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9
E ABSTRACT. This study presents several significant results related to the Hermite-Hadamard inequality.

? We have established new inequalities of the Hermite-Hadamard type and its variant for convex functions.
— With the help of different approaches of integrals and derivatives, we have presented some integral

2 inequalities for the Riemann-Liouville fractional integral for variable order. We derived two novel
13 equalities to prove new fractional trapezoid and midpoint type inequalities for differentiable convex
14 functions. Furthermore, we have provided the computational analysis of new inequalities with numerical

15 examples for convex functions.

16

1 7 . . . .

. 1. Introduction and Preliminaries

9 Convexity is an essential mathematical concept, especially in geometry and optimisation. Greek
20 philosophers explored convexity, which originated in Egypt and Babylon. Drawing simple geometric
21 shapes like circles and triangles dates back to human civilisation, but its origins are difficult to
22 determine. To the best of my knowledge, in the late 19th century, German mathematician Karl
23 Hermann Amandus Schwarz made a groundbreaking contribution by introducing the convex function
24 [13]. The contributions made by his research on convexity had an enormous impact on the advancement
25 of mathematical theory. A function F : [p, 9] C R — R is said to be a convex function if the given
26 inequality holds:

%(1.1) F(tp+(1—1)0) <tF(p)+ (1 —1)F(9)

29 for all p,® € J, t € [0,1]. Also, we say that F is concave, if the inequality (1.1) is reversed. Re-

80 searchers have extensively utilised convexity in economics, engineering, computer science, and other

%1 mathematical disciplines [14, 34]. However, the most famous result regarding the convex functions

% in mathematical inequalities is Hermite-Hadamard (H-H) inequality because of its numerous uses in
% optimisation theory and the theory of inequalities [27, 23]. These inequalities state that if a function

% F:J — Ris aconvex function in the interval J O [p, %], then we have

35
36 p+v | F(p)+F(9)
BZ(I.Z) F( 5 >§ 19_p/p F(u)du < 5 .

%8 Dragomir and Agarwal [10], derive a specific identity and subsequently utilize it to provide various

39 bounds for the right-hand side of the inequality (1.2).
40

41 2020 Mathematics Subject Classification.
42 Key words and phrases. Hermite—Hadamard inequality, Riemann-Liouville fractional integral, Integral inequalities.

1

2 May 2024 02:47:57 PDT
231209-Chen Version 3 - Submitted to Rocky Mountain J. Math.


http://msp.org/
https://doi.org/rmj.YEAR.-
https://doi.org/rmj.YEAR..PAGE

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

HERMITE-HADAMARD TYPE INEQUALITIES 2

1 Lemma 1.1. Ler F : 3° C R — R be a differentiable mapping on 3°, p,® € 3°. If F' € L|p, 9], then
o the following equality holds:

2 F(p)+F(®) 1 /‘9 p—l‘}/l )

- (1.3 — F(u)du=—— 1—20)F'(t 1—1)9)dt.
e s ), Puan=PSE a0 Fp (1)

% Kirmaci [21], presents a particular identity and subsequently utilize it to provide various bounds for
E the left-hand side of the inequality (1.2).

E Lemma 1.2. [f F : 3° — R is differentiable on 3° and F' € L|p, 0], then we obtain

2 1 )

10 —_— F(u)du—F (p_l—>

— b—pJp 2

11 (1.4) 12 |

" — (9—p) U tF/(tp—i-(l—t)ﬁ)dt—i—/ (t— DF'(tp+(1—1)8)dr|, Vp,o e
13 0 1/2

14 Numerous investigations have been conducted over the past twenty years to find new bounds for the
15 inequality on the left and right sides of (1.2). For more information, please visit [9, 11, 19, 24].

