to

Γ.

A Θ-contraction is a self-mapping T on a metric space (X , d) satisfying the
following condition: there exist Θ ∈ Γ and k ∈ (0, 1) such that for any
κ, ϑ ∈ X

d(T κ, T ϑ) 6= 0 =⇒ Θ(d(T κ, T ϑ)) ≤ [Θ(d(κ, ϑ))]k.

Further, it has been demonstrated in [19] that every Θ-contraction on com-
plete metric space (X , d) admits one fixed point.

Definition 2.2. [8] Suppose Σ is the set of all functions Ξ : [1,∞)×[1,∞)→ R
satisfying the following conditions:

(Ξ-1) Ξ(1, 1) = 1,
(Ξ-2) Ξ(υ1, υ2) < υ2

υ1
for all υ1, υ2 > 1,

(Ξ-3) if there are two sequences {sj} and {υj} in (1,∞) with sj ≥ υj
and lim

j→∞
sj = lim

j→∞
υj > 1, then lim sup

j→∞
Ξ(υj , sj) < 1.

For example,

(a) Ξ(υ1, υ2) =
υk2
υ1

for all υ1, υ2 ≥ 1 where k ∈ (0, 1);

(b) Ξ(υ1, υ2) = υ2

υ1ϕ(υ2) for all υ1, υ2 ≥ 1 where ϕ : [1,∞) → [1,∞) is

nondecreasing and lower semi-continuous such that ϕ−1({1}) = {1}.
Definition 2.3. Let (X , d) be a metric space and T be a self-mapping. We say
that T is an L-contraction if there exist Θ ∈ Γ and Ξ ∈ Σ, for any distinct
points κ and ϑ in X such that d(T κ, T ϑ) > 0, we have

Ξ

(
Θ(d(T κ, T ϑ)),Θ(d(κ, ϑ))

)
≥ 1. (2.1)
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On a complete metric space, any L-contraction has a unique fixed point. This
result was first established in [8]. The fixed point theorem obtained by Zada et
al. [42] extends the class of Darbo type fixed point results by introducing the
notion of Lℵ contraction, which involves a simulation function. The statement
can be given as:

Theorem 2.1. Let A be a nonempty, bounded, closed and convex subset of a
Banach space X . A continuous mapping T : A → A which is Lℵ contraction
with respect to Ξ, that is, T satisfies

Ξ

(
Θ(ℵ(T (C))),Θ(ℵ(C))

)
≥ 1,

where Θ ∈ Γ and for all nonempty subset C ⊆ A with ℵ(C) > 0. Then T
admits fixed point.

2.2. Terminology used in fractional calculus and its outcomes

Let [p, q] (0 ≤ p < q < ∞) be an interval with a finite length on the non-
negative part of the real number line, denoted by R+, and C[p, q] be space of
function f that are continuous over the interval [p, q] with the norm

‖f‖C[p,q] := max
υ∈[p,q]

|f(υ)|.

Suppose Ψ is a function in C1([p, q],R) that is increasing and satisfies Ψ′(υ) 6=
0 for all υ ∈ [p, q]. The weighted space C1−η;Ψ[p, q] consists of continuous
functions f : (p, q] → R such that (Ψ(υ) − Ψ(p))1−ηf(υ) belongs to C[p, q],
where 0 ≤ η < 1, and is defined by [37]. The norm on this space is given by

‖f‖C1−η;Ψ[p,q] := ‖(Ψ(υ)−Ψ(p))1−ηf(υ)‖C[p,q] = max
υ∈[p,q]

|(Ψ(υ)−Ψ(p))1−ηf(υ)|.

The weighted space Cnη;Ψ[p, q] of continuous functions f on (p, q] is defined
by

Cnη;Ψ[p, q] = {f : (p, q]→ R : f(υ) ∈ Cn−1[p, q]; fn(υ) ∈ Cη;Ψ[p, q]}, 0 ≤ η < 1,

equipped with the norm

‖f‖Cnη;Ψ[p,q] =

n−1∑
i=0

‖f (i)‖C[p,q] + ‖f (n)‖Cnη;Ψ[p,q].

Definition 2.4. [21] Assume f is a function with integrable absolute value
defined on the interval [p, q]. The Ψ-Riemann-Liouville (Ψ-RL) fractional
integral of order µ̌ > 0 (µ̌ ∈ R) of the function f is defined as

I µ̌;Ψ
p+ f(υ) =

1

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(%))µ̌−1f(%)d%. (2.2)

Definition 2.5. [37] The expression for the Ψ-Hilfer fractional derivative of a
function f with 0 < µ̌ < 1 and type 0 ≤ ν̌ ≤ 1 is provided by

HDµ̌,ν̌;Ψ
p+ f(υ) = I

ν̌(1−µ̌);Ψ
p+

(
1

Ψ′(υ)

d

dυ

)
I

(1−ν̌)(1−µ̌);Ψ
p+ f(υ). (2.3)

Lemma 2.1. [21, 37] Suppose ε, δ > 0 and ρ > n. Then
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(i) I µ̌;Ψ
p+ Iε;Ψp+ h(υ) = I µ̌+ε;Ψ

p+ h(υ).

(ii) I µ̌;Ψ
p+ (Ψ(υ)−Ψ(p))δ−1 = Γ(δ)

Γ(µ̌+δ) (Ψ(υ)−Ψ(p))µ̌+δ−1.

