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POSITIVE-DEFINITE MATRICES OVER FINITE FIELDS

JOSHUA COOPER, ERIN HANNA, AND HAYS WHITLATCH

ABSTRACT. The study of positive-definite matrices has focused on Hermitian matrices, that is, square
matrices with complex (or real) entries that are equal to their own conjugate transposes. In the classical
setting, positive-definite matrices enjoy a multitude of equivalent definitions and properties. In this paper,
we investigate when a square, symmetric matrix with entries coming from a finite field can be called
“positive-definite” and discuss which of the classical equivalences and implications carry over.

1. Introduction

Our goal in this paper is to introduce and investigate the concept of positive-definiteness over finite fields.
What does it mean to be positive in a finite field? Are exactly half of the non-zero elements positive? Do
the equivalences afforded to Hermitian positive-definite matrices carry over to finite fields? And naturally,
why is this topic interesting, and how did this come up? We encourage the reader to pause and think about
these questions before reading our proposed framework for addressing them.

The theory of positive-definiteness is vast and reaches throughout many branches of mathematics.
Positive-definite matrices are used in optimization algorithms, to study convexity with multi-variable
functions, in the construction of some types of linear regression models, and in principal component
analysis. Positive-definite Hermitian matrices admit a “Cholesky decomposition”, that is, the matrix can
be expressed as the product of a lower triangular matrix and its conjugate transpose. This decomposition
can be used to efficiently solve a system of linear equations or to quickly acquire numerical solutions via
repeated random sampling in a computational algorithm such as Monte Carlo simulation.

Our interest in positive-definite matrices emerged from a very different application in which the
success of a graph theoretical operation (called “pressing”) corresponds to the existence of a Cholesky
decomposition for its adjacency matrix (over the finite field F2). This correspondence was first shown in
[3] and was further interpreted in [4]. The topic originated via an application in bioinformatics (see [1],
[5]), where pressing sequences correspond to sortings by reversal of DNA sequences. We elaborate briefly
on the connection with matrix algebra below as it is relevant to the discussion in Section 5.

Definition 1. A bicolored graph G = (G,c) is a simple graph G with c : V (G)→ {blue,white} which
assigns a color to each vertex.1 The complement of blue is white and the complement of white is blue.
For v ∈V (G), pressing a blue vertex v is the operation of transforming (G,c) to (G′,c′), a new bicolored
graph in which G[NG(v)∪{v}] is complemented. That is, V (G) =V (G′) and

E(G′) = E(G)4
(

NG(v)∪{v}
2

)
where4 denotes symmetric difference, NG(v) is the neighborhood of v in G, c′(w) is the complement of
c(w) for w ∈ NG(v)∪{v}, and c′(w) = c(w) otherwise. This definition is illustrated in Example 1 where
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1Some authors use black and white instead.
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one can see that pressing a blue vertex changes its color to white and flips the colors of its neighbors,
isolates the pressed vertex, and complements the set of edges induced by its neighbors.

A sequence of presses is referred to as a pressing sequence. Since a pressed vertex becomes isolated,
it may not be pressed again, and will not be affected by future presses. Thus, every pressing sequence is
finite in length. If the end result of a pressing sequence is the empty, edgeless, colorless graph then we
say that it was a successful pressing sequence. As it turns out, a pressing sequence is successful exactly
when the graph’s adjacency matrix (with row and column order dictated by the pressing sequence) has a
Cholesky decomposition over F2. In fact, the Cholesky decomposition gives the instructions for pressing,
revealing at each press which vertices would be affected.

Example 1. Below is a bicolored graph with successful pressing sequence 1,2,3,4 (blue vertices are
shown in gray).
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The adjacency matrix of this graph (with 1’s on the diagonal when the vertex is blue) and the Cholesky
decomposition corresponding to this pressing sequence (with rows and columns labelled by 1, 2, 3, 4, 5) is

1 1 1 0 1
1 0 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 1 0

=


1 1 1 0 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0


T 

1 1 1 0 1
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1
0 0 0 0 0


Observe that in the upper diagonal matrix, the jth entry of the ith row is 1 exactly when pressing i changed
the state of j.

In the introduction we briefly discussed that Hermitian positive-definite matrices enjoy a multitude
of theoretical and computational interpretations. As such, there are several equivalent definitions for a
positive-definite Hermitian matrix and the choice of which definition to use is often determined by the
desired application. We will see in Proposition 1 that not all of these definitions make sense over finite
fields.