16 Fractional calculus is a mathematical discipline that extends traditional calculus to include non-integer
17 orders of differentiation and integration, with its origins dating back to the 17th-18th centuries through
18 early contributions by mathematicians like Leibniz and further advancements by Riemann and Liouville
19 [2, 18, 26, 29]. Hezenci et al. have proved Newton’s inequalities for differentiable convex functions
20 using Riemann-Liouville fractional integrals. They give a graphical analysis which clarifies the validity
21 of the newly established inequalities [17]. Using different function classes, Budak and Kosem obtained
22 some Milne-type inequalities for Riemann-Liouville fractional integrals [8]. Milne-type inequality
23 for co-ordinated convex functions, Shehzadi et al. [35] have established a novel identity. Also, they
24 presented some new inequalities for Milne-type co-ordinated convex functions. D. Zhao et al. [37] have
25 derived new Bullen-type inequalities for differentiable convex functions with the help of generalised
26 fractional integrals. Hassan et al. [16] have proved an identity using generalised fractional integrals
27 by utilising differentiable functions. Furthermore, they obtained numerous Simpson-type inequalities
28 for the functions whose absolute value derivatives are convex. Iftikhar et al. [20] have derived an
29 identity for local fractional integrals, obtaining new Newton-type inequalities for generalised convex
30 functions and applying inequalities for Simpson’s quadrature rules and special means. Tunc [36] has
31 provided definitions for interval-valued left-sided and right-sided fractional integrals. In 2019, Kunt et
32 al. [22] presented a novel approach to establishing new fractional H-H type inequalities exclusively
33 using the left Riemann-Liouville fractional integral. Additionally, they prove two new equalities to
34 derive fractional trapezoid and midpoint type inequalities for differentiable convex functions.

35 In the following, there are some definitions and mathematical preliminaries which will be extensively
36 used throughout this study.

37
a Definition 1.3 (See [28]). A function F defined on J has a support at xo € J, if there exist an affine
S5 Junction B(x) = F(xo) + m(x—xg), such that B(x) < F(x) for all x € 3. The graph of the support
o function B is called a line of support for F at x.

E Theorem 1.4 (See [28]). The function F : (p,¥) — R is considered convex if and only if there exists
42 at least one line of support for F at every point xo within the interval (p,®).

2 May 2024 02:47:57 PDT
231209-Chen Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

HERMITE-HADAMARD TYPE INEQUALITIES 3

Definition 1.5 (See [30]). Let F € L[p,¥]. The Riemann-Liouville fractional integrals 3,03‘ F and

1
2 J§_F of order o > 0 are defined by

3 .

+ 3% F(x) :7/ (=) F(n)dt, x>p
5 T F(OC) p

° and

e 1 v

8 3% F(x :—/ r—x)* F()dr, x< 9,
? V¥ ( ) F(Ot) o ( ) ()

10 respectively. Here, I'(@) is the Gamma function and 35 F (x) = 35 _F (x) = F (x).
11
12 Definition 1.6 (See [15]). Let 0 < a(x) < 1 forall x € [p,¥] and F € Ly[p,8]. Then the left and right

13 Riemann-Liouville integrals of variable fractional order a.(x) are defined by

L JEIF () = F[al(x)] /p )W LE(dr, Rea(x) >0

E and

. SO () = / ﬂ(z —x)*@-1F()d, Rea(x) > 0.

- o o) Jx |

21 The classical Riemann-Liouville fractional integral has a fixed constant order of integration

22 while the variable order definition allows the order of integration o (x) to vary as a function of another
23 variable x. In our case, a(x) depends on the integral domain and gives different values at different
24 points, where o and the point of interval vary simultaneously. This flexibility provides a graphical
25 analysis which clarifies the validity of the newly generalized inequalities. Sarikaya et al. (2013) have

26 proved H-H inequalities for Riemann-Liouville fractional integrals using fractional identities [33].
27
s Theorem 1.7 (See [33]). Let F : [p,¥] C RT — R be a positive function and F € Ly[p,¥]. If F is a

o9 convex function on [p, 0], then the following inequalities for fractional integrals hold:
30

31 (1.5) F(

32

F(p)+F(9)
2

p+19> < INa+1)

) S35 -0 38 F(8)+3% F(p)| <

33 with o0 > 0.
34

SE In this paper, we derived new fractional H-H type inequalities using the left Riemann-Liouville
36 fractional integral with variable order for convex functions. This dynamic interplay between o
37 and the position within the interval provides increased flexibility and paves the way for graphical
38 analysis, ultimately enhancing our understanding of the applicability of newly introduced generalized
39 inequalities. Through interesting examples, we demonstrate how our generalized H-H inequality with
40 variable order provides more accurate insights into the function’s behaviour over specific interval
41 points. In addition, we provide two new identities for differentiable convex functions to derive the
42 fractional trapezoid and midpoint type inequalities.
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1 2. Main results
2

