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Abstract. For a hyperplane H supporting a convex body C in the hyperbolic space Hd

we define the width of C determined by H as the distance between H and a most distant

ultraparallel hyperplane supporting C. The thickness (i.e., the minimum width) of C is

denoted by ∆(C). A convex body R ⊂ Hd is called reduced if for every body Z ( R we

have ∆(Z) < ∆(R). We show that for any extreme point e of a reduced body R ⊂ Hd there

exists a supporting hyperplane H of R which passes through e or its equidistant surface

supporting R passes through e. Bodies of constant width in Hd are defined as bodies all

whose widths are equal. We prove that every complete body in Hd is a body of constant

width.
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1 Introduction

Let H be a hyperplane supporting a convex body C in the hyperbolic space Hd. We define

the width of C determined by H as the distance between H and any farthest ultraparallel

hyperplane supporting C (see [12]). Since C is compact, there exists at least one such a

most distant hyperplane (sometimes there are a finitely or even infinitely many of them).

The symbol widthH(C) denotes this width of C determined by H .

By the thickness ∆(C) of a convex body C ⊂ Hd we mean the infimum of widthH(C)

over all hyperplanes H supporting C. By compactness arguments, this infimum is realized,

so ∆(C) is the minimum of the numbers widthH(C).

Recall that an equidistant surface to H is the set of all points in a fixed positive
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distance which are in one half-space bounded by H . By the equidistant strip generated

by a hyperplane H and an equidistant surface E to it we mean the set conv(H ∪E), where

the symbol “conv” means creating the convex hull. The thickness of this equidistant strip

is defined as the distance between H and E.

Clearly, for a convex body C ⊂ Hd and a supporting hyperplane H of C there exists

a unique nearest equidistant surface EH(C) to H such that C is a subset of the equidistant

strip being the convex hull of H ∪ EH(C). We say that EH(C) supports C.

A convex body R ⊂ Hd is called reduced if for every convex body Z properly

contained in R we have ∆(Z) < ∆(R). This notion for Hd is introduced in [12] in analogy

to the notion of a reduced body in the Euclidean d-dimensional space Ed introduced by

Heil in [7]. Examples of reduced bodies in Hd are bodies of constant width, as shown in

Proposition 4 of [12]. Some reduced polygons in H2 are presented in [13] (in particular, the

regular odd-gons are reduced).

The first aim of this note is to prove that for any reduced body R ⊂ Hd and an

arbitrary extreme point e ∈ R there exists a supporting hyperplane H of R such that it

supports R at e or its equidistant surface supports R at e.

If for every hyperplane supporting a convex body W ⊂ Hd the width of W determined

by this hyperplane is δ, we say that W is a body of constant width δ.

Similarly to the traditional notion of a complete set in Ed (for instance, see the books

[1] by Bonnesen and Fenchel, [3] by Chakerian and Groemer and [5] by Eggleston) we say

that a set C ∈ Hd of diameter δ is complete provided diam(C ∪ {x}) > δ for every x 6∈ C.

The second aim is to prove that every complete body of diameter δ in the hyperbolic

space Hd is a body of constant width δ. The proof of this result also uses the concept of

supporting equidistant surface.

2 Supporting at extreme points of a reduced body

The following theorem is an analog of Theorem 1 of [8] that through every extreme point of

a reduced body R in Ed a supporting hyperplane H passes such that widthH(R) = ∆(R).

This analogy is not literal since for some extreme points e of some reduced bodies R ⊂ Hd

no supporting hyperplane H with ∆H(R) = ∆(R) passes through e. An example of such an

R is given after the following theorem for e+ as the extreme point (the author is not able
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to find another such example).

Let us recall the following fact which is applied in the below proof.

Proposition 2 of [12]. Let C ⊂ Hd be a convex body and H any supporting hyperplane

of C. Then widthH(C) equals to the distance between H and the nearest equidistant surface

E to H such that C is a subset of the equidistant strip being the convex hull of H ∪ E.

Theorem 1. Let e be an extreme point of a reduced body R ⊂ Hd. Then there exists a

supporting hyperplane H of R such that H or EH(R) supports R at e. The thickness of the

equidistant strip conv(H ∪ EH(R)) is ∆(R).

