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Abstract

This paper firstly studies finite time stability of the Riemann-Liouville fractional multi-delay dif-
ferential equation via the multi-delayed perturbation of two parameter Mittag-Leffler type matrix
function. Secondly, by using the multi-delayed Gramian matrix derived from the representation of
the solution, the sufficient and necessary condition for the relative controllability of the linear multi-
delay system is achieved. Further, the relative controllability result is extended to the semilinear
system by means of the Krasnoselskii’s fixed point theorem. Finally, three examples are presented
to demonstrate the rationality of the key theoretical results.
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1. Introduction

Unlike researching exponential stability, global asymptotic stability and Lyapunov stability in
infinite time intervals, finite time stability (FTS) focuses on the properties of the system in finite time
intervals. Up to now, there have been many results on this research. In [1, 2], using delayed Mittag-
Leffler type matrix and fractional delayed cosine and sine type matrices, the authors investigated
FTS of fractional delay differential equations. Thereafter, [3] researched FTS of Riemann-Liouville
fractional delay differential equations by the delayed matrix function of Mittag-Leffler. Additionally,
based on a generalized Gronwall inequality, the authors [4] studied the robust FTS problem of
fractional-order systems with time-varying delay and nonlinear perturbation. For other methods,
one can consult former works [5-11].

The theory and practice of system control are considered to be among the scientific fields that
have had a significant impact on human productive activities and social life since the 20th century.

Relative controllability of various control systems have been researched in [12-18]. In [19], the
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authors studied relative controllability of impulsive multi-delay differential systems by the Gramian
criteria and Krasnoselskii’s fixed point theorem. Furthermore, by constructing solution of the multi-
delay system without pairwise matrices permutation, the relative controllability of this system has
been shown in [20].

Recently, Mahmudov has proposed delayed perturbation of Mittag-Leffler type matrix functions,
which is an evolution of the classical Mittag-Leffler type matrix functions and delayed Mittag-LefHler
type matrix functions in [21]. Then, he continued to promote the classical Mittag-Leffler type matrix
function and obtained the multi-delayed perturbation of two parameter Mittag-Leffler type matrix
function by introducing the concept of multivariate determining matrix equation in [22].

Motivated by [1, 19, 22], we firstly aim to study FTS of the linear fractional multi-delay differ-

ential system:
d

("*Dgy)(¢) = By(Q) + Y Biy(¢ =) + 9(0), C € J, ¥ >0,

i=1
Dgy(€) = #(0) = yo,
y(€) = ¢(¢), =¥ <¢<0,
where RLDSSr (0 < a < 1) denotes the Riemann-Liouville fractional derivative, B, By, -+ ,By €
R™*™ 9 := max{t1,J2, -+, %4}, ©() € C([-9,0],R™), g € C(J,R™), J = (0,T] and T > 0.

Additionally, we will investigate the relative controllability of multi-delay control system as below:

d
U“D&w@y:Bmo+§ij@—ﬂn+g«w@»+cmo,<em
T 2)
D0+ y(C) - @(0) = Yo,

y(Q) =(C), -9 =<0,
where C € R" ", w € L?(J,R") and g : J x R® — R™.
By [22, Theorem 4.2], the solution y of (1) can be formulated by

d min({—19;,0)

y@:nmm+z/

i=1 7~V
where Y, o(C) is defined in (4) with 5 = a.

¢
xm«—m—m&wm@+ﬁsgaommw@,<a

In viewing of (3), the solution of (2) can be represented as

d min(¢—19;,0)
y(O) = YaalQyo+ Z/ Yo,a(C =i — p)Bip(p)dp

i=17 Y

¢
+/‘nﬂ«—mwmw@»+cwmm9
0

The innovations and difficulties of this paper contain the following aspects:
(i) With the complexity of the multivariate determining matrix equation, it is difficult to derive
the norm estimation of the multi-delayed perturbation of two parameter Mittag-Leffler type matrix

function.
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(ii) Because the solution of the equation has a singularity, it is hard to estimate the norm of the
solution in C to analyze the FTS and relative controllability. From this perspective, our results
enrich the qualitative theory in the area of fractional multi-delay differential equations.

The rest of the paper is organized as follows. In Section 2, we review some notations and defini-
tions, and prove two vital Lemmas. In Section 3, we give some sufficient conditions to guarantee that
(1) is FTS by researching the estimation of Y, g(-). In Section 4, we consider relative controllability
of the multi-delay control system for (2). In Section 5, we give some examples to illustrate the main

theorems.