Definition 2. ([6]) A n×n Hermitian matrix A is said to be positive-definite if any (and hence all) of the
following hold:

(1) z∗Az > 0 for all non-zero column vectors z ∈ Cn;
(2) A has positive eigenvalues;
(3) The associated sesquilinear form is an inner product;

Submitted to Rocky Mountain Journal of Mathematics - NOT THE PUBLISHED VERSION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

7 Feb 2022 12:48:18 PST
210808-Whitlatch Version 2 - Submitted to Rocky Mountain J. Math.



(4) A is the Gram matrix of linearly independent vectors;
(5) All leading principal minors of A are positive;
(6) A has a unique Cholesky decomposition.

In addition, Hermitian positive-definite matrices enjoy numerous useful properties, only some of which
will carry over to finite-fields. If A and B are positive-definite n×n Hermitian matrices, then the following
statements hold ([6]):

(1) A is invertible;
(2) A−1 is positive-definite;
(3) rA is positive-definite (r > 0 a real number);
(4) ABA and BAB are positive-definite;
(5) if AB = BA then AB is positive-definite;
(6) every principal submatrix of A is positive-definite;
(7) the Hadamard product A◦B and the Kronecker product A⊗B are positive-definite;
(8) the Frobenius product A : B≥ 0.

2. Defining Positive-Definiteness in a Finite Field

In this section we will introduce the notion of positive-definiteness over a finite field. In Section 1 we
presented several equivalent definitions that work over C. Among these, the positivity of z∗Az for all
non-zero column vectors z is perhaps the most commonly used definition for positive-definiteness (see for
example [6]). Over a finite field, this definition fails to translate meaningfully for a few reasons. First,
there is the ambiguity of the statement z∗Az > 0, which should generally mean something different than
z∗Az 6= 0. We will resolve this issue in Definition 3. However, the following proposition demonstrates
that, even if we resolve the previous issue, the definition will not apply to any finite field.

Proposition 1. Suppose F is a finite field, and A is an n×n matrix over F for n≥ 3. Define Q : Fn→ F
by Q(x) = xT Ax. Then there exists a non-zero vector v so that Q(v) = 0.

Proof. Chevalley’s Theorem ([2]) states that, for a collection of polynomials { f1, . . . , fm} ⊆ F[X1, . . . ,Xn]
with n > ∑

m
j=1 deg fi, if fi(0, . . . ,0) = 0 for all i, then there exists a nonzero v so that fi(v) = 0 for all

i. Take m = 1 and f1(x) = Q(x), where we are treating the coordinates of x as the variables Xi on the
left-hand side. Then, since n≥ 3 > 2 = deg f1, and Q(0, . . . ,0) = 0, the proposition follows. �

The previous proposition demonstrates that it is not possible to extend all of the definitions (and
implications) of Hermitian positive-definiteness to finite fields. Before proceeding, we must first resolve
the question of what it means to be positive in a finite field.

Definition 3. For x ∈ F, we say x is positive if x = µ2 for some µ 6= 0 ∈ F and we say µ is a square root
of x. If µ is also positive then we say µ is a positive square root of x.

Definition 4. Define a field F to be a definite field if each positive element has a positive square root. If
the field F is finite then we will refer to it as a finite definite field.

Remark 1. Observe that 2 is not positive in F3 but 2 is positive in F7. We strongly considered referring
to the positive elements of Fq as “q-positive” elements and pronouncing q−positive as “quositive”.

Example 2. R is a definite field: Let x = µ2 for some µ 6= 0 ∈ R and observe that x = (|µ|)2 as well and
|µ| 6= 0 ∈ R. However

√
|µ| 6= 0 ∈ R satisfies that |µ| = (

√
|µ|)2 so x is positive and |µ| is a positive

square root of x.
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Example 3. F3 is a definite field: The non-zero elements are 1 and 2. Since 12 = 1 and 22 = 1 we see
that 1 is positive and 2 is not positive (it has no square root). So if x is positive then x = 1, setting µ = 1
shows that x has a positive square root.

The following example demonstrates that not all finite fields are definite.

Example 4. Consider f : F5→ F5 by f (x) = x2. Then f (0) = 0, f (1) = f (4) = 1, and f (2) = f (3) = 4.
Then, 1 and 4 are the positive elements of F5. Observe that 1 has two positive square roots (itself and 4),
however both of the square roots of 4 are non-positive. Therefore, F5 is not a definite field.