Proof. Take the open ball Bi(e) of radius ∆(R)/i centered at e for i = 2, 3, . . .. Then

Ri = conv(R \ Bi) is a convex body properly contained in R. Since R is reduced, we have

∆(Ri) < ∆(R) for i = 2, 3, . . .. Applying the just recalled Proposition 2 of [12] and having

in mind our definition of the thickness of the equidistant strip we conclude that there exists

a supporting hyperplane Hi of Ri and its EHi
(Ri) such that the thickness of the equidistant

strip conv(Hi ∪ EHi
(Ri)) equals ∆(Ri). For every i ∈ {2, 3, . . .} there are two possibilities:

(1) when Hi supports Ri at a boundary point of it in Bi(e),

(2) when Hi does not supports Ri at a boundary point of it in Bi(e).

There exist infinitely many Hi in the sequence H2, H3, . . . which fulfill (1) or infinitely

many Hi in this sequence which fulfill (2).

Case 1. By compactness arguments, if there are infinitely many Hi which fulfill

(1), then there is a subsequence of the sequence H2, H3 . . . whose limit is a hyperplane H

supporting R at e. Since the thickness of conv(Hi ∪ EHi
(Ri)) is ∆(Ri), we conclude that

the thickness of the equidistant strip conv(H ∪ EH(R)) is ∆(R).

Case 2. Analogously, when there are infinitely many Hi which fulfill (2), there is

a subsequence of this sequence whose limit is a hyperplane H supporting R and the limit

of EHi
is EH(R). Since widthHi

(Ri) = ∆(Ri) < ∆(R), we see that every EHi
(Ri)) from

our subsequence passes through Bi. Since for every i from our subsequence the equidistant

surface EHi
intersects Bi, we conclude that EH(R) passes through e. We see that again the

thickness of the strip conv(H ∪ Hi(Ri)) is ∆(R).

From the two cases we conclude the thesis of our theorem.

Let us show examples of the cases from this proof.
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The author learned about a reduced rhombus from K. Jr. Böröczky, A. Freyer and Á.

Sagmeister, who are preparing a paper on reduced bodies in H2. We mean the convex hull P

of two perpendicular segments intersecting each other at the common midpoint m such that

the longer one is sufficiently long with respect to the shorter one. Denote by e− an end-point

of the shorter segment S− and by e+ an end-point of the longer segment S+ . Consider the

extreme point e− of P . Every Hi passes through Bi(e
−) and EHi

(P ) passes through e+. For

the straight line H through e− orthogonal to S− we have widthH(P ) = dist(e+, H) = ∆(P ),

which means that we have Case 1 (but not Case 2). Take into account the extreme point

e+ of P . Now every Hi passes through e− and EHi
(P ) passes through Bi(e

+). We have

widthH(P ) = dist(e+, H) = ∆(P ). Thus H supports P at e− and EH(P ) passes through

e+, which means that we have Case 2 (but not Case 1). An analogous situation in Hd is for a

sufficiently long crosspolytope, i.e., the convex hull of d perpendicular segments intersecting

each other at midpoints. Again we take e− as an end-point of a shortest segment and e+

as an end-point of a longest segment. By the way, the reader can easily check that if the

shorter one has length λ, then the longer should be of length over arcsinh (sinhλ · cosh 2λ)

in order the rhombus, and so the crosspolytope, be reduced. Hint: apply the Lambert

quadrilateral e−me+p, where p is the projection of e+ on H . Let us add that we have both

cases simultaneously for any body of constant width in Hd and any of its boundary point

as e.

3 Complete bodies are of constant width

The content of this section appeared in version 3 of the arXiv preprint of [12]. In version 4

it was removed, in order to make that version the same as the one in journal.

The following fact is applied in the proofs of the forthcoming Claim and Lemma, both

needed for the proof of Theorem 2.

Claim 4 from [12]. Every complete body C of a diameter δ in Hd coincides with the

intersection of all balls of radius δ centered at points of C.

Claim. Let C ⊂ Hd be a complete body and let H be a supporting hyperplane of C. Then

the equidistant surface EH(C) contains exactly one point of C.

Proof. Imagine the opposite. Then at least two points r1 and r2 of EH(C) belong to C.
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By the just recalled Claim 4 of [12] our complete body C, whose diameter denote by δ, is a

subset of the intersection of all balls of radius δ centered at points of C. Hence C is a subset

of the intersection of the two balls of radius δ centered at r1 and r2. Observe that none of

points of the intersection of these two balls belongs to H . So C ∩ H = ∅. A contradiction

with the assumption that H supports C. This ends the proof.

For different points a, b ∈ Hd at a distance δ from a point c ∈ Hd define the piece

Pc(a, b) of circle as the set of points g ∈ Hd such that the segment cg has length δ and

intersects ab. This notion is similar to a definition from the paper [6] by Jessen and also a

definition in the part (ii) =⇒ (i) of the proof of Theorem 52 of the book [5] by Eggleston

for Ed.