3
4 Theorem 2.1. Let F : [p, 8] — R be a positive function with 0 < p < ® and F € L|[p,0]. If F is
5 a convex function on [p, ], then the following inequalities for the left Riemann-Liouville fractional
6 integrals hold:

7

8 (2.1)

— The H-H inequalities can be expressed in terms of fractional integrals as follows.

a(®)p+0\ _ T(@(®)+1) o) a(9)F(p)+ F(9)
F(aww4)< T FO) S == 11

| ©

10 with o(9) > 0.
11
12 Proof. Assuming that F is a convex function on [p, %], it follows from Theorem 1.4 that at least one

13 line of support exists

E forallx € [p,¥] and m € [Fi ( ((1;’;“9) F! (ao(‘z;?:&ﬂ. From (2.2), we have
18

o (23) Bp+(1-0)9)=F (‘X(z‘})p +0

<xm+1)+M<m+“—00—“w”+ﬁ)smm+a—om

o(%)+1

21
»» for all 7 € [0,1]. By multiplying both sides of (2.3) with the function ot(®)r*®)~! and integrating
o3 across the interval (0, 1) with respect to 7, we obtain the following result

Z: (x(ﬁ)/olt“w)IB(tp—i-(l—t)ﬁ)dt

27 :a(ﬁ) ! F<W)+m<tp+(l—t)ﬁ—om>}dt
2 = a(®)F ( p+l9>/01t0‘ L

?Z +m / (ﬁ)[ a(®) 5 4 (pe(®)-1 _ a(d )) 13} dt_a(ﬁ)p—’—ﬁa(ﬁ)/lta(ﬂ)l dt]
2 0 P o(9)+1 0

% B (v p+z9 a0p+z9 _a@)p+v] _ _(a@®)p+D

“ (Catar )|t mm+1]‘F<mm+1>
- ¥

- < a(ﬁ)/olt“(’”‘lF(thr(l—t)l‘})dt: wi‘ijlm/p (9 — )%~ F(1)ds
38 _T(a(®)+1) aw)

Ses = W= p)a® AF(9).

o By utilising the convexity property of function F over the interval [p, 9], we can assume that
41

42 (2.5) F(tp+(1—1)8) <tF(p)+ (1 —1)F(®)
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i for all £ € [0,1]. By multiplying both sides of (2.5) with the function a/(9)r*(®)=! and integrating
"2 across the interval (0, 1) with respect to ¢, we obtain the following result

3 (2.6)

4 U a(o)-1 B a(d) v L(a(d)+1) a)

B (19)/0 Flp+ (1o)== Sy )/ (9 — 1)~ p(1)ds = oy ot F)
6 ! ! - a(D)F(p)+ ( )

o o) a(®)-1 _ ,o(d)

- ga(f})F(p)/O ‘ dt+oc(19)F(19)/O (v )ar= et

8 By using (2.4) and (2.6), we have (2.1). This completes the proof. O

9

10 Remark 2.2. If we choose o/(x) = 1, in Theorem 2.1, then we obtain the inequality (1.2).

" Remark 2.3. If we choose a(x) = B (constant), then we have Theorem 2.1 proved by Kunt et al. in

2 [22].
13

14 3. Lemmas

15
15 Two identities connected to Lemma 1.1 and Lemma 1.2 will be proven in this section.