Definition 5. ([7]) The Legendre symbol
(

a
p

)
for an integer a and an odd prime p is defined as

(
a
p

)
=


1 if there exists a nonzero x such that x2 ≡ a (mod p)
0 if a≡ 0 (mod p)
−1 otherwise

Lemma 1 ([7]). Let p be an odd prime. The quadratic character of−1 modulo p depends only on whether
p is 1 or 3 modulo 4. That is, (

−1
p

)
=

{
1 if p≡ 1 (mod 4)
−1 if p≡ 3 (mod 4)

Lemma 1 can be used to show that Fp (p an odd prime) is definite if and only if p ≡ 3 (mod 4).
Suppose first that p≡ 3 (mod 4) and let a be a positive element of Fp. Then for some µ 6= 0 ∈ Fp we
have µ2 = a and therefore (−µ)2 = a as well. Since the Legendre symbol is multiplicative(

µ

p

)
=

(
−1
p

)(
−µ

p

)
=−

(
−µ

p

)
so either

(
µ

p

)
= 1 or

(
−µ

p

)
= 1 which implies that a has a positive square root and therefore Fp is a

definite field. Suppose now that p ≡ 1 (mod 4). Since squaring (non-zero elements) is a two-to-one
function, it is not possible for every element to be positive. Let b be a non-positive element of Fp \{0}
and let a = b2 (so a is positive). Now(

b
p

)
=

(
−1
p

)(
−b
p

)
=

(
−b
p

)
so −b is a non-positive as well. It follows (by the Fundamental Theorem of Algebra) that a does not have
a positive square root and therefore Fp is not a definite field. Unfortunately this simple argument doesn’t
extend to Fq where q is a proper prime power. To see this one simply needs to observe that the non-prime
analog of the Legendre symbol would have (weaker) implications for Z/qZ but not for Fq.

Theorem 1. Let Fq be a finite field. Fq is a finite definite field if and only if Fq has characteristic two or
q = pk where k is a positive odd integer and p≡ 3 (mod 4).

Proof. If Fq has characteristic 2 then the Frobenius map f : Fq → Fq given by f (x) = x2 is an auto-
morphism and therefore every element of Fq has a square root2. Suppose now that q = pk where p
is an odd prime and k is a positive integer. Let P = P(Fq) be the set of positive elements in Fq and
F∗q = (Fq \{0},×) be the multiplicative group of Fq. Since F∗q is cyclic, there exists an element a, such that

2Indeed, this argument shows that every perfect field of characteristic 2 is definite.
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the q−1 elements of F∗q are a,a2, . . . ,aq−2,aq−1 = 1. Thus, P = {(a)2,(a2)2, . . . ,(aq−2)2,(aq−1)2} =
{a2,a2·2, . . . ,a2·(q−2),a2·(q−1)}. However aq−1+k = aq−1ak = ak so

P =

{
a2,a4, . . . ,a2

(
q−3

2

)
,a2

(
q−1

2

)}
=

{
a2t | 1≤ t ≤ q−1

2

}
.

Recall that F∗q is a definite field if for each y ∈P there is a r ∈P such that r2 = y. That is, if and only if
for all 1≤ t ≤ q−1

2 there is an integer s such that 1≤ s≤ q−1
2 and r2 = (a2s)2 = a2t = y. This occurs if

and only if 2s≡ t (mod q−1
2 ) has a solution for all 1≤ t ≤ q−1

2 . That is, if and only if 2s≡ 1 (mod q−1
2 )

has a solution. Observe that

q≡

{
3 (mod 4), if p≡ 3 (mod 4) and k is odd
1 (mod 4), otherwise

It follows that if p≡ 3 (mod 4) and k is odd then q−1
2 is an odd integer and therefore 2s≡ 1 (mod q−1

2 )
has a solution. Therefore if p≡ 3 (mod 4) and k is odd then Fpk is a definite field. Suppose now that k
is even or p≡ 1 (mod 4). Since q = pk ≡ 1 (mod 4) then F∗q has order q−1 which is divisible by 4 so
some element of F∗q has order 4. That is, there are elements b,c ∈ Fq \{1} such that c2 = b and b2 = 1.
Hence b 6= 1 ∈P . Define f : P →P by f (x) = x2. Since Fq is finite but f (1) = f (b), it follows that f
is not an onto map and therefore for some y ∈P there is no µ ∈P such that µ2 = y and therefore y has
no positive square roots. �

Definition 6. A symmetric matrix, A, over a finite definite field Fq is said to have a Cholesky decompo-
sition if A = LLT for some lower triangular matrix L ∈Mn(Fq) where L has positive elements along its
diagonal.

We saw in Proposition 1 that a very common definition for positive definiteness for Hermitian matrices
does not translate to finite fields, however the following definition does, so it will be used throughout the
paper as the main definition of positive-definite matrices over a definite field.

Definition 7. If A is a symmetric n×n matrix over a definite field, A is positive definite if it possesses a
Cholesky decomposition.

In the following theorem and throughout this paper, Mn(F) refers to the set (or space) of n×n matrices
with entries in F. The following results are finite-field adaptations of standard results from elementary
number theory [7] and linear algebra [6]. For the curious reader, we have included brief proofs in the
appendix.

Theorem 2. If A ∈Mn(Fq) and A = LLT for some lower triangular matrix L ∈Mn(Fq) whose diagonal
elements are all nonzero, then the leading principal minors of A are positive.