(iii) HDµ̌,ν̌;Ψ
p+ (Ψ(υ)−Ψ(p))η−1 = 0.

(iv) HDµ̌,ν̌;Ψ
p+ (Ψ(υ)−Ψ(p))ρ−1 = Γ(ρ)

Γ(ρ−µ̌) (Ψ(υ)−Ψ(p))ρ−µ̌−1.

Lemma 2.2. [37] If γ ∈ Cn[p, q], n− 1 < µ̌ < n and 0 ≤ ν̌ ≤ 1, then

(i) I µ̌;Ψ
p+

HDµ̌,ν̌;Ψ
p+ γ(υ) = γ(υ) −

n∑
k=1

(Ψ(υ)−Ψ(p))η−k

Γ(η−k+1) γ
[n−k]
Ψ I

(1−ν̌)(n−µ̌);Ψ
p+ γ(p),

where γ
[n−k]
Ψ γ(υ) =

(
1

Ψ′(υ)
d
dt

)n−k
γ(υ).

(ii) HDµ̌,ν̌;Ψ
p+ I µ̌;Ψ

p+ γ(υ) = γ(υ).

(iii) I α̌;Ψ
p+ γ(p) = lim

υ→p+
I α̌;Ψ
p+ γ(υ) = 0, n− 1 ≤ µ̌ < α.

3. Krasnosel’skii type fixed point results

We enunciate this section by showing L-contraction to be a ℵ-condensing
map and, then using Sadovskii’s theorem we derive fixed point theorem for
sum of a compact operator with L-contraction. Before stating the results we
wish to show that L-contraction is not a particular instance of a generalized
contraction.

Example 1. Consider X as the set X =
{
κk = k√

2
−
√

2 + 2−k+ 1
2 : k ∈ N

}
,

equipped with the metric d(κ, ϑ) = |κ−ϑ|, for all κ, ϑ ∈ X . The space (X , d)
is complete. We then define the mapping T : X → X given by

T κk =

 κ1 if k = 1,

κk−1 if k ≥ 2.

Firstly, note that T does not satisfy the condition of being a generalized
contraction. Specifically, for any k ∈ N, we can see that

|κk+1 − κk| =
1√
2
−
√

2

2k+1
.

Hence
1

2
√

2
≤ |κk+1 − κk| <

1√
2
, ∀ k ∈ N.

Assuming to the contrary, that T is generalized contraction, there exists a
function γ satisfying second condition in Definition 1.3. Then for k ≥ 2, we
get

γ(κk+1,κk) ≥ d(T κk+1, T κk)

d(κk+1,κk)
=
|κk − κk−1|
|κk+1 − κk|

=
2k+1 − 4

2k+1 − 2
.

So by first condition of Definition 1.3, we get

1 > sup
( 1

2
√

2
<d(κ,ϑ)< 1√

2
)

γ(κ, ϑ) ≥ γ(κk+1,κk) ≥ 2k+1 − 4

2k+1 − 2
.
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Taking the limit as n approaches infinity leads to a contradiction. Now to
show T to be a L-contraction, we need to consider a mapping ϕ : (0,∞) →
(0,∞) defined as

ϕ(τ) =


1 +

τ − 1

τ + 1
if 0 < τ < 1,

1 +
τ − k
τ + 1

if (k − 1) ≤ τ < k, k ≥ 2.

Then one can observe that lim sup
τ→r+

ϕ(τ) < 1 for any r ≥ 0. Now for any

m,n ∈ N, k > l ≥ 2, we have

|κl − κk| =
(k − l)√

2
+ 2−k+ 1

2 − 2−l+
1
2

and
(k − l)√

2
− 1 < |κl − κk| <

(k − l)√
2

.

Hence, we obtain

|T κl − T κk| =
(

1 +
2−k+ 1

2 − 2−l+
1
2

|κl − κk|

)
|κl − κk|

<

(
1 +
|κl − κk| − (k−l)√

2

|κl − κk|+ 1

)
|κl − κk|

= ϕ(|κl − κk|)|κl − κk|.

Also, for any k ≥ 2 we get

|κk − κ1| =
k√
2
−
√

2 + 2−k+ 1
2

and
k − 1√

2
− 1 <

k − 2√
2

< |κk − κ1| <
k − 1√

2
,

which returns us with

|T κk − T κ1| =
(

1 +
2−k+ 1

2 − 1√
2

|κk − κ1|

)
|κk − κ1|

<

(
1 +
|κk − κ1| − (k−1)√

2

|κk − κ1|+ 1

)
|κk − κ1|

< ϕ(|κk − κ1|)|κk − κ1|.

Define Θ : [0,∞) → [1,∞) as Θ(υ) = eυ and L = lim sup
τ→r+

ϕ(τ) < 1 for any

r ≥ 0. Then

[Θ(|κ − ϑ|)]L

Θ(|T κ − T ϑ|)
≥ 1.

9 Jan 2024 08:04:16 PST
230816-Nashine Version 2 - Submitted to Rocky Mountain J. Math.



Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space 9

Select Ξ(υ, %) =
%L

υ
, we obtain

Ξ(Θ(|T κ − T ϑ|),Θ(|κ − ϑ|)) ≥ 1.

Hence, T is an L-contraction but not later one.

Theorem 3.1. Every L-contraction T on metric space (X , d) is ℵ-condensing.