E Lemma 3.1. Let F : 3° — R be a differentiable mapping on 3°, p, & € 3° with O > p. If F' € L[p, 0],
18 then the left Riemann-Liouville fractional integral satisfies the following equality:

19 (3.1)

20 a(9)F(p)+F(0) T(a(d)+1)

— 1
21 a(d¥)+1 (O —p)a® JS‘P)F(ﬁ)ZOM A [1—(a(19)+1);a(19) F'(tp+(1—1)8)dr

22 with (%) > 0.
23

o4 Proof. Partial integration on the right side of the equation (3.1) yields

- Om 1[1_(a(ﬁ)+1)t“<ﬁ>} Fl(tp+ (1 —1)9)dr

27 1

z: :(ﬁ—p)[ 191)+1/ F'(tp+ (1 —1)9)dr — /0¢a<ﬂ)F’(zp+(1—t)1s)dt]

30 _ I F(p+(1-1)9) aw) Fltp+(1=1)9) [

i —(ﬁ—P)[ (19)+1 o0 0—<t () p— o .

. —a(zs)/oltaw)1F(IP:(_11;’>’9) dt)]

. - W +F(p) - () /Olf“”)‘lF(rp +(1—1))dr

37 _a(F(p)+F (W) T(a(d)+1) aw)

v T art (oop e )

39 This completes the proof. O

40
o, Remark 3.2. Ifwe take o(x) =1, in Lemma 3.1, then we get Lemma 1.1.

ﬁg Remark 3.3. If we put ou(x) = B (constant), then we will obtain Lemma 3.1 proved in [22].
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Lemma 3.4. Let F : 3° — R be a differentiable mapping on 3°,p, 9 € 3° with ® > p. If F' € L[p, 9],
then the left Riemann-Liouville fractional integral satisfies the following equality:

C(a(®)+1) aw) a(d)p+9

o e ot F(O)—F( —

(0 —p)o®) o(¥)+1

o(8) 1
=(0—p) [/awm t*OF (1p + (1 —z)ﬁ)dt+/a<ﬁ) (ta(ﬂ) — 1) F'(tp+(1 —z)z‘})dt]
0

o(0)+1
with o(%) > 0.
o Proof. Partial integration on the right side of the equation (3.2) yields

oo |~fofofs]e]n]-
~
W

1 o) 1

5 (0 —p) [/ )+ 1*OVF (1p+ (1 —t)ﬁ)dt—i—/am) (ta(ﬂ) _1) F’(;p+(1—t)19)dt]
E 0_ o(0)+1

14 _ ! o(0) ! ! /

— =(%—-p) t*VF (tp+(1—1)%)dr — o) F (tp+ (1 —1)¥)dt

E L 0 a(d)+1

E i - 1 1 B

17 _ (ﬁ_p) ta(ﬁ)F(tp+(1 t)ﬁ) —(X(’l&)/ ta(‘ﬁ)le(tp_’—(l t)ﬁ) dr

18 i p—1v 0 0 p—1v

1o |

20 B (F(tp+(1—t)19)

217 p_ﬁ. a((xél)?l

22 1

23 = K—F(p)Jroc(ﬁ)/ ta(ﬂ)lF(l‘p—i-(l—t)ﬁ)dl) + <F(p)—F <oc(19)p+z9)ﬂ
v 0 (X(ﬁ)+1

25 L(a(¥)+1) ) a(d)p+ 0

25 - 7 7 — R A —

5 w—pye > T gyt )

22 This completes the proof. O

28 Remark 3.5. If we assign a(x) = 1, in Lemma 3.4, then we get Lemma 1.2.

29
5o Remark 3.6. Ifwe take ot(x) = B (constant), then we will get Lemma 3.2 in [22].

Z% 4. Midpoint and Trapezoid inequalities

PE In this section, we will derive new inequalities for the left Riemann-Liouville fractional trapezoid and
34 midpoint types. These inequalities will be obtained by utilising Lemma 3.1 and Lemma 3.4.

z% Theorem 4.1. Ler F : 3° — R be a differentiable mapping on 3°, p, ¥ € 3° with & > p. If |F'| is
5, convex on [P, O], then the subsequent inequality for the left Riemann-Liouville fractional integral
— holds:

2 a®FE)+F®) T(@(®)+1) )