Lemma 2. If A is a symmetric matrix over a definite field with an LDU decomposition where L and
U have all ones along their diagonals and the diagonal entries of D are positive, then A has a Cholesky
decomposition.

Lemma 3. Let Ak be the k× k leading principal submatrix of an n× n matrix A. If A has an LDU
factorization, A = LDU , where L is a lower triangular matrix with all ones along its diagonal, U is upper
triangular with all ones along its diagonal, and D is diagonal, then det(Ak) = d11d22 · · ·dkk. The 1st pivot
is d11 = det(A1) = a11 and the kth pivot for k = 2,3, · · · ,n is dkk = det(Ak)/det(Ak−1), where dkk is the
(k,k)-th entry of D for all k = 1,2, · · · ,n.

Lemma 4. If A is a symmetric matrix over a definite field with an LDU decomposition where L and U
have all ones along their diagonals and the entries of D are positive, then A has a Cholesky decomposition.
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Theorem 3 (Corollary 3.5.5 of [6]). If A is invertible, then it admits an LDU factorization if and only if
all its leading principal minors are nonsingular.

Corollary 1. If all leading principal minors of a symmetric matrix A over a definite field are positive,
then A has a Cholesky decomposition.

Lemma 5. All leading principal submatrices of a Gram matrix are also Gram matrices.

Theorem 4. A matrix, M ∈Mn(Fq), is a Gram matrix if and only if it is positive definite.

3. Counterexamples

There are some properties of positive-definiteness, however, which no longer hold over definite fields.
Since real matrices are covered by the Hermitian case, we turn our attention specifically to finite definite
fields. In this section, we consider the a number of classical equivalences which do not hold and present
counterexamples. We also take a look into some of the other properties of Hermitian positive definite
matrices and provide counterexamples to show they cannot hold over finite fields.

Theorem 5. If A is a positive definite Hermitian matrix, that is, over R, or C, the following hold:

(1) A has positive eigenvalues.
(2) The associated sesquilinear form is an inner product.
(3) All principal submatrices of A are positive definite.
(4) A−1 is positive definite.
(5) If B is a positive definite Hermitian matrix, then A+B is positive definite.
(6) If B is a positive definite Hermitian matrix, then ABA and BAB are positive definite.
(7) If B is a positive definite Hermitian matrix, then the Hadamard product A◦B is positive definite

and the Frobenius inner product, A : B is positive.

Theorem 6. The properties of Theorem 5 do not hold in general over finite definite fields.

Proof. We provide at least one counter example from a definite field for each property or explain why the
described property does not hold.

(1) The following matrix, in M2(F7), is positive definite as all leading principal minors are positive
in F7 but has eigenvalues of 6 and 5, which are not positive in the field.[

2 4
4 2

]
For another example, consider the following in M3(F3), which has eigenvalues 1,2,2.1 0 2

0 1 1
2 1 0


One might hope that the converse still holds, that positive eigenvalues always indicate that a matrix
is positive definite, but this sadly is also untrue. The following matrix over F7 has eigenvalues of
1 and 2, which are positive in F7, but not all leading principal minors are positive for the matrix,
thus it is not positive definite. [

6 6
6 4

]
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(2) The sesquilinear form defined by a matrix A is a function from Fn
q2 → Fn

q2 given by 〈x,y〉= yT Ax
for x,y ∈ Fq. For this to be an inner product, we must have that 〈x,x〉 is nonzero and positive
for all nonzero x. However, in finite fields this form is isotropic, as seen in Proposition 1, and
therefore can be zero for nonzero x.

(3) The following matrix, in M3(F3), is positive definite:1 2 0
2 2 0
0 0 1


however it contains principal submatrix

[
2 0
0 1

]
which is not positive definite (evaluate the

determinant).
For another example, consider the following matrix in M3(F2), which is positive definite:1 1 0

1 0 0
0 0 1


One principal submatrix is

[
0 0
0 1

]
, which is not positive definite (evaluate the determinant). In

general, there are many positive definite matrices with elements along the diagonal which are not
positive. Taking a principal submatrix that causes one of these elements to be in the upper left
corner will produce a submatrix that is not positive definite.

(4) The following matrix, M3(F3), is positive definite:1 2 0
2 2 0
0 0 1


However, we have that A−1 is 2 1 0

1 1 0
0 0 1


which is not positive definite, since in particular A1 = [2] does not have positive determinant.
For another example, consider the following matrix, in M3(F2), which is positive definite:1 1 1

1 0 0
1 0 1


However,

A−1 =

0 1 0
1 0 1
0 1 1


which is not positive definite, as A1 = [0] does not have a positive determinant.

