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A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACL E

HANAN FERCHICHI

ABSTRACT. We consider a linear elastic Naghdi shell incorporating shear, membrane, bending domi-
nated effects and an obstacle. The asymptotic analysis shows that the numerical locking is expected. We
make use of the theory proposed by Arnold and Brezzi [1] to propose a locking free non-standard mixed
variational formulation for a flexural Naghdi shell with obstacle.

1. Introduction

Many problems in physics and engineering involve the model of a thin elastic shell in contact with an
obstacle or another deformable body. The modeling of such problems is done by variational inequali-
ties in a convenient functional space. Most of the papers describe and analyze the contact problem of a
thin shell with an obstacle as an unilateral contact problemand with Signorini boudary conditions. In
[2], the authors propose and analyze a mixed formulation with double Lagrange multipliers modeling
the unilateral contact of a Naghdi shell with an obstacle in cartesian coordinates.
By incorporating the inequality constraints associated tothe three dimensional contact problem model,
the asymptotic analysis when the thickness vanishes is similar to the the case of thin shell without con-
tact for a confinement Koiter shell problem [10] and for a Signorini problem with unilateral contact
shell problem [5][13]. In [5], the authors establish an extension of the error estimate between the
solution of the three dimensional problem and the two dimensional membrane shell one to the case of
membrane shell with unilateral conditions on the contact boundary.
The proposed contact model in this paper is different from the Signorini problem where only the un-
deformed shell and the lower face of the deformed shell are confined [10]. The asymptotic analysis
shows that the membrane locking is expected for a totally confined deformed shell in a half space
viewed as an obstacle. Then we propose a free locking mixed formulation modelling a bending domi-
nated Naghdi shell with an obstacle.

2. Geometrical notations

Greek indices and exponents take their values in the set{1,2} and Latin indices and exponents take
their values in{1,2,3}. The convention of repeated indices and exponents is used. Letω be a bounded
open set ofR2. We consider a shell whose midsurface is given byS= ~ψ(ω̄) where~ψ ∈ C3(ω,R3)
is a one to one mapping such that the vectors~aα = ~ψ,α are linearly independent at each pointx =

...
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A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACLE 2

(x1,x2) ∈ ω̄ . We let~a3 =
~a1∧~a2
‖~a1∧~a2‖ be the unit normal vector on the midsurface at point~ψ(x1,x2). The

contravariant basis~ai is defined by the relation~ai.~a j = δ i
j whereδ i

j is the Kronecker symbol. We let

a(x) = ‖~a1∧~a2‖2 so that
√

a(x) is the area element of the midsurface in the chart~ψ. The first and
second fundamental forms of the surface are given in covariant components by:

aαβ =~aα .~aβ , bαβ =~a3.~aα ,β =−~aα .~a3,β .

The contravariant components of the first fundamental form and the Christoffel symbol are respec-
tively given byaαβ =~aα .~aβ andΓγ

αβ =~aβ ,α .~a
δ .

Let E= (Eαβ λ µ)αβ λ µ be the elasticity tensor andG= (Gαβ )αβ be the metric tensor which we assume

to satisfy the usual symmetries and to be bounded and uniformly strictly positive. For an homoge-
neous isotropic material with Young modulusE > 0 and Poisson ratioν ∈ (0, 1

2), we have

Eαβ λ µ =
E

2(1+ν)
(aαλ aβ µ +aαµaβ λ +

2ν
1−ν

aαβ aλ µ), Gαβ =
E

2(1+ν)
aαβ .

Let ~u ∈ H1(ω,R3) be a midsurface displacement field and~θ ∈ H1(ω,R3) be a rotation of the nor-
mal vector given in covariant components by~u= ui~ai and~θ = θα~aα . The linearized changes of the
curvature tensorϒ = (ϒαβ )α ,β , the transverse shear tensorΦ = (Φα)α and of the membrane tensor
Λ = (Λαβ )α ,β read in covariant components:

ϒαβ (~u,~θ ) = 1
2(θα/β +θβ/α −bγ

α(uγ/β −bγβ u3)−bγ
β (uγ/α −bγαu3)),

Φα(~u,~θ ) = u3,α +bγ
αuγ +θα ,

Λαβ (~u) =
1
2(uα/β +uβ/α)−bαβ u3,

wherevα/β = vα ,β −Γγ
αβ vγ andbγ

β = aαγbγβ .
Let ε be the shell thickness. The reference shell is defined by:

C=

{
M ∈ R

3,
−−→
OM = ~ψ(x1,x2)+x3~a3(x1,x2),

(x1,x2) ∈ ω, −ε
2 ≤ x3 ≤ ε

2

}
.