Proof. Take any nonempty subset C of X with positive Housdorff measure of
noncompactness. Let two sequences {pn} and {qn} defined by pn = ℵ(C) −
εn > 0 and qn = ℵ(C) + εn > 0 where εn → 0 as n → ∞. Then, take
υn = Θ(pn) = Θ(ℵ(C) − εn) > 1 and %n = Θ(qn) = Θ(ℵ(C) + εn) > 1.
Therefore, lim

n→∞
υn = lim

n→∞
%n = Θ(ℵ(C)) > 1 and υn ≤ %n. From (Ξ-3) we

obtain

lim sup
n→∞

Ξ(υn, %n) < 1 (3.1)

Choosing ε = sup{εn} sufficiently small, form (3.1), there exists δ < 1 such
that

Ξ(υ, %) < δ, (3.2)

where % ∈ [Θ(ℵ(C) − ε),Θ(ℵ(C))) and υ ∈ (Θ(ℵ(C)),Θ(ℵ(C) + ε)]. Assume
that R is equal to ℵ(C) + ε, and select a finite R-net of C, i.e.

C ⊂
j⋃
i=1

B(κi,R), κ1, . . . ,κj ∈ X . (3.3)

Denote R′ = ℵ(C)− ε. It is our aim to prove that an R′-net exists for T (C).
Indeed, let ϑ ∈ T (C) and there exist κ ∈ C such that T κ = ϑ. Then from
(3.3) there exists i ∈ {1, 2, . . . , j} such that d(κ,κi) < R, thus Θ(d(κ,κi)) <
Θ(ℵ(C) + ε). If T κ = T κi, then d(T κi, T κ) < R′ (trivially). Suppose that
T κ 6= T κi, then we have two cases:

(i) If 0 < d(κ,κi) < R′, then as T is L-contraction and (Ξ-2), we obtain

1 ≤ Ξ(Θ(d(T κi, T κ)),Θ(d(κi,κ))) <
Θ(d(κi,κ))

Θ(d(T κi, T κ))
,

which yields, Θ(d(T κi, T κ)) < Θ(d(κi,κ)). Since Θ is nondecreasing,
thus d(T κi, T κ) < d(κi,κ) < R′.

(ii) IfR′ ≤ d(κi,κ) < R, then either d(T κi, T κ) < R′ or d(T κi, T κ) ≥ R′.
Assume that d(T κi, T κ) ≥ R′, then due to (3.2), we have

Ξ(Θ(d(T κi, T κ)),Θ(d(κi,κ))) < δ,

which yields a contradiction of T is a L-contraction.

So d(T κi, T κ) < R′ holds in both cases. Thus, T (C) has R′-net, which gives

ℵ(T (C)) ≤ R′ < ℵ(C).
�

Now, we can prove the desired result for sum of two operators as our
main goal.
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10 Bhupeshwar, Deepesh Kumar Patel and Hemant Kumar Nashine∗

Theorem 3.2. Let C be a nonempty closed convex and bounded subset of a
Banach space X . If T : C → X is a L-contraction and S : C → X is compact
operator such that (T + S)(C) ⊂ C, then T + S admits fixed point.

Proof. Let K ⊂ C which is not relatively compact (i.e. ℵ(K) 6= 0). Then,

ℵ((T + S)(K)) ≤ ℵ(T (K) + S(K)) ≤ ℵ(T (K)) + ℵ(S(K)). (3.4)

By utilizing the properties of measure of noncompactness, along with Theo-
rem 3.1 and the observation that S is a compact operator (i.e., ℵ(S(K)) = 0),
we can derive the following:

ℵ((T + S)(K)) ≤ ℵ(T (K)) < ℵ(K), (3.5)

which conclude that T + S is ℵ-condensing mapping; thus by Sadovskii’s
theorem, T + S admits fixed point. �

The above theorem implies the following corollaries.

Corollary 3.1. Let C be a nonempty closed convex and bounded subset of a
Banach space X . If T : C → X is Θ-contraction and S : C → X is compact
operator satisfying (T + S)(C) ⊂ C, then T + S admits a fixed point.

Proof. Define ΞB : [1,∞) × [1,∞) → R by ΞB(υ, %) = %k

υ for all %, υ ≥ 1,
where k ∈ (0, 1). Note that, the mapping T is L-contraction with respect to
ΞB ∈ Σ. Thus the result follows by taking Ξ = ΞB in Theorem 3.2. �

Corollary 3.2. Let C be a nonempty closed convex and bounded subset of
a Banach space X . If T : C → X is contraction and S : C → X is compact
operator satisfying (T + S)(C) ⊂ C, then T + S admits a fixed point.