The proofs of our below Lemma and Theorem 2 are analogous to the proofs for Ed

by Meissner [14] for d = 2, 3 and Jessen [6] for arbitrary d. They are also analogous to the

spherical version given in [10] and [11].

Lemma. Let C ⊂ Hd be a complete body of diameter δ. Consider Pc(a, b) with |ac| = |bc| =

δ, where a, b ∈ C and c ∈ Hd. Then Pc(a, b) ⊂ C.

Proof. We start with confirming the thesis for a ball B of radius δ in place of C. Unique

H2 ⊂ Hd exists such that a, b, c ∈ H2. Let D = B ∩ H2. Take the circle containing Pc(a, b)

and the disk D′ bounded by it. Denote by a′, b′ the points of the intersection of this circle

with the circle bounding D. Clearly, Pc(a, b) ⊂ Pc(a
′, b′). Observe that the radius of D′ is

also δ and that the distance of the centers of D and D′ is at most δ. Hence Pc(a
′, b′) ⊂ D.

Thus Pc(a, b) ⊂ Pc(a
′, b′) ⊂ D ⊂ B.

By the preceding paragraph and the recalled earlier Claim 4 from [12] we obtain the

thesis of the present lemma.

Lemma is proved for arbitrary d despite we will apply only its case for d = 2.

In the proof of our Theorem 2 we apply the following three facts, which are below

recalled for the convenience of the reader.

Theorem 1 of [12]. For every convex body C ⊂ Hd the maximum of widthH(C) over

all hyperplanes H supporting C equals to the diameter of C.

Theorem 2 of [12]. Let C ⊂ Hd be a convex body and let H be a supporting hyperplane

of C such that widthH(C) = ∆(C). Assume that there exists a unique most distant point
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j ∈ C from H. Then the projection of j onto H belongs to H ∩ C.

Proposition 5 of [12]. If C ⊂ Hd is a complete body of diameter δ, then for every

p ∈ bd(C) there exists p′ ∈ C such that |pp′| = δ.

Theorem 2. Every complete body of diameter δ in Hd is a body of constant width δ.

Proof. Suppose that our thesis does not hold true, i.e., that widthH(C) 6= δ for a hyperplane

H supporting C. By Theorem 1 of [12] recalled above, we cannot have widthH(C) > δ.

Consequently, widthH(C) < δ and thus, having in mind the definition of the thickness, we

obtain ∆(C) < δ. Since C is complete, by our Claim the equidistant surface EH(C) contains

exactly one point of C. Denote it by j. By Theorem 2 of [12] (recalled above) the projection

h of j onto H belongs to C. By Proposition 5 of [12] (recalled above) there exists j′ ∈ C at

distance δ from j. Since the triangle jhj′ is non-degenerate (still |hj| = widthH(C) < |j′j|),

there is a unique two-dimensional hyperbolic plane H2 ⊂ Hd containing it. Clearly, jhj′ is a

subset of the convex body M = C ∩ H2 of H2. Denote by F this half-plane of H2 for which

hj′ ⊂ bd(F ) and j ∈ F . There exists a unique c ∈ F such that |ch| = δ = |cj′|. Since c

belongs to the intersection of the two circles of radius δ centered at h and j′, we conclude

that c belongs to this half-plane G of H2 bounded by the straight line K through h and j

which contains j′. By Lemma for d = 2 we get Pc(h, j′) ⊂ M .

By |ch| = δ, |cj′| = δ, |jj′| = δ, c ∈ F and c 6= j we conclude that c 6∈ K. Con-

sequently, c belongs to the interior of G. Hence Pc(h, j′) intersects the line bd(M ∩ H2)

at a point h′ different from h and j′. So the set Pc(h, j′) \ {h, h′} does not intersect M .

This contradicts Pc(h, j′) ⊂ M established earlier. Consequently, C is a body of constant

width δ.

From the above Theorem we see that in Theorem 3 of [12] also the implication (c) =⇒

(a) holds true. As a consequence, conditions (a), (b) and (c) in the mentioned Theorem 3 of

[12] are equivalent. In other words, complete bodies, bodies of constant width and bodies of

constant diameter in Hd coincide. This is analogous to the classical fact in Euclidean and

also in spherical space (see [10] and [11]).

Analogs of Theorem 2 are also proved for some other notions of constant width in

Hd, for instance see the papers [2] by Böröczky and Sagemeister, and [4] by Dekster.
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