We suppose the shell clamped on a partΓ ⊂ ∂ω and set

H1
Γ = {v∈ H1(ω),v/Γ = 0},
V = {(~v,~δ ) = (vi~a

i,δα~a
α), vi ∈ H1

Γ, δα ∈ H1
Γ}.(1)

Let Ab(., .), Am(., .), As(., .) be respectively the bilinear forms associated to the bending energy, mem-
brane energy and shear energy and given by:

Ab(~u,~θ ;~v,~δ ) =
∫

ω

Eαβ λ µ

12
ϒαβ (~u,~θ )ϒλ µ(~v,~δ )

√
adx

Am(~u,~θ ;~v,~δ ) =

∫

ω
Eαβ λ µΛαβ (~u)Λλ µ(~v)

√
adx

As(~u,~θ ;~v,~δ ) =
∫

ω
Gαβ Φα(~u,~θ )Φβ (~v,~δ )

√
adx.
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The total energyE of the deformed shell is given by:

E(~v,~δ ) =
ε3

2
Ab(~v,~δ ;~v,~δ )+

ε
2

Am(~v,~δ ;~v,~δ )+
ε
2

As(~v,~δ ;~v,~δ )− L̃(~v),(2)

whereL̃(~v) =
∫

ω
~F.~v

√
adxand~F is the external force applied to the thin elastic linear shell.

Let G be the inextensional displacement space defined by:

G= {(vi~a
i,δα~a

α) ∈V such thatΛασ (~v) = Φα(~v,~δ ) = 0}.

The spaceG also called subspace of admissible pure bending displacements corresponds to zero
membrane and shear energies. The shell is called flexural or non inhibited or bending dominated for
suitable non zero loading and boundary conditions and if theinextensional displacements subspace
G contains non zero displacements. Since the limit problem isposed over G and to get a well posed
flexural shell problem, the external applied forces are scaled in the form by~F = ε3~f and~f ∈ L2(ω,R3)
is independent ofε [6, 14].

3. The Naghdi model for a bending dominated shell with obstacle

Assuming that the deformed shell remains in a given half space H= {y∈R
3;oy.p≥ 0}, wherep is a

given non-zero vector inR3 [10]. Then, the unknown displacement fieldui(x)~ai(x)+x3θα(x)~aα(x) of
a point of the deformed shellC is determined such that the energyE(~v,~δ ) is minimized over a strict
subsetU of V given by:

(3) U = {(~u,~θ ) ∈V;(~ψ(x)+ui(x)~a
i(x)+x3θα~a

α).p≥ 0 ∀x∈ ω, ∀x3 ∈ [−ε
2
,
ε
2
]}.

The constrained minimization problem will be the following:

(4) Pmin

{
Find (~u,~θ ) ∈U

E(~u,~θ ) = inf
(~v,~δ )∈U E(~v,~δ )

As a consequence of the projection theorem, the problem(Pmin) is equivalent to the following prob-
lem (PU ) of variational inequalities [9]:

(5) (PU )





Find (~u,~θ ) ∈U
1
12

∫
ω Eαβ λ µϒαβ (~u,~θ )ϒλ µ(~v−~u,~δ −~θ )

√
adx

+ε−2∫
ω Eαβ λ µΛαβ (~u)Λλ µ(~v−~u)

√
adx+

ε−2∫
ω Gαβ Φα(~u,~θ )Φβ (~v−~u,~δ −~θ)

√
adx≥ l(~v−~u)

∀ (~v,~δ ) ∈U

wherel(~v) =
∫

ω
~f .~v.