40 a(d)+1 T (9—p)e® Joy 'F (D)
v L PP [A1(a(9)) |[F'(p)| + A2 (ae(9)) | F' ()| + Az (e ()) |[F'(p)] +Aa(e()) | F' ()]

w2 a(¥)+1
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1 where
T () () (2(0609) +2)(a(®)+ 1)@ - 1>
- A(a(d)) = s Ax(a(D)) = —— :
o 2(0(0) +2)(0(V) + 1) @) 2(0(0)+2)(et(V) 4 1) a®
o a(d) 1+(a(19)+1)06219)>
L As(a(9)) = =,
8 2(a(¥) +2)(at(¥) +1)a@
0 a(9) (2(05(19) +2)(a(®) + DET ' — 1 (a(8) + 1)a<zﬁ>>

2 2a(®) +2)(a(B) + 1)@

3 with a () > 0.
14
15 Proof. By using Lemma 3.1 and the convexity of |F’|, we obtain

1? 06(19)061[7((5)):1}7(19) B 1;1(905_(1;)):_(;))];‘9)]:(0) < al(?ﬁ—)il 01 ’1_(a(ﬁ)+l)ta(ﬁ)‘ F/(tp+(1—1)0)|dt
0 < VP /O““’ @)+ (1—(a(19)+1)t0‘(1’)) [t |F'(p)| + (1 —1) [F'()|] dt

0 a(d)+1

21

2 4 /11 (<a<ﬁ>+1>r"‘“”1)[t|F’<p>|+<1r)F’(det]

2 0ato)

5 s, (o) ) (2(05(19)+2)(a(19)+1)a<1’9>1—1> |
26 < S +~1 — |F'(p)| + 2 |F'(9)|
O a(a(s) +2)(a(®) + 1) 200(9) +2) @(®) + 1)

= o) (14 (@) + )

4 —=|F'(p)]

3 2(0 (V) +2)(oe(¥) + 1)

w ) <2(a(19)+2)(a(19)+ D& 1 = (a(9) + 1)a<20>>

2+ - |F'(9)|

3 2a(®) +2)(e(8) + 1)@

7 < s )| (0)] + As(a) | (9)] + Ax(@(0) [F ()| + As(ex(9) [P (9)]).

3E This completes the proof. 0

j% Remark 4.2. If we choose a(x) = 1, in Theorem 4.1, then we obtain Theorem 2.2 in [10].

ﬁg Remark 4.3. If we choose a(x) = B (constant), then we find Theorem 4.1 proved in [22)].
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1 Theorem 4.4. Let F : 3° — R be a differentiable mapping on 3°, p,® € 3° with ® > p. If |[F'|? is
2 convex on [p, ] for g > 1, then the subsequent inequality for the left Riemann-Liouville fractional
3 integral hold:

1-1
a(9)F(p) + F(8) T(@(8) +1) a0 o-p [ 2a) q
AT o g PO < o <( <@>+1)“a<’ﬂ>>

x (A1 (@) [F'(p)|" + Aa((9)) [F'(9)]* +As () |F(p) | +As () |F'(9)])

Slefe|[~v[ofo]s]
Q=

11— where Ay (o(¥)) —As(0 () are the same as in Theorem 4.1 and o/(¥) > 0.

2 Proof. By using Lemma 3.1, power mean inequality and the convexity of |[F’|7, we obtain
13

E 06(19);(%):5117(19)_?(90‘_(1;));;))];‘9)1?( )’g?ﬁ)p ’1— (O)+ 1)t* “F (tp+(1—1)0)|dr
gga?ﬁ_il </01\1—(a<19)+1 ‘dt) (/01(1—(06(19)+1 |Fp+(1-1) )\qdf>q]
19 ' =3

. ofﬁ_il [T (o) @Y ars [ (@@ 1) a

23

2 </o(” (1= (@(®)+ 1) [t|F'(p) "+ (1=1) |F'(9)|"]

T (@@ ) [ -0 )
= ERcon

1—-1

80 B—p 20(0) I
31 < -
(a(B)+1)

Q=

S (An(@(®)|F(p)]+ As () |[F'(9)] + As(@(9)) |F'(p)] + Aa(ex(9)) |[F'(9)])

