Open Access
2018 Approximation of smooth convex bodies by random polytopes
Julian Grote, Elisabeth Werner
Electron. J. Probab. 23: 1-21 (2018). DOI: 10.1214/17-EJP131
Abstract

Let $K$ be a convex body in $\mathbb{R} ^n$ and $f : \partial K \rightarrow \mathbb{R} _+$ a continuous, strictly positive function with $\int \limits _{\partial K} f(x) \mathrm{d} \mu _{\partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmetric difference metric by an arbitrarily positioned polytope $P_f$ in $\mathbb{R} ^n$ having a fixed number of vertices. This generalizes a result by Ludwig, Schütt and Werner [36]. The polytope $P_f$ is obtained by a random construction via a probability measure with density $f$. In our result, the dependence on the number of vertices is optimal. With the optimal density $f$, the dependence on $K$ in our result is also optimal.

References

1.

[1] Andrews, B.: Gauss curvature flow: The fate of the rolling stones. Invent. Math. 138, 151–161 (1999). 0936.35080 10.1007/s002220050344[1] Andrews, B.: Gauss curvature flow: The fate of the rolling stones. Invent. Math. 138, 151–161 (1999). 0936.35080 10.1007/s002220050344

2.

[2] Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992).[2] Bárány, I.: Random polytopes in smooth convex bodies. Mathematika 39, 81–92 (1992).

3.

[3] Bernig, A. and Fu, J.: Hermitian integral geometry. Ann. of Math. 173, 907–945 (2011). 1230.52014 10.4007/annals.2011.173.2.7[3] Bernig, A. and Fu, J.: Hermitian integral geometry. Ann. of Math. 173, 907–945 (2011). 1230.52014 10.4007/annals.2011.173.2.7

4.

[4] Besau, F. and Werner, E.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016). 1353.52006 10.1016/j.aim.2016.07.001[4] Besau, F. and Werner, E.: The spherical convex floating body. Adv. Math. 301, 867–901 (2016). 1353.52006 10.1016/j.aim.2016.07.001

5.

[5] Besau, F. and Werner, E.: The floating body in real space forms. to appear in J. Differential Geom. 06958640 10.4310/jdg/1538791243 euclid.jdg/1538791243[5] Besau, F. and Werner, E.: The floating body in real space forms. to appear in J. Differential Geom. 06958640 10.4310/jdg/1538791243 euclid.jdg/1538791243

6.

[6] Blaschke, W.: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie. Springer-Verlag, Berlin (1923).[6] Blaschke, W.: Vorlesungen über Differentialgeometrie II, Affine Differentialgeometrie. Springer-Verlag, Berlin (1923).

7.

[7] Böröczky, K.Jr.: Polytopal approximation bounding the number of $k$-faces. J. Approx. Theory 102, 263–285 (2000).[7] Böröczky, K.Jr.: Polytopal approximation bounding the number of $k$-faces. J. Approx. Theory 102, 263–285 (2000).

8.

[8] Böröczky, K.Jr.: Approximation of general smooth convex bodies. Adv. Math. 153, 325–341 (2000).[8] Böröczky, K.Jr.: Approximation of general smooth convex bodies. Adv. Math. 153, 325–341 (2000).

9.

[9] Böröczky, K. and Csikós, B.: Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area. Abh. Math. Semin. Univ. Hambg. 79, 229–264 (2009).[9] Böröczky, K. and Csikós, B.: Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area. Abh. Math. Semin. Univ. Hambg. 79, 229–264 (2009).

10.

[10] Böröczky, K. and Reitzner, M.: Approximation of smooth convex bodies by random circumscribed polytopes. Ann. Appl. Probab. 14, 239–273 (2004). 1049.60009 10.1214/aoap/1075828053 euclid.aoap/1075828053[10] Böröczky, K. and Reitzner, M.: Approximation of smooth convex bodies by random circumscribed polytopes. Ann. Appl. Probab. 14, 239–273 (2004). 1049.60009 10.1214/aoap/1075828053 euclid.aoap/1075828053

11.