Theorem 3.1. The minimisation problem (4) is well-posed.
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A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACLE 4

Proof. SinceΓ 6= /0 and due to the Korn’s inequality, we deduce the ellipticity onV of the symmetric
bilinear form Ab(., .) + ε−2(Am(., .) +As(., .)) associated to the problem (5)[3]. Moreover,U is a
non-empty, closed and convex subspace ofV. Then the problem (4) has a unique solution [9]. �

Let GU be the non-empty, closed and convex subspace ofG such that the deformed shell remains in
H [10]:

(6) GU = {(vi~a
i,δα~a

α) ∈ G;(~ψ(x)+vi(x)~a
i +x3δα(x)~a

α(x)).p≥ 0 ∀x∈ ω}.

The limit problem of(PU ) whenε vanishes is formulated inGU and we have the following result:

Theorem 3.2. The solution of the scaled flexural bidimensional problem(PU ) tends to the solution
of the limit flexural problem posed over the convex GU and given by:

(7)





Find (~u,~θ ) ∈ GU
1
12

∫
ω Eαβ λ µϒαβ (~u,~θ )ϒλ µ(~v−~u,~δ −~θ )

√
adx≥ l(~v−~u)

√
adx

∀ (~v,~δ ) ∈ GU

Proof. The proof is similar to those of theorem 6 in [10] for a bending dominated Koiter shell subject
to a confinement condition.
We note that the bilinear form associated to the variationalproblem (7) is V-coercive, the linear form
l(.) is continuous overV and thatGU is a convex closed subset ofV, then the problem (7) has a unique
pure bending solution for which the deformed shell remains on one side of the planeH.
We deduce from (5) that∀ε > 0 and∀ (~v,~δ ) ∈U , we have:

(8)

1
12

∫
ω Eαβ λ µϒαβ (~u

ε ,~θ ε)ϒλ µ(~u
ε ,~θ ε)

√
adx+ ε−2(

∫
ω Eαβ λ µΛαβ (~u

ε)Λλ µ(~u
ε)
√

adx

+
∫

ω Gαβ Φα(~uε ,~θ ε)Φβ (~u
ε ,~θ ε)

√
adx)≤ 1

12

∫
ω Eαβ λ µϒαβ (~u

ε ,~θ ε)ϒλ µ(~v,~δ )
√

adx

+ε−2(
∫

ω Eαβ λ µΛαβ (~u
ε)Λλ µ(~v)

√
adx+

∫
ω Gαβ Φα(~uε ,~θ ε)Φβ (~v,~δ )

√
adx)

−l(~v−~uε)

Using the ellipticity of the bilinear formAb(., .) + ε−2(Am(., .) +As(., .)) and the continuity of the
linear forml(.), there exist constantsCc,Cb > 0 such that:

(9)
C−1

c ‖(~uε ,~θ ε)‖2
V ≤Cb(‖(~v,~δ )‖V‖(~uε ,~θ ε)‖V +2ε−2‖(~v,~δ )‖V‖(~uε ,~θ ε)‖V

+‖(~v,~δ )‖V +‖(~uε ,~θ ε)‖V).

Then by taking(~v,~δ ) = (0,0), we get‖(~uε ,~θ ε)‖V ≤CcCb.
Moreover, from the uniform positive definiteness of the ellipticity tensor, we get:

(10) ∑α ,β ‖ε−1Λαβ (~u
ε)‖2

L2(ω)
+∑α ‖ε−1Φα(~uε)‖2

L2(ω)
)≤C.
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A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACLE 5

We deduce from the boundedness of the solution(~uε ,~θ ε) in V that there exists a subsequence also
denoted(~uε ,~θ ε) such that(~uε ,~θ ε)⇀ (~u∗,~θ ∗) in V. Then:

(11) Λαβ (~u
ε)⇀ Λαβ (~u

∗),Φα(~u
ε ,~θ ε)⇀ Φα(~u

∗,~θ ∗)

By similar arguments, there exist subsequencesε−1Λαβ (~u
ε) andε−1Φα(~uε ,~θ ε) that converge weakly

respectively toΛαβ andΦα . ThenΛαβ (~u
ε) andΦα(~uε ,~θ ε) converge to zero inL2(ω). The unique-

ness of the limit imply thatΛαβ (~u
∗) = 0 andΦα(~u∗,~θ ∗) = 0. Then(~u∗,~θ ∗) ∈ GU .