2. Preliminaries

Set © € R™ and A € R™™", the vector norm ||z|| = Y1 | |z;| and the matrix norm |A| =
maxi<j<n 2 iy |@ij|. Let C([a, b], R™) be the continuous function space with ||y|| = max,<¢<p [|[y(C)||-
For any 0 < v < 1, we denote C,([a,b],R") = {y € C((a,b],R") : (- —a)"y(:) € C([a,b],R™)}. Then
C,([a,b],R™) is a Banach space with ||y||c, = maxa<¢<s [|((—a)"y(¢)||. Denote A = || B[+ i1 | B;]].

=

Definition 2.1. (see [23]) For a function y : [0,00) — R, its Riemann-Liowville fractional derivative

of order 0 < a < 1 can be defined as

¢
(FLDGy) () = ﬁdié/o (€ =p)"y(p)dp, ¢ >0.

Definition 2.2. (see [253]) For a function y : [0,00) — R, its fractional integral of order 0 < o < 1

can be defined as

¢
(18, 9)(C) = 1) / (€~ p)* Yy(p)dp, ¢ >0,

NG
Definition 2.3. (see [22]) The coefficient matrices Q(s1,--- ,84), k = 1,2, -, satisfy the following

multivariate determinant equation

d
Qrr1(51, -+ ,84) = BQr(s1,--- 75d)+ZBiQk(317"' 8 — Vi, 4 84),
=1
Qo(s1, -+ ,84) = Qr(=V1,--+,8q¢) == Qx(s1,"--,~Va) =0, Q1(0,---,0) =1,
kE = 071,2,"', andsizo,ﬂi,219¢,~-,

where I is an identity matriz, © is a zero matrix.

In [22], the authors introduced a shift operator 77(¢¥ € R) which causes a function f to its

translation:

TPF(C) = "¢ f = F(C +9).

We now recall the multi-delayed perturbation of two parameter Mittag-Lefller type matrix function

Y, 5(-) by using the shift operator 7.
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Definition 2.4. (see [22]) Let 0 < o, 8 < 1 and B, By,--- ,Bq € R"*™. The multi-delayed pertur-

bation of two parameter Mittag-Leffler type matriz function Yy g(-) : R — R™ ™ is written by

@a C € [71970)’
Y, = =) . . . — (1 B ) <4 oot 4
a,8(¢) S ¥ Qri1(i191,1902, - -+ ,igdq)e (11914 +iaa) 4 (?(ZTB)’ ¢ €0, 00), (4)
k:Oil+--~J¢id>§()k
11, 5td 2

where (-)4 := max{0,-}. It follows from that Qr41(i191, 1202, ,ig¥q) = O, if i1+ +ig > k+1,
i1, -+ ,iq > 0.
Definition 2.5. (see [23]) Let 0 < v, B < 1, the Mittag-Leffler function E, g(-*) is written as

Zk:a

Eop(2%) = kZ:O ma

e C.

Definition 2.6. (see [1]) System (1) is FTS with regard to {0, J,9,0,n} if and only if ||¢|| < 0 and
loll < & imply lyllc, < for any ¢ € J, where 6 <.

Definition 2.7. (see [3]) System (2) is called relatively controllable, if for Vo € C([—9,0],R™) and
y1 € R, Ju € L%(J,R™) such that (2) has a solution y € C([—9,T],R™) satisfying y(¢1) = y1.
Lemma 2.8. Forany(>0,0<a<1,8>0and a+ 5 >1, one has

1Ya,8(0)] < Cﬁ_lEaﬁ()‘Ca)-

Proof. According to (4) and [22, Remark 3.5], we have

d ka+p8—-1
(C - iﬂ?j)

Jj=1

oo d -
Fas@l<Y Y 121 187 1)

k=0io+i1+...+ia=k
10,81 5-++,%a >0

Let ¥; > 0 and i; > 0, we obtain

oo (C)ka+,3 1

DATGTREND DI DR~ w'B”“’H”B et m

k= 010+11+ +ld k
10,81 5--+,84 >0

e -1

> (Bl +ZHB bk = (P B, 5(ACY).
k +6)

k=0

IN

The proof is completed. O

Remark 2.9. Let 3 =1, one has [|[Ya1(¢)|| < Ea,1(AC?). Let 3 <a=p <1, one has |Ya,a(Q)]| <
(O Ea,a(ACY).