[11] Böröczky, K. and Schneider, R.: The mean width of circumscribed random polytopes. Canad. Math. Bull. 53, 614–628 (2010).[11] Böröczky, K. and Schneider, R.: The mean width of circumscribed random polytopes. Canad. Math. Bull. 53, 614–628 (2010).

12.

[12] Böröczky, K., Lutwak, E., Yang, D. and Zhang, G.: The Logarithmic Minkowski Problem. J. Amer. Math. Soc. 26, 831–852 (2013). 1272.52012 10.1090/S0894-0347-2012-00741-3[12] Böröczky, K., Lutwak, E., Yang, D. and Zhang, G.: The Logarithmic Minkowski Problem. J. Amer. Math. Soc. 26, 831–852 (2013). 1272.52012 10.1090/S0894-0347-2012-00741-3

13.

[13] Buchta, C. and Reitzner, M.: The convex hull of random points in a tetrahedron: Solution of Blaschke’s problem and more general results. J. Reine Angew. Math. 536, 1–29 (2001). 0973.52004 10.1515/crll.2001.050[13] Buchta, C. and Reitzner, M.: The convex hull of random points in a tetrahedron: Solution of Blaschke’s problem and more general results. J. Reine Angew. Math. 536, 1–29 (2001). 0973.52004 10.1515/crll.2001.050

14.

[14] Caglar, U. and Werner, E.: Divergence for $s$-concave and log concave functions. Adv. Math. 257, 219–247 (2014). 1310.26016 10.1016/j.aim.2014.02.013[14] Caglar, U. and Werner, E.: Divergence for $s$-concave and log concave functions. Adv. Math. 257, 219–247 (2014). 1310.26016 10.1016/j.aim.2014.02.013

15.

[15] Edelsbrunner, H.: Geometric algorithms. In Handbook of Convex Geometry. Elsevier, North-Holland, 699–735 (1993). 0824.68115[15] Edelsbrunner, H.: Geometric algorithms. In Handbook of Convex Geometry. Elsevier, North-Holland, 699–735 (1993). 0824.68115

16.

[16] Federer, H.: Geometric Measure Theory. Springer-Verlag, Berlin (1969). 0176.00801[16] Federer, H.: Geometric Measure Theory. Springer-Verlag, Berlin (1969). 0176.00801

17.

[17] Gardner, R.J.: Tomography. In Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1995).[17] Gardner, R.J.: Tomography. In Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge (1995).

18.

[18] Gardner, R.J., Kiderlen, M. and Milanfar, P.: Convergence of algorithms for reconstructing convex bodies and directional measures. Ann. Statist. 34, 1331–1374 (2006). 1097.52503 10.1214/009053606000000335 euclid.aos/1152540751[18] Gardner, R.J., Kiderlen, M. and Milanfar, P.: Convergence of algorithms for reconstructing convex bodies and directional measures. Ann. Statist. 34, 1331–1374 (2006). 1097.52503 10.1214/009053606000000335 euclid.aos/1152540751

19.

[19] Glasauer, S. and Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies III. Forum Math. 9, 383–404 (1997). 0889.52006 10.1515/form.1997.9.383[19] Glasauer, S. and Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies III. Forum Math. 9, 383–404 (1997). 0889.52006 10.1515/form.1997.9.383

20.

[20] Gordon, Y., Reisner, S. and Schütt, C.: Umbrellas and polytopal approximation of the Euclidean ball. J. Approx. Theory 90, 9–22 (1997). 0885.52006 10.1006/jath.1996.3065[20] Gordon, Y., Reisner, S. and Schütt, C.: Umbrellas and polytopal approximation of the Euclidean ball. J. Approx. Theory 90, 9–22 (1997). 0885.52006 10.1006/jath.1996.3065

21.