Given(~v,~δ ) ∈ GU , we have:

(12)

∫
ω

Eαβ λ µ

12 ϒαβ (~u
ε ,~θ ε)ϒλ µ(~u

ε ,~θ ε)
√

adx≤
∫

ω
Eαβ λ µ

12 ϒαβ (~u
ε ,~θ ε)ϒλ µ(~v,~δ )

√
adx

+ε−2(
∫

ω Eαβ λ µΛαβ (~u
ε)Λλ µ(~v)

√
adx+

∫
ω Gαβ Φα(~uε ,~θ ε)Φβ (~v,~δ )

√
adx)

−l(~v−~uε) = 1
12

∫
ω Eαβ λ µϒαβ (~u

ε ,~θ ε)ϒλ µ(~v,~δ )
√

adx− l(~v−~uε),

and

(13)
2
∫

ω
Eαβ λ µ

12 ϒαβ (~u
ε ,~θ ε)ϒλ µ(~u

∗,~θ ∗)
√

adx− ∫
ω

Eαβ λ µ

12 ϒαβ (~u
∗,~θ ∗)ϒλ µ(~u

∗,~θ ∗)
√

adx

≤ ∫
ω

Eαβ λ µ

12 ϒαβ (~u
ε ,~θ ε)ϒλ µ(~u

ε ,~θ ε)
√

adx.

Sinceε tends to zero, we obtain:

1
12

∫
ω Eαβ λ µϒαβ (~u

∗,~θ ∗)ϒλ µ(~v−~u∗,~δ −~θ ∗)
√

adx≥ l(~v−~u∗), ∀(~v,~δ ) ∈ GU .

Therefore,(~u∗,~θ ∗) = (~u,~θ ) is the unique solution of (7).
The weak convergence(~uε ,~θ ε)⇀ (~u∗,~θ ∗) in V imply the following strong convergence inL2(ω):

(14) Λαβ (~u
ε)→ Λαβ (~u

∗), Φα(~uε ,~θ ε)→ Φα(~u∗,~θ ∗).

The usual based Sobolev spaceV norm is given by

(15) ‖(~v,~δ )‖V = (
3

∑
i=1

‖vi‖H1(ω)+
2

∑
α=1

‖δα‖H1(ω))
1
2

Since(~u,~θ ) ∈ GU and from (12),(13) we have:

(16)

‖(~uε −~u,~θ ε −~θ)‖V ≤ ∫
ω

Eαβ λ µ

12 ϒαβ (~u
ε −~u,~θ ε −~θ )ϒλ µ(~u

ε −~u,~θ ε −~θ)
√

adx

≤ 1
12

∫
ω Eαβ λ µϒαβ (~u

ε ,~θ ε)ϒλ µ(~u,~θ )
√

adx− l(~u−~uε)

−2
∫

ω
Eαβ λ µ

12 ϒαβ (~u
ε ,~θ ε)ϒλ µ(~u,~θ )

√
adx+

∫
ω

Eαβ λ µ

12 ϒαβ (~u,~θ )ϒλ µ(~u,~θ )
√

adx

Then, we deduce that(~uε ,~θ ε)→ (~u,~θ ) in V. �

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

12 Sep 2023 21:15:32 PDT
230526-Ferchichi Version 2 - Submitted to Rocky Mountain J. Math.



A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACLE 6

The limit solution of the problem (5) deduced by the asymptotic analysis is an inextensional displace-
ment such that the deformed bending dominated Naghdi shell remains in the same half-spaceH. A
degradation of the approximation occurs for small thickness when using the standard finite element
methods for a bending dominated shell [1, 6, 14].
This phenomenon is called the numerical locking. It occurs when the standard finite element tech-
niques fail to approximate the inextensional displacementcontinuous space, and the discrete one is
usualy reduced to zero. Mixed formulations are proposed to avoid locking [1, 4, 7]. Numerical studies
of the mixed numerical scheme proposed in [1] show a good properties of convergence as predicted
[8, 11, 12].