(5) Consider the following in M3(F2):1 0 0
0 1 0
0 0 1

+
1 0 0

0 1 0
0 0 1

=

0 0 0
0 0 0
0 0 0


The identity matrix is positive definite, yet the zeros matrix is obviously not.
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(6) Consider the following positive definite matrices in M2(F7):

A =

[
2 1
1 5

]
,B =

[
4 3
3 6

]
We have that ABA is [

6 1
1 2

]
This matrix is not positive definite, since (ABA)1 = [6] does not have positive determinant.
For another example, consider the following matrices, in M3(F2), which are positive definite:

A =

1 0 1
0 1 0
1 0 0

 ,B =

1 0 1
0 1 1
1 1 1


However

ABA =

0 1 0
1 1 0
0 0 1


which is not positive definite since its leading 1×1 principal minor is 0.

(7) Consider
[

1 4
4 3

]
and

[
2 2
2 3

]
in M2(F7), which are both positive definite. However, their

Hadamard product is
[

2 1
1 2

]
whose determinant is 3, which is not positive in F7 and therefore

the matrix is not positive definite. Considering this same pair of matrices, their Frobenius inner
product is 6, which is also not positive.
For another example, consider the following matrices, in M3(F2), which are positive definite:

A =

1 1 0
1 0 1
0 1 0

 ,B =

1 0 1
0 1 1
1 1 1

 .
However, their Hadamard product is

H =

1 0 0
0 0 1
0 1 0


which is not positive definite, as H2 =

[
1 0
0 0

]
does not have a positive determinant. For one more

example, consider the following matrices, in M3(F2), which are positive definite:

A =

1 0 0
0 1 1
0 1 0

 ,B =

1 0 1
0 1 0
1 0 0

 .
Their Frobenius inner product is 0, which is not positive. Observe that we need only find any pair
of positive definite matrices where there is an even number of entries satisfying ai j = bi j = 1 and
their Frobenius inner product to give a non-positive result.

�
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4. Other Properties

Some of the properties that Hermitian positive definite matrices possess do, however, analogize over
definite fields.

Theorem 7. If A is a positive definite matrix over a definite field F, and r is positive in F, then rA is also
positive definite.

Proof. If A is a n× n positive definite matrix over a definite field F, then it possesses a Cholesky
decomposition, A = LLT . If det(L) = µ and r is a square in F, that is r = s2 for s ∈ F, then det(rA) =
det(rLLT ) = det(rL)det(LT ) = rnµµ = s2nµ2 = (snµ)2. As all leading principal submatrices have a
similar decomposition, all leading principal minors of rA are positive by a similar argument and thus rA is
positive definite. �

In the last section, we saw that inverses of positive definite matrices over finite definite fields are not
positive definite. It is true, however, that the inverse matrix conjugated by the “exchange” or “anti-diagonal
identity” matrix ∇ is positive definite.

Definition 8. For an invertible matrix A, define its anti-inverse as ∇A−1∇ where ∇ is the exchange
matrix, with ones along its antidiagonal and zeroes elsewhere. That is, in the n×n case of ∇,ai j = 1 if
i+ j = n+1 and ai j = 0 otherwise. For example, the 3×3 case of ∇ is0 0 1

0 1 0
1 0 0


The following lemma will be helpful in showing that the anti-inverse is positive definite.

Lemma 6. Every principal submatrix of a lower triangular matrix is lower triangular.

Proof. Let L be a lower triangular matrix. Deleting the first column and row clearly produces a lower
triangular matrix, and similarly if we delete the last row and column. Now, suppose we delete the ith row
and column. We have

l11 · · · 0 · · · 0
...

. . .
...

...
li1 · · · lii · · · 0
...

...
. . .

...
ln1 · · · lni · · · lnn

→


l11 · · · 0 0 · · · 0
...

. . .
...

...
...

l(i−1)1 · · · l(i−1)(i−1) 0 · · · 0
l(i+1)1 · · · l(i+1)(i−1) l(i+1)(i+1) · · · 0

...
...

...
. . .

...
ln1 · · · ln(i−1) ln(i+1) · · · lnn


The (i− 1)-th leading principal submatrix is still lower triangular. As both row and column i are

removed, the original l(i+1)(i−1) entry now becomes the entry l′ii in the ith row and ith column of the new
matrix. The rest of the matrix is shifted and retains the form of a lower triangular matrix. �

Theorem 8. If A is a positive definite matrix in a definite field F, then its anti-inverse is also positive
definite.