Proof. Consider the function Θ : (0,∞) → (1,∞) defined by Θ(r) := e
√
r

clearly Θ ∈ Γ and ΞB as defined in proof of Corollary 3.1. Note that, the
mapping T is L-contraction with respect to ΞB ∈ Σ. Thus the result follows
by Theorem 3.2. �

4. Existence of solutions to Ψ-Hilfer hybrid fractional
differential equations

It is crucial and inspiring for researchers studying fractional calculus to pro-
pose a fractional differentiation or integration operator. However, unifying
numerous definitions with a single fractional operator is a challenging and
complex task. There are several classes (definitions) of fractional deriva-
tives that are special instances of the Ψ-Hilfer fractional derivative stated
in Eq (2.3). Hence, the nonlinear Cauchy problem proposed encompasses
the Cauchy problems for those classes of fractional derivatives as specific
instances. The Ψ-Hilfer hybrid FDEs:

HDµ̌,ν̌;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))] = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ], (4.1)

I1−η;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))](p) = ϑp ∈ R, (4.2)
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Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space11

where HDµ̌,ν̌;Ψ
p+ (·) denotes the Ψ-Hilfer fractional derivative of order 0 < µ̌ < 1

and type 0 ≤ ν̌ ≤ 1, I1−η;Ψ
p+ is the Ψ-RL fractional integral of order 1−η, η =

µ̌ + ν̌(1 − µ̌) with respect to function Ψ [21]. For f(·, ϑ(·)) and g(·, ϑ(·)) ∈
C([p, T ]× R,R) with p < T ≤ q.

The fractional derivatives in these categories are achieved by selecting
an appropriate function Ψ(·) and taking the limits of Ψ-Hilfer hybrid FDEs
(4.1)-(4.2) as ν̌ approaches 0 or 1.

• For f(υ, ϑ(υ)) = 0, the obtained initial value problem is from the paper
of Sousa and Oliveira [36] of the form

HDµ̌,ν̌;Ψ
p+ ϑ(υ) = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

I1−η;Ψ
p+ ϑ(υ)(p+) = ϑp ∈ R, η = µ̌+ ν̌(1− µ̌),

where HDµ̌,ν̌;Ψ
p+ (·) is the Ψ-Hilfer fractional operator.

• For Ψ(υ) = υ, the obtain results in the paper of Gabeleh et al. [13] to
nonlinear Hilfer FDEs of the form

HDµ̌,ν̌p+ [ϑ(υ)− f(υ, ϑ(υ))] = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

I1−η
p+ [ϑ(υ)− f(υ, ϑ(υ))](p+) = ϑp ∈ R, η = µ̌+ ν̌(1− µ̌),

where HDµ̌,ν̌p+ (·) is the Hilfer fractional operator.

• For Ψ(υ) = υ and f(υ, ϑ(υ)) = 0, the obtained initial value problem in
the paper of Furati et al. [12] of the form

HDµ̌,ν̌p+ ϑ(υ) = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

I1−η
p+ ϑ(υ)(p+) = ϑp ∈ R, η = µ̌+ ν̌(1− µ̌).

• The study conducted by Lakshmikantham et al. [24] on nonlinear FDEs
that contain Riemann-Liouville fractional derivative is included in the
obtained outcomes for f(υ, ϑ(υ)) = 0, ν̌ = 0, and Ψ(υ) = υ.

RLDµ̌p+ϑ(υ) = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

I1−µ̌
p+ [ϑ(υ)](p+) = ϑp ∈ R,

• Lakshmikantham and Vatsala [25] conducted a study of FDEs that are
nonlinear and involve the Caputo derivative, where f(υ, ϑ(υ)) = 0, ν̌ =
1 (or η = 1), and Ψ(υ) = υ.

CDµ̌p+ϑ(υ) = g(υ, ϑ(υ)), a.e. υ ∈ (p, T ],

ϑ(p) = ϑp ∈ R,
• The precise cases of the operators are also determined by the choice

of parameter p. For instance, since ln υ is not defined for p = 0, select
Ψ(υ) = ln υ and f(υ, ϑ(υ)) = 0, take the limit ν̌ → 0, and put p = 1 to
recover results for the Hadamard fractional derivative.

An equivalence between integral equation and the problem (4.1)-(4.2)
is provided by the lemma below.
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12 Bhupeshwar, Deepesh Kumar Patel and Hemant Kumar Nashine∗

Lemma 4.1. The Cauchy problem for hybrid FDEs (4.1)-(4.2) has a solution
ϑ ∈ C1−η;Ψ([p, T ],R) such that ϑ − f(·, ϑ(·)) ∈ C1−η;Ψ([p, T ],R) if and only
if it satisfies the integral equation expressed by

ϑ(υ) = f(υ, ϑ(υ))+
ϑp

Γ(η)
(Ψ(υ)−Ψ(p))η−1+I µ̌;Ψ

p+ g(υ, ϑ(υ)), υ ∈ (0, T ]. (4.3)

Proof. Assume that ϑ ∈ C1−η;Ψ([p, T ],R) be the solution of hybrid FDEs

(4.1)-(4.2). Applying the Ψ-RL operator I µ̌;Ψ
p+ to the both side of the Eq.(4.1)

and property of Lemma 2.2 (i), we have

[ϑ(υ)− f(υ, ϑ(υ))]− (Ψ(υ)−Ψ(p))η−1

Γ(η)
C = I µ̌;Ψ

p+ g(υ, ϑ(υ)) (4.4)

By applying Eq.(4.2) we get C = ϑp and the above equation can be expressed
as

ϑ(υ) = f(υ, ϑ(υ)) +
ϑp

Γ(η)
(Ψ(υ)−Ψ(p))η−1 + I µ̌;Ψ

p+ g(υ, ϑ(υ)), υ ∈ (0, T ].