Lemma 2.10. For any ¢ > 0 and é < a<1, one has

¢
/O Yool —plldp < C*Baarr(A¢%),

IN

min(¢—9,0) (“Eq ()\(:a) — (C — lgi)aEma (/\(C —04)%), ¢ >y,
/ YaralC = 0 = p)ldp " h
-9 CaEa,a—i-l()‘Ca)? C < 191
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Proof. LetOSpSCandOSC—p<C,wehave

¢ C pka+a 1 C pka—i-a 1
YaalC—p)ldp < / Lol 4 < / PNl
| 1¥eatc = Z o
ka+a
_ Nkata—1 < kC—
- kz ka+a /(C 2 dp_kzzo)\ Fka+a+1)
< C oca-‘rl(/\c )

Let ¢ > 9;, we have min(¢ — ¥;,0) = 0, which deduce 0 < { —9¥; < —9; — p < (. Thus

min({—19;,0)
/ 1Yoa(C — i — p)ldp

i

0
/_ | WaaC == o)y

k C 19 _ )kaﬁ’afl
= / Z)\ I(ka + ) dp

Yi k=0

/\k 0
(ka_i_a)/ (C _ 191' . p)kaJrafldp

)\kcka—&-a o )\k (C _ ﬁi)ka—i—cx
T(ka+a+1) & T(ha+a+1)
= C «a a+1(/\ca) - (C - ﬂi)a a,a+1(>\(< - ﬁi)a)'

IN

”Mg WMg

Similarly, when ¢ < 9;, we gain

min({—19;,0) ¢
/ 1Yol — 0 — p)lldp = / Yao(C = 0 — p)ldp < ¢ Eaas1 (AC®).

i

The proof is completed. O

3. FTS results

In this part, by applying multi-delayed perturbation of two parameter Mittag-Leffler type matrix
function, F'TS results be presented. Firstly, we impose the following assumptions:
[A1] Suppose that g(-) € C([0,T],R") and [|g|| = max [[g(¢)]| < co.

¢elo, 1]
[A5] There exists p(+) € L([0, T],RT), + = 1—1%, p > 1 such that ||g(¢)|| < p(¢) for any ¢ € [0,T]

1
q
and ¢(¢ (fo wi(p dp)q < 0.

[As5] Forany0<'y<1and%§a<1suchthata+'y—120.

Next, for every ¢ € [-9,T] and p > 1, we define

<a+7+%—1
V() = —————FaalA?),
(pa—p+1)7
d
Z | Bil|C¥Eq,a+1(ACY), ¢ < Uy,
Us(¢) = e (5)
S 1] (€ Baat1 (06 = (€ = 09 Baais (MC = 90 ). €2
d
Z Bill¢, ¢ <,
U3(Q) = ok
Z | Bil[9i, ¢ = ;.

7
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Theorem 3.1. Suppose that [A1] and [As] hold. System (1) is FTS with regard to {0, J,9,0,n} if

(IS E W (M) + O (awo ; caEa,aH(Aca)g) <, Y € [0,T]. (6)

Proof. The solution of (1) can be given by

d min(¢—19;,0)

Y(Q) = Ya.a(Qyo + Z/

¢
Ya,a(C =95 — p)Biw(p)dp + / Ya,a(C = p)g(p)dp,
i=17 i 0

By Lemma 2.10 via (6), we obtain

1)l
d_ rmin({—9;,0) ¢
< 1%l (X [ a0 pBistolldo+ [ ¥l palo)l )
min(¢—19;,0)
< (PITSE, W (A7) +<v(523 u / Yan(C — b: - p)ldp

gl / ||Ya,a<<—p>||dp)
< CTTSE, a(A) 4 O (6%(4) + <aEa,a+1<A<a>ngn) <
This proof is completed. O

Theorem 3.2. Suppose that [As] and [A3z] hold. System (1) is FTS with regard to {0, J,9,6,n} if