4. A mixed formulation for a flexural Naghdi shell with obstacle

Using the same technique of partial selective integration of membrane and shear energies proposed
in [1], we introduce the following auxiliary variables which represent the membrane and shear stress
aside a multiplicator factor:

λ = (λ αβ )αβ , λ αβ = (
1
ε2 −co)E

αβ λ µΛλ µ(~u),(17)

χ = (χα)α , χα = (
1
ε2 −co)G

αβ Φβ (~u,~θ ),(18)

wherec0 ∈]0,ε−2[.
Consider the setW = {(ϕ,η)/ ϕαβ ,ηα ∈ L2(ω)} and the following bilinear forms:

A(~u,~θ ;~v,~δ ) =
∫

ω

1
12

Eαβ λ µϒαβ (~u,~θ )ϒλ µ(~v,~δ )
√

adx+

c0

∫

ω
Gαβ Φα(~u,~θ )Φβ (~v,~δ )

√
adx+c0

∫

ω
Eαβ λ µΛαβ (~u)Λλ µ(~v)

√
adx,(19)

B(~v,~δ ;ξ ,µ) =
∫

ω
Φα(~v,~δ )µα√adx+

∫

ω
Λαβ (~v)ξ αβ√adx,(20)

C(λ ,χ ;ξ ,µ) =
∫

ω
(G−1)αβ χβ µα√adx+

∫

ω
(E−1)αβ λ µλ λ µξ αβ√adx.(21)

For (~u,~θ ;λ ,χ) ∈U ×W, the total energy is given by:

(22) E(~u,~θ ;λ ,χ) = ε3(
1
2

A(~u,~θ ;~u,~θ )+
ε2

1−c0ε2C(λ ,χ ;λ ,χ)− l(~u)).

An extension of the classical inf-sup condition is done by assuming that there exists a constantσ > 0
such that [15]:

(23) |||λ ,χ ||| ≥ σ‖λ ,χ‖W

where‖.‖W is the standardL2 product norm and|||.||| is the semi norm:

|||λ ,χ |||= sup
(~v,~δ )∈U\{0V}

B(~v,~δ ;λ ,χ)

‖~v,~δ‖V

∀ (λ ,χ) ∈W.
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A MIXED FORMULATION FOR A FLEXURAL NAGHDI SHELL WITH OBSTACLE 7

Theorem 4.1. The constrained minimisation problem

(24)





Find (~u,~θ ;λ ,χ) ∈U ×W such that

E(~u,~θ ;λ ,χ) = inf
(~v,~δ ;ξ ,µ)∈U×WE(~v,~δ ;ξ ,µ)

has a unique solution and is equivalent to the following problem:

(25)





seek pairs(~u,~θ ;λ ,χ) ∈U ×W such that

A(~u,~θ ;~v−~u,~δ −~θ)+B(~v−~u,~δ −~θ ;λ ,χ)≥ l(~v−~u) ∀ (~v,~δ ) ∈U,

B(~u,~θ ;ξ ,µ)− ε2

1−c0ε2C(λ ,χ ;ξ ,µ) = 0 ∀ (ξ ,µ) ∈W.

Proof. We define the bilinear form̃̃A:

˜̃A(~u,~θ ;λ ,χ ;~v,~δ ;ξ ,µ) = A(~u,~θ ;~v,~δ )+B(~v,~δ ;λ ,χ)

−B(~u,~θ ;ξ ,µ)+ ε2

1−c0ε2C(λ ,χ ;ξ ,µ).

The bilinear formsA, B, C are continuous respectively onV ×V, V ×W andW×W. We note also

thatA isV−elliptic andC isW−elliptic, so the bilinear form̃̃A isV ×W elliptic. Moreover,U ×W is
a non empty closed and convex subspace ofV ×W. Then the problem (25) has a unique solution.�

Remark 4.2. If (~u,~θ ;λ ,χ) ∈ U ×W is a solution of (25) then(~u,~θ ) is a solution of (5). Moreover

there exists(λ ,χ)∈W such that(~u,~θ ;λ ,χ)∈U ×W is a solution of (25) whenever(~u,~θ ) is a solution
of (5).