Proof. Let A be a positive definite matrix in a definite field F. It is invertible and thus we can consider its
anti-inverse. As A is positive definite, we have A = LLT as a Cholesky decomposition. Note that ∇∇ = I
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and therefore we have, writing L−T = (L−1)T ,

A−1 = L−T L−1

∇A−1
∇ = ∇L−T L−1

∇

= ∇L−T (∇∇)L−1
∇

= (∇L−T
∇)(∇L−1

∇)

Note that right multiplying by ∇ reverses the columns of the matrix and left multiplication by ∇ reverses
the rows. Thus, ∇L−T ∇ takes an upper triangular matrix, L−T , to a lower triangular matrix and ∇L−1∇

takes a lower triangular matrix to an upper triangular matrix. In fact, we have

(∇L−T
∇)T = (∇L−1

∇)

Thus, ∇A−1∇ takes the correct form to have a Cholesky decomposition. We need only check the
diagonal elements of ∇L−T ∇ are positive. As both the rows and columns are reversed by conjugating by
∇, the diagonal elements of L−T are still the diagonal elements of ∇L−T ∇, simply in a different order. As
LLT is a Cholesky decomposition of A, the diagonal elements of L are positive, and we need only check
that the diagonal elements of L−1 are positive.

When taking the inverse of L, the (i, i) entry will be 1/det(L) multiplied by the principal minor of the
submatrix created by deleting the ith row and ith column. As this submatrix will be lower triangular and
have diagonal elements which are a subset of those from L, the principal minor will be positive. Thus, the
ith diagonal element of L−1 is positive. As the diagonal elements of L−1 are positive, so are those of L−T .
Thus, (∇L−T ∇)(∇L−1∇) is a Cholesky decomposition for ∇A−1∇. �

In the last section, we provided counterexamples that proved the Hadamard product and the Frobenius
product need not be positive definite nor positive respectively. It is true, however, that the Kronecker
product of two positive definite matrices, even for definite fields, is positive definite.

Theorem 9. If A and B are positive definite matrices in a definite field F, then so is their Kronecker
product. In fact, if A = LLT and B = MMT then A⊗B = (L⊗M)(L⊗M)T

Proof. Let A and B be n×n positive definite matrices in a definite field F, with A = LLT and B = MMT

their Cholesky decompositions.

L⊗M =


l11M 0 · · · 0
l21M l22M · · · 0

...
...

. . .
...

lk1M lk2M · · · lkkM

 ,

(L⊗M)T =


l11MT l21MT · · · lk1MT

0 l22MT · · · lk2MT

...
...

. . .
...

0 0 · · · lkkMT


Consider (L⊗M)(L⊗M)T . When calculating any entry of this product, we will have a sum of scalars

each multiplied by MMT , and so we may factor this out by the distributivity of matrices over scalars. The
sum of scalars, if considering the (i, j)th entry, is produced from the dot product of the ith row of L with
the jth column of LT , exactly ai j, the entry of a in the ith row and jth column. Thus, the (i, j)th entry of
(L⊗M)(L⊗M)T is ai jMMT = ai jB and thus (L⊗M)(L⊗M)T = A⊗B.

We need only check that the diagonal of (L⊗M) is positive. The diagonal elements of L⊗M, as M is
lower triangular, are comprised of the diagonal elements of L multiplied by the diagonal elements of M.
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As the diagonal elements of both L and M are positive, their product will also be positive. Thus, A⊗B has
a Cholesky decomposition and is therefore positive definite. �

5. Pressing Sequences

Definition 9. Let a F-pseudograph, for some field F, be a graph G = (V, f ) with V the set of vertices and
f : V ×V → F a function assigning a weight to each edge. That is, f (x,y) = c assigns a weight of c ∈ F
to the edge xy, and f (x,x) is a weight assigned to the vertex x ∈V . Each edge has only one associated
weight, i.e., f (x,y) = f (y,x). Note every pair of distinct vertices admits an edge, though some may simply
have weight 0 and sometimes G is then identified with the restriction of f to its support.

For a vertex, we may refer to the vertex by its weight if the vertex label is understood. That is, if there
is only one vertex of weight d, it may be referred to as vertex d. If there are more than one vertex with
weight d, it will be referred to as vertex v with weight d.

Definition 10. The weighted adjacency matrix of a F-pseudograph G is A(G) defined in the following
way. Let v1, ...,vn be the vertices of G.

ai j = f (vi,v j)

Clearly, the resulting matrix is symmetric.

Definition 11. Consider a F−pseudograph G = (V, f ). For a vertex v, with f (v,v) positive in F, pressing
v is the process of taking G to G′ = (V,g) with

g(x,y) = f (x,y)− f (x,v) f (y,v)
f (v,v)

Note that such a press will also yield a symmetric weighted adjacency matrix A(G′). The following
figure illustrates a general press on the vertex with weight a:

a

b

c

0

b− x2a−1

c− y2a−1

x

z

y

0

z− xya−1

0

FIGURE 1. The weighted vertex a is pressed to transform G (left) to G′ (right)

The weighted adjacency matrices for the graphs in the figure as follows:

A(G) =

a x y
x b z
y z c

 A(G′) =


0 0 0

0 b− x2

a
z− xy

a

0 z− xy
a

c− y2

a


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Pressing in this fashion has the same effect as Gaussian elimination, except without row swaps, and
such that the rows corresponding to pressed vertices are self-eliminated. A “successful pressing sequence”
exists if we can complete this elimination to result in the all-zeroes matrix, which corresponds to the
edgeless graph with vertices of weight 0.