* This completes the proof. O
36

37 Remark 4.5. If we choose a(x) = 1, in Theorem 4.4, then we obtain Theorem 1 in [25].
38

3E Remark 4.6. If we choose o(x) = B (constant), then we have Theorem 4.2 proved in [22].
40

zz Theorem 4.7. Let F : 3° — R be a differentiable mapping on 3°,p,% € 3° with ® > p. If |F'|? is
42 convex on [p, V] for g > 1, then the subsequent inequality for the left Riemann-Liouville fractional
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1 integral holds:
B a(®)F(p)+F(3) _ T(@(®)+1) v o
a o(d)+1 (0 —p)*(8)"P"
4 1
5 v—p L (F' ()" +F'(9)"\
S < A A
B < 0P (as(a(0).p) +acta(o). ) (FOE
there
8 o
B As(a(®),p) = [ “VE (1-(a(9) + 1) @,
10 1
" Asta(®).p)= [ ((@(®)+ e -1)" ar,
12 () /a(5)+1
3 with L + -~ =1and o) > 0.
14

15 Proof. By using Lemma 3.1, H6lder inequality and the convexity of |F’|?, we obtain

16 |a(®)F(p)+F(®) T(a(®)+1) o)

— F
17 a(d)+1 (0—p)a<ﬁ) pr F(D)
18
© d—p 1
< — I—(o(8)+ 1)t F'(tp+(1—1)9)|dt
;z—aw)ﬂo‘ (@(0)+ e[ [Fip-+ (1-0)9)]
2 VP

</01 ‘1 -l l)ta(ﬁ))p dt) ﬁ </o1 |F'(tp + (1 —1)0)|* dt>’1’]
8)+ e« —1)” dt)

2 T a(¥)+1

23

24 v—p m
[ < J—
- _06(19)+1</() (1= (a(®)+ 1) dt+/

1
p

26

w (/01 [t |F'(p)|* + (1 —1) [F'(9)|"] dt)

29 1
o B—p 1 (F ()" +[F'(9)]"\

%0 < ——— (A (5 A v .

0 <t asta(o). )+ Asta(o). )t (5

32 This completes the proof. 0

2% Remark 4.8. If we assign o(x) = 1, in Theorem 4.7, then we obtain Theorem 2.3 in [10].
35 Remark 4.9. If we take a(x) = B (constant), then we obtain Theorem 4.3 in [22].

% Theorem 4.10. Let F : 3° — R be a differentiable mapping on 3°, p,® € 3° with © > p. If |F'|

87 is convex on [p, O], then the subsequent inequality for the left Riemann-Liouville fractional integral

% holds:
T T@®) ) a) pgy g (D) +D
© fe—pe@r TV Pt )

v < (@=p)[ar(a())[F'(p)] +As(a(D)) [F'(9)| +Ao(a(8)) |F'(p)| +Aro((9)) |[F'(9)]]
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Lwhere
% o a(d o o(9)+1
e 7(06 (a (39—&)-1> ((X(ﬁ)) o 2<a(1§l)9—3-1>
5 < < @3 2)° (@(®) + )(a(0)12)
© ) (2(a(9))e® < (9)+1)e))
z As(a 2<a<ﬁ>+ @2 a(9)+2)
o  4(a(e))or w><a<ﬁ>+1> 0
o Ao(@()) = = T e 2 w(0) 42)

11

12 with o() > 0,
13

4 Proof. By using Lemma 3.4 and the convexity of |F’|, we obtain
15

©or(a(9)+1) o a(d)p + 9
v ‘w—pw O (G )‘

18

— B o) 1
Do<(®-p) /0““”“ta<ﬂ>}F'(tp+(1—r)19)\dz+/aw) (1) |F'(zp+(1—t)ﬁ)\dz]
a(0)+1

21 o _a®)

< (0-p) /0"‘“”“ (4O [t|F'(p)| + (1= 1) |F'(8)|] dr

st [ (1) W@ -0l )0

26 a(®)+1

27 o(D)+1 a(9)+1

. a(®) (afsth) o 2(ath) ,

» P @@+ " O )+ ey O

?Z o) <2a0‘(’9)+(a(0)+1)“(6)> / 40(9) 4O+ — g (9) (a(®) + 1))

% - 2(0(0) 4+ 1)e+2(q(9) +2) ()] + 2(a () + 1) 42 (q(9) +2) ()
g This completes the proof. O

36

BZ Remark 4.11. If we assign o(x) = 1, in Theorem 4.10, then we obtain Theorem 2.2 in [21].