Now, we prove sufficient part. Let ϑ satisfy Eq. (4.3). Then, it also satis-
fies Eq.(4.1)-(4.2). Nevertheless, applying the Ψ-Hilfer fractional derivative
HDµ̌,ν̌;Ψ

p+ to both sides of Eq.(4.3) and using Lemma 2.1(iii) and Lemma

2.2(ii), we obtain

HDµ̌,ν̌;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))] =

ϑp
Γ(η)

HDµ̌,ν̌;Ψ
p+ (Ψ(υ)−Ψ(p))η−1+

HDµ̌,ν̌;Ψ
p+ I µ̌;Ψ

p+ g(υ, ϑ(υ))

= g(υ, ϑ(υ)).

It is necessary to confirm whether the initial condition (4.2) is fulfilled. Ap-

plying I1−η;Ψ
p+ on Eq.(4.3), we have

I1−η;Ψ
p+ [ϑ(υ)−f(υ, ϑ(υ))] = I1−η;Ψ

p+

ϑp
Γ(η)

(Ψ(υ)−Ψ(p))η−1+I1−η;Ψ
p+ I µ̌;Ψ

p+ g(υ, ϑ(υ))

Using the Lemma 2.1(i) and Lemma 2.1(ii) we have

I1−η;Ψ
p+ [ϑ(υ)−f(υ, ϑ(υ))] = ϑp+I

1−η+µ̌;Ψ
p+ g(υ, ϑ(υ)) = ϑp+I

1−ν̌(1−µ̌);Ψ
p+ g(υ, ϑ(υ))

Evaluating the limit as υ approaches p and Lemma 2.2(iii), the above equation
simplifies to [

I1−η;Ψ
p+ [ϑ(υ)− f(υ, ϑ(υ))]

]
υ=p

= ϑp.

This complete the proof. �

The following outcome deals with the existence of a solution for the
hybrid FDEs (4.1)-(4.2).

Theorem 4.1. Suppose that the following assumptions:

(H1) A bounded function f ∈ C([p, T ] × R,R) fulfills the following require-
ments:
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Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space13

1. The mapping ϑ 7→ ϑ − f(υ, ϑ(υ)) is monotonic increasing in R
almost everywhere with respect to υ ∈ (0, T ];

2. There exists a positive constant L < 1 such that

|f(υ,κ(υ))− f(υ, ϑ(υ))| ≤ L|κ(υ)− ϑ(υ)|.

(H2) Let g ∈ C([p, T ]×R,R) and there exists continuous function K : [p, T ]→
R such that

|g(υ, ϑ)| ≤ K(υ), a.e. υ ∈ [0, 1] and ϑ ∈ R.

Then there exists a solution ϑ ∈ C1−η;Ψ([p, T ],R) to the hybrid FDEs (4.1)-
(4.2).

Proof. Consider BR = {κ ∈ C1−η;Ψ([p, T ],R) : ‖κ‖C1−η;Ψ([p,T ],R) ≤ R},
where,

R := M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(T )−Ψ(p))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[p,T ]

}
and M is bound on f that is, ‖f‖C1−η;Ψ([p,T ],R) ≤ M . One can observe
that BR belongs to the class of closed, bounded, and convex subsets of
C1−η;Ψ([p, T ],R). Define two operators T : BR → C1−η;Ψ([p, T ],R) and
S : BR → C1−η;Ψ([p, T ],R) as

T ϑ(υ) = f(υ, ϑ(υ))

and

Sϑ(υ) =
ϑp

Γ(η)
(Ψ(υ)−Ψ(p))η−1 + I µ̌;Ψ

p+ g(υ, ϑ(υ)), for each υ ∈ (0,T].

Then the hybrid Eq.(4.3) can be equivalently expressed as

T ϑ(υ) + Sϑ(υ) = ϑ(υ), for each υ ∈ (0,T].

To verify that the operators T and S satisfy all the conditions of Theorem
3.2, we proceed as follows:

Step 1:

Operator T is an L-contraction. Indeed using the hypothesis (H1)(2), we
have

|(Ψ(υ)−Ψ(p))1−η(T κ(υ)− T ϑ(υ))| = |(Ψ(υ)−Ψ(p))1−η(f(υ,κ(υ))− f(υ, ϑ(υ)))|

≤ L|(Ψ(υ)−Ψ(p))1−η(κ(υ)− ϑ(υ))|
≤ L‖κ − ϑ‖C1−η;Ψ([p,T ],R).

Consequently,

‖T κ − T ϑ‖C1−η;Ψ([p,T ],R) ≤ L‖κ − ϑ‖C1−η;Ψ([p,T ],R).

Define Θ : [0,∞)→ [1,∞) as Θ(υ) = eυ, then

[Θ(‖κ − ϑ‖C1−η;Ψ([p,T ],R))]
L

Θ(‖T κ − T ϑ‖C1−η;Ψ([p,T ],R))
≥ 1.
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14 Bhupeshwar, Deepesh Kumar Patel and Hemant Kumar Nashine∗

Select Ξ(υ, %) =
%L

υ
, we obtain

Ξ(Θ(‖T κ(υ)− T ϑ(υ)‖C1−η;Ψ[p,T ]),Θ(‖κ(υ)− ϑ(υ)‖C1−η;Ψ[p,T ])) ≥ 1.

Thus, T is an L-contraction.

Step 2:

Operator S is compact. Indeed, first we show that S is continuous. Let ϑn → ϑ
in BR. So,

‖Sϑn(υ)− Sϑ(υ)‖C1−η;Ψ[p,T ] = max
υ∈[p,T ]

{(Ψ(υ)−Ψ(p))1−η(Sϑn(υ)− Sϑ(υ))}

≤ max
υ∈[p,T ]

(Ψ(υ)−Ψ(p))1−η

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(p))µ̌−1|g(%, ϑn(%))− g(%, ϑ(%))|d%.