(T 0 (ACY) 4+ C1W2(C) + T1(C)p(¢) <, V¢ € [0, T7. @

Proof. By Lemma 2.10 via (7), one has

17y (Ol
min({—19;,0) ¢
< ¢ VaalC yo||+z / €Y= 0= Bl + [ 1 VaalC = o)l
min({—19;,0)
< (I, A(AC) +<”5ZHBH / Vara(C — 0 — ) dp
¢ )\k(cip)koz+a 1)
Y
+ A (kz_o o £ o) 1(p)dp
< (OB o (M) 4 0V (C)+C”§:Ak/C(C—p)kaJr“_lu(p)dp
= e 2 Pt D(ka+ ) Jo
at+vy—1 @ — /\kc'y ¢ (ka+a—1) v ¢ “
<P 000+ 3 e ([ € oo i) ([ utiorin)
< T o (AY) + 6% (C) + ‘1’1(C)¢(C) <.
This proof is completed. O
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Theorem 3.3. Suppose that [A1] and [As] hold. System (1) is FTS with regard to {0, J,9,0,n} if
1 (54 Gl ) B O06%) + CT8(C 4 A0 o nAC + A0))0(0) <1, W € 0LTL (8)

where AY =9 — 9 and 9 = min{dy, 99 -+ ,94}.

Proof. For any —9; < p < min(¢ — 9;,0), one has 0 < { — ¢; — p < {. By Lemma 2.8, one has

> )\k _ﬁi_ kat+a—1 x 19 9 kat+a—1
Waole—ti—p) < 3 2C0izp) Z C-g+9)

pors I'ka + «) I'ka + «)
oo C+A19)ka+a 1 a1 o
< = .
< §:j That ) (¢ + AD)* ' Eqa(AC + AY))
For 0 < p < ¢, by Lemma 2.8, one has
= C p)ka—i-a ! a—1 @
[Ya.a(¢ = p)] ;:j Do o)~ =6 EaalX).
Thus via (8), we have
17yl
min(¢—19;,0)
< (B, () +<wsz B[ Vaa (¢ — 0 — p)ldp
+¢lgl / Voo (¢ = p)ldp
min(¢{—19;,0)
< (T E (A7) + C0(C + MDY Ea (M + AD)® ZHB || / ap

gaJw”g”Ea,a()‘Ca)

< ¢ (54 €l ) Ean(O6) 4 G+ A0 B a NG + A0 (C) < 1.

This proof is completed. O

4. Relative controllability results

In this part, we discuss the relative controllability of (2).

4.1. Linear systems

Let g(¢,y(¢)) = (0,---,0)T := 0, ¢ € J. System (2) simplifies to the following multi-delay
—_——

n
control system:

d
("Dg.y)(¢) = By(¢) + Z Biy(¢ —9;) + Cu((), ¢ € J,

DSy (¢) = ¢(0) = yo,
y(¢) = (), —I9<(<0.
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The solution has a form

d min(¢—19;,0)

y(Q) = Yol Owo+ 3 /

i=17 Vi

¢
Ya,a(C =9 — p)Bip(p)dp + /0 Yo.a(C = p)Cu(p)dp.

We introduce the multi-delayed Gramian matrix as follows:

G

KoF [0’ Cl] = 0 Ya,a(Cl - p)CCTYoIa(Cl - p)dpa (10)

W, ..
where - indicates the transpose of the matrix.
Theorem 4.1. Wy, ... 4,(0,¢1] is invertible matriz if and only if (9) is relatively controllable.

Proof. ”=" Since Wy, ... 9,]0,¢1] is invertible matrix, then for arbitrary y; € R", we can select

u € L%(J,R™) such that

u(€) = CTY, (G = QW [0,¢8, (11)
where
d min(le’l?i,O)
§=vy1 = Ya.alC)yo — Z/ﬁ Ya.a(C1 = i — p)Big(p)dp.
=1 Y ~ Vi
Then
d min(¢; —¥;,0) (1
W) = Yo+ [ VouolG = 0= B+ [ Yool = p)Culp)dp
i=1" Vi
d min(¢;—19;,0)
= Yaa(C)yo + Z/ﬁ Yo,a(Ct =05 — p)Bip(p)dp
=1 Y

¢1
+/ Yo,a(G1 = p)CCTY, (G = p)dpWy ! . .10, ¢1€
0

min(¢1—9;,0)

= VaulG yo-l-z / Yot — 0 — p)Bip(p)dp + € = 1.

