Open Access
2018 Exponentially weighted Polynomial approximation for absolutely continuous functions
Kentaro Itoh, Ryozi Sakai, Noriaki Suzuki
Tohoku Math. J. (2) 70(1): 1-15 (2018). DOI: 10.2748/tmj/1520564416

Abstract

We discuss a polynomial approximation on $\mathbb{R}$ with a weight $w$ in $\mathcal{F}(C^{2} +)$ (see Section 2). The de la Vallée Poussin mean $v_n(f)$ of an absolutely continuous function $f$ is not only a good approximation polynomial of $f$, but also its derivatives give an approximation for the derivative $f'$. More precisely, for $1 \leq p \leq \infty$, we have $\lim_{n \rightarrow \infty}\|(f - v_{n}(f))w\|_{L^{p}(\mathbb{R})} =0$ and $\lim_{n \rightarrow \infty}\|(f' - v_{n}(f)')w\|_{L^{p}(\mathbb{R})} =0$ whenever $f''w \in L^{p}(\mathbb{R})$.

Citation

Download Citation

Kentaro Itoh. Ryozi Sakai. Noriaki Suzuki. "Exponentially weighted Polynomial approximation for absolutely continuous functions." Tohoku Math. J. (2) 70 (1) 1 - 15, 2018. https://doi.org/10.2748/tmj/1520564416

Information

Published: 2018
First available in Project Euclid: 9 March 2018

zbMATH: 06873671
MathSciNet: MR3772803
Digital Object Identifier: 10.2748/tmj/1520564416

Subjects:
Primary: 41A17
Secondary: 41A10

Keywords: absolutely continuous function , de la Vallée Poussin mean , Erdös type weight , weighted polynomial approximation

Rights: Copyright © 2018 Tohoku University

Vol.70 • No. 1 • 2018
Back to Top