Since g is continuous and Lebesgue dominated convergence theorem, we have

‖Sϑn(υ)− Sϑ(υ)‖C1−η;Ψ[p,T ] → 0 as n→∞.

Hence, it follows that S is a continuous operator.

We will now prove that the set S(BR) = {Sϑ : ϑ ∈ BR} is uniformly
bounded and equicontinuous. Let ϑ ∈ BR and υ ∈ [p, T ]. Then

|(Ψ(υ)−Ψ(p))1−ηSϑ(υ)| =
∣∣∣∣ ϑpΓ(η)

+ (Ψ(υ)−Ψ(p))1−ηI µ̌;Ψ
p+ g(%, ϑ(%))

∣∣∣∣
≤
∣∣∣∣ ϑpΓ(η)

∣∣∣∣+ (Ψ(υ)−Ψ(p))1−ηI µ̌;Ψ
p+ |g(%, ϑ(%))|

≤
∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(υ)−Ψ(p))1−η|K(υ)|

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(%))µ̌−1d%

≤
∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(T )−Ψ(p))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[p,T ].

Hence,

‖Sϑ‖C1−η;Ψ[p,T ] ≤
∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(T )−Ψ(p))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[p,T ]. (4.5)

Consequently, S(BR) is uniformly bounded. To demonstrate that S(BR) has
equicontinuity. Let ϑ ∈ BR and υ1, υ2 ∈ [p, T ] with υ1 < υ2. Then

|(Ψ(υ2)−Ψ(p))1−ηSϑ(υ2)− (Ψ(υ1)−Ψ(p))1−ηSϑ(υ1)|

=

∣∣∣∣{ ϑp
Γ(η)

+
(Ψ(υ2)−Ψ(p))1−η

Γ(µ̌)

∫ υ2

p

Ψ′(%)(Ψ(υ2)−Ψ(%))µ̌−1g(%, ϑ(%))d%

}
−
{

ϑp
Γ(η)

+
(Ψ(υ1)−Ψ(p))1−η

Γ(µ̌)

∫ υ1

p

Ψ′(%)(Ψ(υ1)−Ψ(%))µ̌−1g(%, ϑ(%))d%

}∣∣∣∣
≤
∣∣∣∣ (Ψ(υ2)−Ψ(p))1−η

Γ(µ̌)

∫ υ2

p

Ψ′(%)(Ψ(υ2)−Ψ(%))µ̌−1g(%, ϑ(%))d%

− (Ψ(υ1)−Ψ(p))1−η

Γ(µ̌)

∫ υ1

p

Ψ′(%)(Ψ(υ1)−Ψ(%))µ̌−1g(%, ϑ(%))d%

∣∣∣∣
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Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space15

≤
∣∣∣∣ (Ψ(υ2)−Ψ(p))1−η

Γ(µ̌)

∫ υ2

p

Ψ′(%)(Ψ(υ2)−Ψ(%))µ̌−1K(%)d%

− (Ψ(υ1)−Ψ(p))1−η

Γ(µ̌)

∫ υ1

p

Ψ′(%)(Ψ(υ1)−Ψ(%))µ̌−1K(%)d%

∣∣∣∣
≤
∣∣∣∣ (Ψ(υ2)−Ψ(p))1−η|K(υ2)|

Γ(µ̌)

∫ υ2

p

Ψ′(%)(Ψ(υ2)−Ψ(%))µ̌−1d%

− (Ψ(υ1)−Ψ(p))1−η|K(υ1)|
Γ(µ̌)

∫ υ1

p

Ψ′(%)(Ψ(υ1)−Ψ(%))µ̌−1d%

∣∣∣∣
≤
‖K‖C1−η;Ψ[p,T ]

Γ(µ̌+ 1)
{Ψ(υ2)−Ψ(p))µ̌ −Ψ(υ1)−Ψ(p))µ̌}.

Since the function Ψ is continuous. Therefore, |(Ψ(υ2) − Ψ(p))1−ηSϑ(υ2) −
(Ψ(υ1) − Ψ(p))1−ηSϑ(υ1)| → 0 as υ2 → υ1. This follows that S(BR) is
equicontinuous. Thus by applying Arzelà-Ascoli theorem, we can conclude
that S(BR) is relatively compact. Hence the operator S : BR → C1−η;Ψ([p, T ],R)

is compact.

Step 3:

For ϑ ∈ C1−η;Ψ([p, T ],R), ϑ = T ϑ+ Sκ =⇒ ϑ ∈ BR, for all κ ∈ BR.
Let any ϑ ∈ C1−η;Ψ([p, T ],R) and κ ∈ BR such that ϑ = T ϑ+ Sκ.

|(Ψ(υ)−Ψ(p))1−ηϑ(υ)| = |(Ψ(υ)−Ψ(p))1−η(T ϑ(υ) + Sκ(υ))|

=

∣∣∣∣(Ψ(υ)−Ψ(p))1−η
(
f(υ, ϑ(υ)) +

ϑp
Γ(η)

(Ψ(υ)−Ψ(p))η−1 + I µ̌;Ψ

p+ g(υ,κ(υ))