Thus, (9) is relatively controllable.
"< Assume that Wy, ... »,[0, (1] is irreversible, there exists a state ¥ # 0 such that
@\TWm,A.. 9410,¢1]y = 0. Thus, one has

'1917 ﬂd [0 Cl]

7w,
- / YaalCt = ))CCTY L (C1 — p)iidp
[

”y Yaa Cl )Cszp,

which implies that

U Youlli—p)C=0", VpecJ (12)
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Note that (9) is relatively controllable. Thus, there exist u;(-) and ua(-) that make the initial
state to ¥ = 0 and another § # 0 at { = (4, i.e.,

d min(¢; —¥9;,0) G
W) = Yo+ [ ) YaalGi = 0i = p)Bip(p)dp+ | YaalGi — p)Cur(p)dp
i=17/ % 0
= 0. (13)
and
d min(¢; —9;,0) G
W) = Yoal@m+d [ VoalG = 0= Bigpdp+ [ Yoa(G = p)Cus(o)dp
=17~V
= 7 (14)
By (13) and (14), we have
N G1
U= | YealG = p)Cluz(p) —walp)ldp,
and by (12), one has
T “ 5
J = / 7 Yaa(G = p)Cluz(p) — ur(p)ldp = 0.
0
Thus, one can obtain 7' 7 = 0, which conflicts with 7 # 0. O

4.2. Semilinear systems
We need the following hypothesis:
[A4] Let W : L2(J,R") — R" be given by
G
Wu = ; Yo,a (G — p)Cu(p)dp,

it has an inverse operator W~!, which takes values in L?(J,R")\kerW. Then there is a constant

M > 0 such that M = Hw_lHL;,(R",LQ(J,R?@)\kerW)' In viewing of [17], one has

M= 1w, 0.l (15)
[A5] For any g € C(J x R™,R™) and there is w € C(J,R") such that
19(¢,y) —9(C 2 w(Olly — 2l v,z € R, Ce T
For any y € C(J,R"™), the function u,(¢) can be taken on

d min (¢, —9;,0)
uy(¢) = Wt (@/1 = Yo,a(C1)yo — Z/ﬁ Yao,a(C1 = Ui = p)Bip(p)dp
i=1"Y Y

C1
o p)g(p,y<p>>dp) ©), Ced (16)

0
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Using Krasnoselskii’s fixed point theorem, we will show that (2) is relatively controllable. By
(16), the operator F : Cy(J,R™) — C,(J,R"™) is defined by

d_ rmin(¢—9;,0)

(FN©Q) = YaulOmw+ > / ) Yaa(C = 9 — p)Big(p)dp
=17~V
¢ ¢
+ / Yaa(C — p)g(p.y(p))dp + / Yaa(C — p)Cuy(p)dp. (17)
0 0

Hence, we need to prove that F exists a fixed point y, which exactly is a solution of (2). Besides,

we verify (Fy)((1) = y1, which indicates that (2) is relatively controllable on [—, (1]. Define

My = ' Eaart ) voll + 0| P2(¢1), Mo = Eq o(A)B[L =7, 0,

(' Paar1(AG), M =supw((), [[3] = supllg(¢, 0)]),
cedJ ced

M;
where Wy (+) defined in (5).

Theorem 4.2. Let 0 <y < «a, 3 < a <1 and a+v > 1. Assume that [A4] and [As] are held.
Then (2) is relatively controllable provided that

CEMMo(1+ MMs||C]) < 1. (18)

Proof. Consider F defined in (17) on B,., where B, = {y € C,(J,R") : |ly|lc, < r} and r > 0. To
make the following process apparent, we separate it into several steps as below:

Step 1. We prove that F(B,) C B,. In terms of [A5] and Lemma 2.10, one has

¢
/0 1Yaa(C = 2)lll9(or (o)) 1dp

IN

¢
/0 1Yaa(C = @)~ 16750 + llg(p, O))dp

IN

. ¢ R ¢
Myl / (€ = )™ Eaa(MC — p)*)p~"dp + 131 / YaalC = p)ldp

IN

. ¢
MllyllcwEa,a(AC"‘)/o (€= pdp + 191IC" Eaa+1(AC?)
M¢* ™ Eaa(A)B[L =7, allylle, + [G11¢" Baari (AC*)

< M Msllylle, + Msllgll,

IN

where B[m, n] = fol s™7H(1 — s)""lds is a Beta function.

Taking into account of Lemmas 2.8 and 2.10, by [A4] and [A5], one has

[[uy (O

< ”Wil||Lb(R",L2(J,R")\kerw) <||1/1|| + ”Ya,a(cl)””yOH
d min(¢; —9;,0) ¢1
=SB / ) 1Yaa(Ci — 05 — p)lldp + / 1Yo oG —p)|||g<p,y<p>>dp)
i=1 —0s
< M(y1|| + T B ) ol + 21%2(G) + (2 MMy lyllc, + M3|a||>)
< Ml + M + Ms|G) + ¢ MM Malyllc.