[21] Gordon, Y., Reisner, S. and Schütt, C.: Erratum. J. Approx. Theory 95, 331 (1998).[21] Gordon, Y., Reisner, S. and Schütt, C.: Erratum. J. Approx. Theory 95, 331 (1998).

22.

[22] Groemer, H.: On the symmetric difference metric for convex bodies. Beiträge Algebra Geom. 41, 107–114 (2002).[22] Groemer, H.: On the symmetric difference metric for convex bodies. Beiträge Algebra Geom. 41, 107–114 (2002).

23.

[23] Gruber, P.M.: Approximation of convex bodies. In Convexity and its Applications. Birkhäuser, Basel, 131–162 (1983).[23] Gruber, P.M.: Approximation of convex bodies. In Convexity and its Applications. Birkhäuser, Basel, 131–162 (1983).

24.

[24] Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math. 5, 281–297 (1993). 0780.52005[24] Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies I. Forum Math. 5, 281–297 (1993). 0780.52005

25.

[25] Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993). 0788.41020[25] Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993). 0788.41020

26.

[26] Gruber, P.M.: Aspects of approximation of convex bodies. In Handbook of Convex Geometry. Elsevier, North-Holland, Amsterdam, 319–345 (1993). 0791.52007[26] Gruber, P.M.: Aspects of approximation of convex bodies. In Handbook of Convex Geometry. Elsevier, North-Holland, Amsterdam, 319–345 (1993). 0791.52007

27.

[27] Gruber, P.M.: Convex and discrete geometry (Grundlehren der Mathematischen Wissenschaften 336). Springer-Verlag, Berlin (2007). 1139.52001[27] Gruber, P.M.: Convex and discrete geometry (Grundlehren der Mathematischen Wissenschaften 336). Springer-Verlag, Berlin (2007). 1139.52001

28.

[28] Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14, 1565–1597 (2012). 1270.52018 10.4171/JEMS/341[28] Haberl, C.: Minkowski valuations intertwining the special linear group. J. Eur. Math. Soc. 14, 1565–1597 (2012). 1270.52018 10.4171/JEMS/341

29.

[29] Haberl, C. and Parapatits, L.: The Centro-Affine Hadwiger Theorem. J. Amer. Math. Soc. 27, 685–705 (2014). 1319.52006 10.1090/S0894-0347-2014-00781-5[29] Haberl, C. and Parapatits, L.: The Centro-Affine Hadwiger Theorem. J. Amer. Math. Soc. 27, 685–705 (2014). 1319.52006 10.1090/S0894-0347-2014-00781-5

30.

[30] Hoehner, S.D., Schütt, C. and Werner, E.: The Surface Area Deviation of the Euclidean Ball and a Polytope. Journal of Theoretical Probability DOI 10.1007/s10959-016-0701-9, 1–24 (2016).[30] Hoehner, S.D., Schütt, C. and Werner, E.: The Surface Area Deviation of the Euclidean Ball and a Polytope. Journal of Theoretical Probability DOI 10.1007/s10959-016-0701-9, 1–24 (2016).

31.

[31] Huang, Y., Lutwak, E., Yang, D. and Zhang, G.: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016). MR3573332 1372.52007 10.1007/s11511-016-0140-6 euclid.acta/1485802481[31] Huang, Y., Lutwak, E., Yang, D. and Zhang, G.: Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems. Acta Math. 216, 325–388 (2016). MR3573332 1372.52007 10.1007/s11511-016-0140-6 euclid.acta/1485802481

32.

[32] Leichtweiss, K.: Zur Affinoberfläche konvexer Körper. Manuscripta Math. 56, 429–464 (1986). MR860732 10.1007/BF01168504[32] Leichtweiss, K.: Zur Affinoberfläche konvexer Körper. Manuscripta Math. 56, 429–464 (1986). MR860732 10.1007/BF01168504

33.

[33] Ludwig, M.: Asymptotic approximation of smooth convex bodies by general polytopes. Mathematika 46, 103–125 (1999). 0992.52002 10.1112/S0025579300007609[33] Ludwig, M.: Asymptotic approximation of smooth convex bodies by general polytopes. Mathematika 46, 103–125 (1999). 0992.52002 10.1112/S0025579300007609

34.