Theorem 10. For a F−pseudograph G = (V, f ), the vertices of G in the usual order form a successful
pressing sequence if and only if A(G) is positive definite.

Proof. Let G = (V, f ) be a F-pseudograph, and A(G) its weighted adjacency matrix.
Suppose the vertices of G – in the order they are presented as indices of A(G) – form a successful

pressing sequence. Thus, we can perform ordinary Gaussian elimination with no row swaps via the same
process but omitting self-elimination steps, resulting in an LU decomposition. Each such elimination
step begins by multiplying A(G) by an elementary matrix E1 on the left; the elements on the diagonal
of E1 are 1 as we are not changing the entry associated with the vertex pressed, and E1 is also lower
triangular. As A(G) is symmetric, the elimination can proceed by performing the same operations on
columns, represented by right multiplication by ET

1 . That is, after the elimination operations arising from
a press without self-elimination, we have A(G′) = E1A(G)ET

1 .
If G has a successful pressing sequence, it has a sequence of such Gaussian elimination steps which

result in a diagonal matrix. That is, EA(G)ET = D for E a product of elementary matrices representing
row operations where the diagonal entries of E are 1 and D a diagonal matrix whose entries are the
weights of the vertices before being pressed. As we only press positively weighted vertices, D has all
positive entries. In fact, A(G) = E−1DE−T . As E is lower diagonal, so is E−1 and in a similar fashion,
E−T is upper triangular. Thus, A(G) has a positive LDU decomposition and by Lemma 4, A(G) has a
Cholesky decomposition and is therefore positive definite.

If A(G) is positive definite, it has a Cholesky decomposition A(G) = LLT . As the diagonal entries of L
are positive, we have A(G) = L′D(L′)T where L′ has all ones along its diagonal and D is a diagonal matrix
with all positive entries. So L′−1A(G)L′−T = D and A(G) can be row- and column-reduced without swaps
to a diagonal matrix with all positive entries. Thus G has a Gaussian elimination sequence without row
swaps resulting in a positive diagonal matrix and also has a successful pressing sequence by pressing the
vertices in the same order. �

6. Future Work

Over F2 a graph has a successful pressing sequence if and only if each component contains at least
one non-white vertex ([3]). This characterization does not work over other fields (for example the F3
pseudo-graph with three vertices, each of weight 1, and three edges, each of weight 2, is not pressable in
any order). Furthermore, while it is a necessary condition that each component contain a positive vertex,
this characterization does not suffice. Thus, we ask the following question: Is there a polynomial-time
algorithm to check whether a given pseudo-graph over a finite field is pressable in some order?

We have discussed positive definite matrices over definite fields and described many equivalences
which can be analogized from the Hermitian case, and others which cannot. It would be perhaps be
interesting also to consider semi-definiteness or negative definiteness over definite fields.

In particular, we briefly considered but never truly investigated the possibility of using the Frobenius
endomorphism to define some kind of Hermitian-like structure on these matrices. That is, instead of a
conjugate transpose, what would happen if we applied the Frobenius map to every element of the matrix
and then take the transpose? This notion may still cause a problem in the positive definite case, as we can
simply take a vector in the base field, for which the “Frobenius transpose” would simply be the transpose,
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and could still produce xT Ax = 0 for some nonzero vector x. In terms of positive semi-definiteness,
however, we wonder if this can be remedied and prove interesting. We would be especially keen to restore
the important role of positive eigenvalues in the theory of positive definiteness, perhaps by redefining
“positive” via Frobenius endomorphisms.

It would also be interesting to consider whether nondefinite fields have some semblance of a positive
definite structure given the right definitions. Furthermore, we identified counterexamples above to show
that some classical properties do not hold over finite definite fields. Could there be, however, a subset of
finite definite fields for which some of these properties still indeed hold? For instance, can the positive
eigenvalue equivalence be salvaged over a certain subset of definite fields?