10
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By Lemmas 2.8, 2.10 and (17), one has

17 (Fy) (O
min({—19;,0)

1O Yo (0l +Z / 1O Yaa(C — 9 — ) Bigp(p) dp

IN

¢
+ / 1O Y0 (€ — P)a(pr y(0)) o + / 1O (¢ — p)Cuuy(p)ldp

min({—19;,0)

¢ B O lyoll + gl Z B[ ¢ =0l

IN

¢
+C”/ IIYa,a(C—p)HIIfJ(pvy(p))llderC”IICH/ Ya,a(C = p)lllluy(p)lldp
0 0 .
G Baa M) lIyoll + el 2(G) + G (G MMllylle, + Msgll)

+¢IClIMs3 <M(||y1|| + My + Ms||g]l) + C?”MMlelylcw)

IN

IA

CY (My + Ms|g])) + ¢ M Ms||Cl (lyall + My + Ms]|gll) + ¢¢'M Mo (1 + M Ms|C|)r

IN

Ty

for

_ M+ M3||9||) + MM || Cl|(ly1]] + My + Ms|[gl)
oM My (1 + MMs)||C||)

So F(B,) CB,, for ¢ € J.
Next, we divide F into JF; and F3 on B, as below:

d min({—19;,0)

(F1y)(€) = YaalQyo + Z[ﬂ Ya,a(C =195 — p)Biw(p)dp

¢
4 /0 Yaa(C — p)Cuy(p)dp, ¢ € J,
¢
(Fa)(©) = / Yaa(C — p)g(ory(0))dp, C € 1

Step 2. We prove that F; is a contraction operator. For any y, z € 8, and ( € J, we obtain

[y () = uz(Q)

C1
IVl oo e amoermy [ [¥oaG = o)l lo(o.9(6)) = sl 2D

IN

IN

G
M/O Yoo (St = p)llw(p)p™ " [Ip” (y(p) — 2(p))lldp

IN

,v C1
MM|ly - 2o, / Yoo (1 — p)lldp

(MM Mally — z[|c, -

IN

11
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and

¢
IC(F)©) — FO) < / Y€ — AINCHNy () — us(0)1dp
¢1 __
< g / Yaa (Gt — ) dpllCIICE MM Moy — 2.
< MMMy Ms||Cll|ly — 2lle,,

which gives that
11y = Fizlle, < Llly = zllo,, L= (FMMM,Ms|C|.

By (18), the operator F; is a contraction.
Step 3. We proclaim that F5 is a continuous and compact mapping. Let y, € B, with y, —
y(n — o0) in B,. By [4s], one has ¢((,y,(¢)) = ¢(¢,y(¢)) in C(J,R™) and hence by dominated

convergence theorem, we have

¢
1(F2yn)(C) = (F2y) (Ol = /0IIYa,a(C—ﬂ)\ll\g(p,yn(p))—g(p,y(p))lldp

IN

¢
/0 (€ = 0)° Eaa(MC — 91900, 9a(0)) — (o, u(0)) | dp

— 0 as n — oo.

This indicates that F5 is continuous on B,. In order to show that JF3 is compact, the uniform
boundedness and equicontinuous of F2(28B,.) need to be verified.

For arbitrary y € 98, and 0 < { < (+ h < (3, one has

1 (Fay)(C + B) = (Fay)(O)]
¢+h ¢
_ ‘ [ Vaatc+h=pgtoviondo - [ cm,a@p)g(p,y(m)dp“

S Il+127
where
C+h
L o= / O NYaalC + k= p)llllg(o, y(o)ldp.
¢
¢
L = / NYaa(C + b= p) = YaulC = 2)ll9(p 5(o)) 1do.

Forany (€ Jand 0 < (< (+ h < (1 as h — 0, we have

C+h
no< /C ONYaa(C+ k= p)llllg(or y(p)lldp

IN

— C+h C+h
Myl /< P YaalC +h— p)lldp + |3 /C Yaal(C+h— p)lldp

IN

N Cth
(" Eo,a(AY)M|lylle, /c pC+h—p)* T dp + h*(V Eqasi(WA%)|[9]

IN

N Cth
(" Ea,a(AY)M(C+ 1) lylle, /c (C+h—p)*"ldp+ hC B as1 (AY)]]]

IN

1 — "
S CH R Eaa M) Mllyllc, +hY¢7 Ea,a1(AR)llgll = 0 as h =0,
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and

I

IN

¢
/0 Y€+ h = p) = YaulC = P)l9(p, 5(o)) 1dp

IN

N ¢
Oyl / p Yora(C 4 p) — YaalC — p)lldp

¢
+¢7 g / [Ya.a(C+h—p) = Yao(C—p)ldp.
0
Let h — 0, one has
YoolC+h—p) = Yeull—p)ash—0,

which implies that I, — 0 as h — 0.