38

SE Remark 4.12. If we take o/(x) = B (constant), then we obtain Theorem 4.4 in [22].

40

zz Theorem 4.13. Let F : 3° — R be a differentiable mapping on 3°,p,9 € 3° with © > p. If |[F'|? is
42 convex on [p, V] for g > 1, then the subsequent inequality for the left Riemann-Liouville fractional
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1 integral holds:

2 1-1
S |T(a@®)+1) aw) a(d)p + 0 o (9)*®)+1 ’
S IV F(O) - F | ) < (9 -

4 ‘(ﬁ_p)a(ﬂ) p+ ( ) a(ﬁ)+1 _( P) ((X(ﬁ)+1)0‘(19)+2

5

o x| (@) [F ()] +As(@(®)[F'(9)])7 + (As(@()) [F(p)] +Aro(a(3)[F'(9)])
7

5 Where A7(a(0)) — Aio(a(D)) are the same as in Theorem 4.10 and a.(§) > 0.

9 Proof. By using Lemma 3.4, power mean inequality and the convexity of |[F’|, we obtain
10

- |D(e(®)+1) aw) <a(19>p+19>

11 ———=J VF(O)—F | ———

o (9 —p)o®) "PF a(®)+1

— o a®)

13 a(®)+1 5

" <(¥-p) /0 t*ONF (tp+(1—1)9 \dt+/ l—t“( )> }F/(tp+(1—t)z9)\dt]
15

; a(ﬂJrl l_é Ocl(xlgl)i)rl é

o <(®-p) (/0 12 ) (/0 1O |F/(1p+ (1 —1)9)|? dt>

18

o ! () 17% ! o(0) / q %
0 4+ /aw) (1= ) ar /M) (1) [Fp+ (1= )9)|" o

21 a(®)+1 a(d)+1

23 g1\ i [/ e o o g g
e S(ﬁ—P)Qﬂg;llwwH2> [(A() De|F'(p \+(L4HF(§M]¢)

26 1 i
o ([ ()P a-oiFoia) ]

o(0)+1

29 06(13) (0)+1 =3

;i < (19—[)) <(a(0)+l)a(1§})+2>

R L R TC 5 R
3 X (a(ﬁ)ﬂ)(a(@)u)‘ | T la®)+1 (a(ﬁ)+z>‘ (8)]

o () (2(e(9)“) + ((9) + 1))

QE + 2(a(B) + 1)*®O+2(q(8) +2) ‘F/(P)‘q
“ 4 (8)) O — a(B)(a(®) + )\
- 2Na@) T2 a2 w)\q) ]
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1 This completes the proof. O]

2
~ Remark 4.14. In Theorem 4.13, when o) =1 is chosen, we find the following midpoint type

— inequality

1 @ p+v d—p
_ <
ﬁ—p/pF(u)du F( 2 ))_ 8

' Remark 4.15. If we take o/(x) = B (constant), then we will get Theorem 4.5 proved in [22].

(\F’(p)\qzsz’(0>!q>é+ (Z‘F/(p)‘q;_‘F,(ﬁ”q);] |

o|~]o|o|s

% Theorem 4.16. Let F : 3° — R be a differentiable mapping on 3°,p, 9 € 3° with p < 0. If |F'|? is

I convex on [p, O] for ¢ > 1, then the subsequent inequality for the left Riemann-Liouville fractional

1? integral holds:

L )

< (0-p) |4 @(0).p) (5ot (| OS2 \F’(ﬁ)\Q)‘l’
+AR(@(0).0) (5o IO+ 5 IO ;]

gg All(a(ﬁ),P)Z/Oomfaw)p dt, Alz(a(ﬁ)’m:/{:%%(l—l“(ﬂ))p dr,

27
2 With 5+ ¢ =1and o () > 0.