)∣∣∣∣
≤ ‖f(υ, ϑ(υ))‖C1−η;Ψ([p,T ],R) +

∣∣∣∣( ϑp
Γ(η)

+ (Ψ(υ)−Ψ(p))1−ηI µ̌;Ψ

p+ g(υ,κ(υ))

)∣∣∣∣
≤M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(υ)−Ψ(p))1−η

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(%))µ̌−1|g(%,κ(%))|d%
}

≤M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(υ)−Ψ(p))1−η

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(%))µ̌−1K(%))d%

}
≤M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(υ)−Ψ(p))1−η|K(υ)|

Γ(µ̌)

∫ υ

p

Ψ′(%)(Ψ(υ)−Ψ(%))µ̌−1d%

}
≤M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
‖K‖C1−η;Ψ[p,T ]

Γ(µ̌+ 1)
(Ψ(υ)−Ψ(p))µ̌

}
.

This gives

‖ϑ‖C1−η;Ψ[p,T ] ≤M +

{∣∣∣∣ ϑpΓ(η)

∣∣∣∣+
(Ψ(υ)−Ψ(p))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[p,T ]

}
:= R.

Consequently ϑ ∈ BR.

From the above steps, we have verified that all the requirements of Theorem
3.2 are fulfilled. Therefore the operator equation ϑ = T ϑ+Sϑ has a solution
in BR which acts as a solution of hybrid FDEs (4.1)-(4.2). �
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16 Bhupeshwar, Deepesh Kumar Patel and Hemant Kumar Nashine∗

5. Illustrative examples

To demonstrate the numerical evidence of the existence result, the following
specific instance of Ψ-Hilfer fractional derivatives are considered.

Example 2. Consider the particular case of problem (4.1)-(4.2) for the Ψ-RL
FDEs:

HD
1
2 ,0;Ψ

1+ ϑ(υ) =

(
(Ψ(υ)−Ψ(1))0.5 + 5

50

) √
π

(1 + |ϑ(υ)|)
, (5.1)

I
1
2 ;Ψ

1+ ϑ(1+) = 0 ∈ R. (5.2)

Through a comparison of problem (5.1)-(5.2) with the fundamental Ψ-Hilfer
hybrid FDEs (4.1)-(4.2), we obtain µ̌ = 1

2 , ν̌ = 0, in this case η = 1
2 . Further

p = 1, T = e, J = [1, e] and take four cases for Ψ as

Ψ1(υ) = ln(υ), Ψ2(υ) = υ, Ψ3(υ) = 2υ and Ψ4(υ) = πυ.

f(υ, ϑ(υ)) = 0 and g(υ, ϑ(υ)) =

(
(Ψ(υ)−Ψ(1))0.5 + 5

50

) √
π

(1 + |ϑ(υ)|)
.

Hence condition (H1) is satisfied for any 0 < L < 1. Also for ϑ ∈ R and
υ ∈ J ,

|g(υ, ϑ)| ≤
√
π(Ψ(υ)−Ψ(1))0.5 + 5

√
π

50
:= K(υ).

Ψ(υ) = ln(υ) Ψ(υ) = υ Ψ(υ) = 2υ Ψ(υ) = πυ

υ K(υ) K(υ) K(υ) K(υ)

1.0000 0.1772 0.1772 0.1772 0.1772
1.3436 0.1965 0.1980 0.2032 0.2208
1.6873 0.2028 0.2066 0.2164 0.2459
2.0309 0.2070 0.2132 0.2284 0.2715
2.3746 0.2102 0.2188 0.2405 0.3001
2.7182 0.2126, 0.2237, 0.2531, 0.3330,

‖K‖ ≈ ‖K‖ ≈ ‖K‖ ≈ ‖K‖ ≈
0.2126 0.2933 0.4788 1.4638

Table 1. Numerical values of K(υ) for four different cases
of Ψ in Example (2) and note that here ‖K‖ =
‖K‖C1−η;Ψ[1,e]:Ψ

By fixing M = 0.01, one may verify that

M+

{∣∣∣∣ ϑ1

Γ(η)

∣∣∣∣+ (Ψ(e)−Ψ(1))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[1,e]

}
:= R ≈


0.2499 if Ψ(υ) = Ψ1

0.4438 if Ψ(υ) = Ψ2

1.1663 if Ψ(υ) = Ψ3

7.2696 if Ψ(υ) = Ψ4.
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Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space17

Thus, all the hypothesis of Theorem 4.1 are fulfilled, the hybrid FDEs (5.1)-
(5.2) has solution which is ϑ(υ) = 1

5 (Ψ(υ)−Ψ(1))0.5.

Figure 1. 2D-graph for the solutions of Example (2)

Example 3. Taking ν̌ → 1, µ̌ = 1
2 , in this case η = 1 and let p = 0, T = π.

Further we obtain a particular instance of problem (4.1)-(4.2) involving the
Caputo fractional derivative with function Ψ:

HDµ̌,ν̌;Ψ
0+

[
ϑ(υ)−

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)(
|ϑ(υ)|

3
|ϑ(υ)|

3 + 1
− 1

)]
=

Γ( 3
4 )(Ψ(υ)−Ψ(0))

1
4

(
(Ψ(υ)−Ψ(0))

3
4 + 12

)
48Γ( 1

4 )

(
1− ϑ(υ)

ϑ(υ) + 1

)
,

(5.3)

I1−η;Ψ
0+

[
ϑ(υ)−

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)(
|ϑ(υ)|

3
|ϑ(υ)|

3 + 1
− 1

)]
(0+) =

1

60
.