Besides, the solution of (25) is bounded and we have the following result:

Theorem 4.3. There exists a constant C> 0 such that the solution of (25) verify:

(26) ‖~u,~θ‖V +‖λ ,χ‖W ≤C‖l‖V′

Proof. By replacing(~v,~δ ) by zero in the first line of (25), we get:

(27) A(~u,~θ ;~u,~θ )+B(~u,~θ ;λ ,χ)≤ l(~u)

or B(~u,~θ ;λ ,χ) = ε2

1−c0ε2C(λ ,χ ;λ ,χ) ≥ 0 then by using the coercivity ofA(.,), C(.,) and the conti-

nuity of B(.,) we get:

(28)
C1‖~u,~θ‖V ≤ ‖l‖V′

C2‖λ ,χ‖W ≤ (ε−2−c0)‖B‖‖~u,~θ‖V
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It follows that (26) is verified withC =C−1
1 +(C1C2)

−1(ε−2−c0)‖B‖.
Once more, we have:

(29) B(~v−~u,~δ −~θ ;λ ,χ)≤ (‖A‖‖~u,~θ‖V +‖l‖V′)‖~v−~u,~δ −~θ‖V

Since (23) is verified, then:

(30) β‖λ ,χ‖W ≤ ‖A‖‖~u,~θ‖V +‖l‖V ′

Then, (26) is verified withC= β−1(‖A‖C−1
1 +1)+C−1

1 independent of the small parameterε. �

5. Conclusion

The equilibrium state of a flexural elastic thin Naghdi shellwith obstacle solves a constrained min-
imization problem over a convex space. In this work, we use the asymptotic analysis to show the
bending dominated behavior of a bending dominated Naghdi shell with obstacle therefore numeri-
cal locking is expected. The standard finite element methodsare unable to approximate well a non
inhibited shell problem for low thickness. Then, we proposea locking free mixed variational formu-
lation to approximate a non trivial inextensional displacements for a non inhibited Naghdi shell with
obstacle. The theoretical well-posedness of the proposed mixed scheme is established. Numerical
investigations should justify the robustness of the proposed mixed problem in front of the numerical
locking.

References

[1] D.N. Arnold and F. Brezzi, Locking free finite element methods for shells, Mathematics of Computation,66,no. 217,
(1997), 1-14.

[2] F. Ben Belgacem, C. Bernardi, A. Blouza and F. Taallah, Onthe obstacle problem for a Naghdi shell, Journal of
Elasticity,103, (2011), 113.

[3] M.Bernadou, P.G.Ciarlet and B.Miara, Existence theorems for two dimensional linear shell theories, J. Elast.,34
,(1994), 111-138.

[4] J.H. Bramble and T. Sun, A locking free finite element method for Naghdi shells, Journal of Computational and
Applied Mathematic,89, (1997), 119-133.

[5] M.T. Cao-Rial, A. Rodriguez-Aros, Asymptotic analysisof unilateral contact problems for linearly elastic shells: Error
estimates in the membrane case, Nonlinear Analysis: Real World Applications,48, (2019), 4053.

[6] Dominique Chapelle and Klaus Jurgen Bathe, The finite element analysis of shells-fundamentals, Springer-Verlag,
2003.

[7] D. Chapelle and R. Stenberg, Stabilized finite element formulations for shells in a bending dominated state, SIAM
J.Numer.Anal.,36,no. 1, (1998), 32-73.

[8] C. Chinosi and G. Sacchi, Partial selective reduced integration for the approximation of bending dominated shells,
Fourth International Colloquim on Computation of shell andSpatial Structures, June 5-7, Chania-Crete, Greece, 2000.

[9] P.G.Ciarlet, The Finite Element Methods For Elliptic Problems, Elseiver Sciences Vol.4, North-Holland,Amesterdam,
1978.

[10] Ciarlet, Philippe G.; Piersanti, Paolo, A confinement problem for a linearly elastic Koiters shell, C.R.Acad. Sci.Paris,
Ser.1,357, (2019), 221-230.
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