29
5, Proof. By using Lemma 3.4, Holder inequality and the convexity of |F’|?, we obtain
0 D(a(®) 1) a) a(®)p + 0

—J F(O)—F| —————
¢ [eomppm i ro-F (5T

Pi B a(9)

< (—-p) /’MH]“ |F'(tp+(1—1)® \dt+/
0

35
36 1

o % o) q
T <@-p) (/0 o d) (/O” \/(m+(1—z)a>y‘1dz>

l—t“(l’)> |F'(1p+(1 —t)ﬁ)\dt]

39

1

‘E 1 SN\ , 1 , . g
" + /M) (1—;0‘( )) dr /aw) |F'(ta+ (1 —1)9)|" dr
E a(®)+1 a(®)+1

2 May 2024 02:47:57 PDT
231209-Chen Version 3 - Submitted to Rocky Mountain J. Math.



Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

HERMITE-HADAMARD TYPE INEQUALITIES 13

oo b a) 7
< (ﬁ—p) (/Oa(ﬁ)ﬂ toc(ﬁ)p dt) (/0(1(19)+1 [I‘F/(p)‘q—i—(l—[)‘F/(ﬁ)}q} dt)

==

= : p ’ : T / q g

Z +</m(0$?+)1 (1_,aw>) dt) (/Oml [t|F'(p)|"+(1—1) |F'(9)| ]dr)

% 1 a(®)? a(9)? +2a(3) 7

L <o-p @) (s PO S o)

" 1 20(8)+1 |, g I )

2 ) sty 71PN+ sy )

% This completes the proof. 0

> Remark 4.17. In Theorem 4.16, when o () = 1 is chosen, we get Theorem 2.3 in [21].
16

17 Remark 4.18. If we assign a(x) = B (constant), then we will get Theorem 4.6 proved in [22].
18

19 5. Numerical Examples

20 Example 5.1. We define a convex mapping F (x) = x*. Then, from inequality (2.1) for oi(x) = sinx,p =
v 0and 8 =1, we have

- 0+1 '\ _ 294897

24 sin(1)+1,/ ~ 1000000

25 [(sin(1) +1) in(1) (1) 382227
26 (1 —0)sin(1) “0° 1000000
%and

e sin(1)F(0)+F(1) 135761

0 sin(1) + 1 250000

31 It is obvious that
%2 294897 < 382227 < 135761
® 1000000 ~ 1000000 ~ 250000°

34
- This exemplifies that the inequality (2.1) is valid for convex functions.

3E Example 5.2. We define a convex mapping F (x) = x*. Then, from inequality (2.1) for a(x) = cosx,p =
37 0and ¥ =1, we have

z% 0+1 '\ _ 421491
o cos(1)+1/ ~ 1000000
ol L(cos(1) +1) jeos(r) ) o, SLLI39
22 (1 —0)cos(1) “07 1000000
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1 and
2 cos(1)F(0)+F(1) 649223
3 cos(1)+1 = 1000000
% It is obvious that
. 421491 < 511139 <1 649223
2 1000000 ~ 1000000 1000000
‘s This is another example of application of the inequality (2.1), which is valid for convex functions.
9
10
il v
% 0'5:_ | eft Inequality
I 04l == Middle Inequality
g : == Right Inequality
E 0.3:
17 02f
" ;
19 01f
20 00t 04 o086 08 LUb
21
% FIGURE 1. In 2D-Plot when p is fixed and ¢ lies between 0 and 1.
o4
25
26 )
27 i
28 0'6:_ = |eft Inequality
29 0.55— e Middle Inequality
30 oaf  — Rightinequaliy
31 i
5 03f
3 0.2
3 0.1 ;
35
36 04 06 08 10"
37
38 FIGURE 2. In 2D-Plot when p is fixed and ¥ lies between 0 and 1.
39
40

‘E Remark 5.3. The inequalities stated in Theorem 2.1 are exemplified by both Examples 5.1 and 5.2. A
42 comparative analysis further emphasises this finding, as seen in figures I and 2.
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1 Conclusion

2 This study has added new results to H-H inequalities and looked at how they can be used by looking at

% convex functions and fractional integrals with variable order. We derived new H-H type inequalities by
— studying convex functions for fractional integrals and also found new fractional trapezoid and midpoint
e type inequalities with variable order. We gave numerical examples and a graphical analysis of the
= novel inequalities. These inequalities will be helpful for researchers who are working in the field of
— optimization theory and mathematical inequalities.
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