(5.4)
Consider three cases for Ψ as

Ψ1(υ) = eυ,Ψ2(υ) = 5υ and Ψ3(υ) = ln(υ + 0.01).

Comparing the problem (5.3)-(5.4) with the basic Ψ-Hilfer hybrid FDEs (4.1)-
(4.2) we get

f(υ, ϑ(υ)) =

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)(
|ϑ(υ)|

3
|ϑ(υ)|

3 + 1
− 1

)
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Ψ(υ) = eυ Ψ(υ) = 5υ Ψ(υ) = ln(υ + 0.01)

υ LΨ K(υ) LΨ K(υ) LΨ K(υ)

0.0000 1.667e-02 0.0000 1.667e-02 0.0000 1.667e-02 0.0000

0.3490 1.691e-02 0.7087e-01 1.704e-02 0.8404e-01 1.787e-02 0.1414

0.6981 1.713e-02 0.9181e-01 1.747e-02 1.1604e-01 1.804e-02 0.1513

1.0471 1.740e-02 1.1156e-01 1.807e-02 1.5328e-01 1.814e-02 0.1569

1.3962 1.773e-02 1.3298e-01 1.896e-02 2.0369e-01 1.820e-02 0.1608

1.7453 1.815e-02 1.5788e-01 2.030e-02 2.7770e-01 1.825e-02 0.1637

2.0943 1.868e-02 1.8816e-01 2.232e-02 3.9242e-01 1.829e-02 0.1661

2.4434 1.937e-02 2.2617e-01 2.538e-02 5.7708e-01 1.833e-02 0.1681

2.7925 2.025e-02 2.7506e-01 3.003e-02 8.8244e-01 1.836e-02 0.1698

3.1415 2.139e-02 3.3919e-01 3.710e-02 13.970e-01 1.838e-02 0.1713
≈2.140e-02 ≈3.392e-01 ≈3.711e-02 ≈13.971e-01 ≈1.839e-02 ≈0.1714
≈ L = M ≈ ‖K‖ ≈ L = M ≈ ‖K‖ ≈ L = M ≈ ‖K‖

Table 2. Numerical values of L, M and K(υ) for three
different cases of Ψ in Example (3) and note that here ‖K‖ =
‖K‖C1−η;Ψ[0,π]:Ψ

and

g(υ, ϑ(υ)) =
Γ( 3

4 )(Ψ(υ)−Ψ(0))
1
4

(
(Ψ(υ)−Ψ(0))

3
4 + 12

)
48Γ( 1

4 )

(
1− ϑ(υ)

ϑ(υ) + 1

)
.

For each ϑ, ζ ∈ R and υ ∈ J , we have

|f(υ, ϑ)− f(υ, ζ)| =

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)∣∣∣∣∣
|ϑ|
3

|ϑ|
3 + 1

−
|ζ|
3

|ζ|
3 + 1

∣∣∣∣∣
≤

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)∣∣∣∣ |ϑ|3 − |ζ|3
∣∣∣∣

≤

(
(Ψ(υ)−Ψ(0))

3
4 + 36

2160

)
|ϑ− ζ| := LΨ |ϑ− ζ|

and the function ϑ(υ) − f(υ, ϑ(υ)) is increasing. Hence condition (H1) is
satisfied with L ≈ 2.140e-02, 3.711e-02 and 1.839e-02 for Ψ(υ) = eυ, 5υ and
ln(υ + 0.01) respectively. Also for ϑ ∈ R and υ ∈ J ,

|g(υ, ϑ)| ≤

∣∣∣∣∣∣
Γ( 3

4 )(Ψ(υ)−Ψ(0))
1
4

(
(Ψ(υ)−Ψ(0))

3
4 + 12

)
48Γ( 1

4 )

∣∣∣∣∣∣ := K(υ),

and

|f(υ, ϑ)| ≤

(
(Ψ(π)−Ψ(0))

3
4 + 36

2160

)
:= M.
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Solvability of Ψ-Hilfer hybrid fractional differential equations in Banach space19

Next, one can check that

M+

{∣∣∣∣ ϑ0

Γ(η)

∣∣∣∣+(Ψ(π)−Ψ(0))µ̌

Γ(µ̌+ 1)
‖K‖C1−η;Ψ[0,π]

}
:= R ≈


1.3081 if Ψ(υ) = eυ

19.7433 if Ψ(υ) = 5υ

0.4989 if Ψ(υ) = Ψ3.

The hybrid FDEs (5.3)-(5.4) have a solution as a result, satisfying all of The-
orem 4.1 hypotheses. Hence, one can check that the solution is the function

ϑ(υ) =
(Ψ(υ)−Ψ(0))

3
4

12
.

Figure 2. 2D-graph for the solutions of Example (3)

6. Conclusion

The work contributes to the growth of fractional calculus, especially in the
case of Ψ-Hilfer FDEs. There are some articles that carried out a brief study
on existence of solutions of FDEs. So the main purpose of this paper is to
study the existence of solutions for the Ψ-Hilfer hybrid FDEs (4.1)-(4.2) by
means of Krasnoselskii type fixed point theorem (Theorem 3.2). The proof
of Theorem 3.2 is based on Housdorff measure of noncompactness.
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