We also wonder what applications the above framework might find. As positive definite matrices are
used often in optimization problems, does this notion of positive definite over definite fields induce an
analogue of geometric convexity over other fields besides R and C? Can we solve optimization problems
over finite fields?
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7. Appendix

Proof of Theorem 2

Proof. Let A ∈Mn(Fq) such that A = LLT for some lower triangular matrix L ∈Mn(Fq) whose diagonal
entries are nonzero. Let Li denote the ith leading principal submatrix of L. For each 1 ≤ i ≤ n, let
µi = det(Li) and observe that µi 6= 0 ∈ Fq. Then the ith leading principal submatrix of A will have
decomposition Ai = LiLT

i and therefore det(Ai) = det(Li)det(Lt
i) = µ2 6= 0. �

Proof of Lemma 2

Proof. Let A be a symmetric matrix over a definite field with an LDU decomposition such that all entries
of D are positive and all diagonal entries of L and U are 1. The symmetry of A and the uniqueness of the
LDU decomposition will yield U = LT . As the diagonal entries of D are positive,

√
D can be defined, and

we construct it in the following way: Set
√

D = diag(s1,1, . . . ,sn,n) where si,i is the positive square root of
the element in the ith row and column of D. Since both L and

√
D have zeros above the diagonal then

B = L
√

D is a lower triangular matrix and A = BBT , as desired. �

Proof of Lemma 3

Proof. Let Ak be the k× k leading principal submatrix of an n× n matrix A. Let A have an LDU
factorization, A = LDU , where L is a lower triangular matrix with all ones along its diagonal, U is upper
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triangular with all ones along its diagonal, and D is diagonal. Note that as A has an LU decomposition, all
leading principal submatrices have full rank and thus all leading principal minors are nonzero.

Partition A in the following way:

A =

[
Lk 0
L21 L22

][
Dk 0
0 D22

][
Uk U12
0 U22

]
We thus have that Ak can be written in the following manner:

Ak = LkDkUk =

[
Lk−1 0

d 1

][
Dk−1 0

0 dkk

][
Uk−1 c

0 1

]
For k = 1, we have A1 = [1][d11][1] and thus det(A1) = d11 = a11. If the result holds for ` < k, we have
det(Ak) = det(Dk−1)dkk = det(Ak−1)dkk = d11...dkk. The result follows as the pivots are exactly the entries
of D. �

Proof of Lemma 4

Proof. Let A be a symmetric matrix over a definite field with an LDU decomposition such that all entries
of D are positive and all diagonal entries of L and U are 1. The symmetry of A and the uniqueness of the
LDU decomposition will yield U = LT . As the elements of D are positive,

√
D can be defined, and we

construct it in the following way. If rii =
√

dii:

√
D = diag(d′11d′22...d

′
nn) =

{
d′ii = rii if rii is positive
d′ii =−rii otherwise

Thus,
√

D is a diagonal matrix with positive diagonal entries. Define R = L
√

D. As L has a diagonal of
all 1’s, R is a lower triangular matrix with positive diagonal entries and A = RRT as desired. �

Proof of Corollary 1

Proof. Let A be a symmetric matrix in Mn(F) for a definite field F such that all leading principal minors
are positive. Thus, all leading principal submatrices have full rank and A is invertible. So, A = LDU where
D is a diagonal matrix and U and L have all ones on their diagonal. The symmetry of A and the uniqueness
of the LDU decomposition will yield that U = LT . As all leading principal minors are positive, the pivots
of A, found by the process described in Lemma 3, are positive and are, in fact, the diagonal entries of D.
Thus, as we have an LDU decomposition where all the diagonal elements of D are positive, by Lemma
4, we can define R = L

√
D, a lower triangular matrix with positive diagonal entries, and A = RRT as

desired. �

Proof of Lemma 5

Proof. Let G be a Gram matrix of vectors v1,v2, ...,vn. That is,

G =


〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vn〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vn〉

. . . . . .
. . . . . .

〈vn,v1〉 〈vn,v2〉 · · · 〈vn,vn〉


Any leading principal submatrix, Gk will take the form

Gk =


〈v1,v1〉 〈v1,v2〉 · · · 〈v1,vk〉
〈v2,v1〉 〈v2,v2〉 · · · 〈v2,vk〉

. . . . . .
. . . . . .

〈vk,v1〉 〈vk,v2〉 · · · 〈vk,vk〉


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Thus, Gk is a Gram matrix on the vectors v1,v2, ...,vk as these vectors are still linearly independent. �

Proof of Theorem 4

Proof. Let M ∈Mn(Fq).
Suppose M is a Gram matrix. Thus, M = AT A where the columns of A are x1,x2, ...,xn ∈ Fn

q, which are
linearly independent. Now, Mk will be equivalent to AT

k Ak where Ak has columns x1, ...,xk by Lemma 5.
We have

det(Mk) = det(AT
k Ak) = det(Ak)

2

for det(Ak)
2 ∈ Fq. As all leading principal minors are positive, A is positive definite.

Now suppose that M is a positive definite matrix. Thus, M = LLT with the columns of L denoted by
l1, l2, ..., ln. As M is invertible, so is L and thus these li are linearly independent. M is therefore a Gram
matrix for the vectors l1, l2, ..., ln. �
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