According to the above, one has ||¢7((Fay)(¢ + k) — (F2y)(Q))|] — 0 as h — 0 and F» is
equicontinuous. Owing to Step 1, it follows that F5 is uniformly bounded on B,. By the Arzela-
Ascoli theorem, F»(*B,) is relatively compact in C,(J,R"). Then F has a fixed point y € B,.
Apparently, y satisfies y(¢1) = y1 which just is a solution of (2). This proof is completed. O

5. Examples

Example 5.1. Set a =0.8, 91 =0.1, 95 =0.2, ¥ = 0.2 and T = 0.4. Consider
2
o+Y = DYy iY\§ — Uy g ; s Uex],y
("FD§y)(C) = By(Q) + Y Biy(¢ — 9:) + g(¢), ¢ € (0,0.4]
i=1
DET1y(C) = 9(0) = (0.05,0.05),

y(¢) = (0.1¢ +0.05,0.2¢ +0.05) ", —02<¢ <0,
01 0
o= "9 ) wo=(°) 8- ,
y2(€) ¢ 0 0.1
L[ 015 0 o[ 01 0
o o1 )T\ Zoas 05 )

y (3), for any ¢ € (0, 0.4], one has

where

2 min(¢—19;,0)

YO = Youl O+ [

=179

¢
Ya,a(¢ =i — p)Bip(p)dp + /0 Yo,a(C— p)g(p)dp,

where
k:a+a 1 (C 0 1)ka+a—1

Bk Bk g b "+
Z} ka+a)+z ! I'(ka + a)

(C 0 2)ka+a 1 ol L (C _ O.S)Ijra-&-oc—l

= k— 1 2+ k-1 k—2
+; )B T(ka+ ) +k222(1)(1)3 BB a1 a)

o] 0.2)ka+a71 e o] (C _ 0.3)ka+a71
Bk 2B2 C + k Bk—3B3 +
+Z Ika+ ) +kZ:3 (s) U T(ka + a)

l\.’)
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Set p = ¢ = 2 and v = 0.4. By computation, we have ||B|| = 0.1, ||B:|| = 0.3, ||Bz|| = 0.25,
A = B+ Bl + [Ball = 065, ¢ = 0.1, [lgll = 0., 6(04) = 0.2921, W;(0.4) = 08846,
U5(0.4) = 0.1223 and ¥3(0.4) = 0.08. We present FTS results of (19) in Table 1.

Theorem ||| « T ) lyllc, n FTS
3.1 0.1 0.8 04 0.11 0.4826 0.49 Yes
3.2 0.1 08 04 0.11 0.3869 0.39(optimal) Yes
3.3 0.1 08 04 011 04758 0.48 Yes

Table 1: FTS results of (19) with T'= 0.4.

By Definition 2.6, we look for an applicable # making ||y|lc., of (1) does not over 5 on (0, T].
Firstly, we apply the explicit solution formula of (19) to obtain the corresponding 7 = 0.2529 when
T = 0.4 (see Figure 1). Secondly, by reviewing Theorems 3.1, 3.2 and 3.3 for [—0.2,0.4], we contrast
to the value 7 in Table 1 to pick out an optimal value n = 0.39.

0.3 T T T T T

y-norm

Figure 1: ||¢%%y(¢)| of (19) with ¢ € [-0.2,0.4].

Example 5.2. Set o = 0.6, ¥; = 0.3, 95 =0.2, ¥ = 0.3 and {; = 0.6. Consider

2

("L Dgyy)(¢) = By(Q) + > _ Biy(C — 9:) + Cu(C), ¢ € (0,0.6],

=1
DS y(¢) = ¢(0) = (0,0) T,
y(()=(¢, A", —03<¢<0,

(20)

where u € L?([0,0.6], R?) and

y1(¢) 02 0.2 0.5 0.3
y(C): 3 B: 731: ,
y2(C) 0 0.2 0 05
14
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0.5 —0.3 10
By = , C= .
0 0.5 0 -1

By calculation, the multi-delayed Gramian matrix of (20) via (10) can be achieved as following:

0.6
Wo.3.0.2[0,0.6] = Ya,a(0.6 — p)CC Y, (0.6 — p)dp,
0
where
o (06 — p)irtert SN k1 (04— )t
Y, (0.6 — = J LRk S B "By~
ol ) kZ:o T(ka + a) +Z (1) 2 T(ka + a)
0o ka+a 1 00 kat+a—1
i k-1 (03— p)X k2 2 (02 — p)¥
B""'Bi—rrr B 22 P S—
Jrkzz:l(l) P(ka + «) +Z 2 T(ka+a)
00 koz—&-oe 1
kY (k—1\ pk—2 (0.1 —p)¥
B *B{By—-—""——
+kZ:2(1)(1) 1522 (k +a)
By computation, one has
3.0433 0.2531 1 0.3309 —0.0278
Wo.3,0.2[0,0.6] = , W0_370_2[0,0.6] =
0.2531 3.0109 —0.0278 0.3345
Let y(¢1) = (y1,2), by (11), one has u € L*([0,0.6], R?) as
ul€) = Y, (0.6 = ()Wy35,0.[0,0.6)¢
0 0.6 C)ka+a 1 o (04 _ C)ka«kafl
— CT BT <— BT k—1 B AV
(kzzo( * ['(ka + a) +Z (Bz) ['(ka + a)
0o ka+o¢ 1 00 kat+a—1
k ko1, pTy (03 = QOF Tk2 2 (0.2 = Q)
B B )——"F B (By ) —————
+k§(1)( S B e +Z (BJ)? e o)

(0 1— C)ka+a 1

=3 (B ()BT 28] B] M)W&é,o,z[o,oma

NE

£
Il

1

where

2 min(¢; —19;,0)
€ = 90 Vaalm -3 [ YaalGi — 9 — p) Biplp)dp

1=
Y1 0

0
= ) - Y0 (0.3 — p)Bip(p)dp — / Ya,a (0.4 — p)Bap(p)dp
y2 —0.3 —0.2

[ wm —0.0644 \ [ 41 +0.0644
Yo 0.0128 yo — 0.0128 |

By Theorem 4.1, we know that (20) is relatively controllable. Figures 2 and 3 show the state
y(C) of (20) when we set y = (y1,92)7 = (0.8,2)T and y = (y1,y) " = (12,1.2)7.

15
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25 T T T T T T T T

Y40

y({)

Figure 2: The state y(¢) of (20) with y = (y1,y2)" = (0.8,2)7.

14 T T T T T T T T

¥,(Q)
t2r v,01 7

1

0.8

0.6

y(¢)

0.4

0.2

0

-0.2

0.4 L L L L L L L L
-03 02 -01 0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 3: The state y(¢) of (20) with y = (y1,y2)T = (1.2,1.2)T.
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Example 5.3. Set a = 0.6, ¥; = 0.3, 95 =0.2, ¥ = 0.3 and {; = 0.6. Consider

("EDgy)(¢) = By(Q) + > Biy(¢ — 9:) + 9(¢,y(€) + Cu(C), ¢ € (0,0.6],

i=1
Dy y(¢) = ¢(0) = (0,0)T,
y(©) =(¢¢M)T, —03<(<0,
where B, By, By and C are the same as in Example 5.2, u € L*(]0,0.6], R?) and

1072¢y1(¢)

9(¢,y(Q)) =
1072¢y2(€)

We now utilize (15) to calculate M. From Example 5.2, we obtain

3.0433 0.2531 1 0.3309 —0.0278
Wo.3,0.2[0,0.6] = , W0_370.2[0,0.6] =
0.2531 3.0109 —0.0278  0.3345

Therefore, one has M = /|| Wy 3 .[0,0.6][| = +/0.3623 = 0.6019. Consequently, W satisfies assump-
tion [A4]. For any 7(¢), 7(¢) € R? and ¢ € [0,0.6], one has

l9(¢, 5(6)) = 9(¢, TN < 1072¢(|171(C) = F(Q)| + [72(C) = G2(O)]) < 107Cly — 7.

Hence, g satisfies the assumption [A5], where w(¢) = 1072¢ € C([0,0.6],R™).
Set v = 0.5, one has M = sup¢ep . w(¢) = 0.006, A = | B|| + ||Bi]| + | Bzl = 2, [|C] = 1,
My = 40.3693 and M3 = 4.9883. Therefore, one has

(EMMs(1+ MM;||C|)) = 0.7135 < 1,

which guarantees that (18) holds. By Theorem 4.2, (21) is relatively controllable on [0, 0.6].
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