[34] Ludwig, M.: Minkowski areas and valuations. J. Differential Geom. 86, 133–161 (2010). 1215.52004 10.4310/jdg/1299766685 euclid.jdg/1299766685[34] Ludwig, M.: Minkowski areas and valuations. J. Differential Geom. 86, 133–161 (2010). 1215.52004 10.4310/jdg/1299766685 euclid.jdg/1299766685

35.

[35] Ludwig, M. and Reitzner, M.: A classification of $SL(n)$ invariant valuations. Ann. of Math. 172, 1223–1271 (2010).[35] Ludwig, M. and Reitzner, M.: A classification of $SL(n)$ invariant valuations. Ann. of Math. 172, 1223–1271 (2010).

36.

[36] Ludwig, M., Schütt, C. and Werner, E.: Approximation of the Euclidean ball by polytopes. Studia Math. 173, 1–18 (2006).[36] Ludwig, M., Schütt, C. and Werner, E.: Approximation of the Euclidean ball by polytopes. Studia Math. 173, 1–18 (2006).

37.

[37] Lutwak, E.: Extended affine surface area. Adv. Math. 85, 39–68 (1991). 0727.53016 10.1016/0001-8708(91)90049-D[37] Lutwak, E.: Extended affine surface area. Adv. Math. 85, 39–68 (1991). 0727.53016 10.1016/0001-8708(91)90049-D

38.

[38] Lutwak, E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996). 0853.52005 10.1006/aima.1996.0022[38] Lutwak, E.: The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas. Adv. Math. 118, 244–294 (1996). 0853.52005 10.1006/aima.1996.0022

39.

[39] Mankiewicz, P. and Schütt, C.: A simple proof of an estimate for the approximation of the Euclidean ball and the Delone triangulation numbers. J. Approx. Theory 107, 268–280 (2000). 0974.52007 10.1006/jath.2000.3509[39] Mankiewicz, P. and Schütt, C.: A simple proof of an estimate for the approximation of the Euclidean ball and the Delone triangulation numbers. J. Approx. Theory 107, 268–280 (2000). 0974.52007 10.1006/jath.2000.3509

40.

[40] Mankiewicz, P. and Schütt, C.: On the Delone triangulations numbers. J. Approx. Theory 111, 139–142 (2001).[40] Mankiewicz, P. and Schütt, C.: On the Delone triangulations numbers. J. Approx. Theory 111, 139–142 (2001).

41.

[41] McClure, D.E. and Vitale, R.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51, 326–358 (1975). 0315.52004 10.1016/0022-247X(75)90125-0[41] McClure, D.E. and Vitale, R.: Polygonal approximation of plane convex bodies. J. Math. Anal. Appl. 51, 326–358 (1975). 0315.52004 10.1016/0022-247X(75)90125-0

42.

[42] Meyer, M. and Werner, E.: On the $p$-affine surface area. Adv. Math. 152, 288–313 (2000). 0964.52005 10.1006/aima.1999.1902[42] Meyer, M. and Werner, E.: On the $p$-affine surface area. Adv. Math. 152, 288–313 (2000). 0964.52005 10.1006/aima.1999.1902

43.

[43] Miles, R.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971). 0237.60006 10.2307/1426176[43] Miles, R.: Isotropic random simplices. Adv. Appl. Probab. 3, 353–382 (1971). 0237.60006 10.2307/1426176

44.

[44] Müller, J.S.: Approximation of the ball by random polytopes. J. Approx. Theory 63, 198–209 (1990).[44] Müller, J.S.: Approximation of the ball by random polytopes. J. Approx. Theory 63, 198–209 (1990).

45.

[45] Paouris, G. and Werner, E.: On the approximation of a polytope by its dual $L_{p}$-centroid bodies. Indiana Univ. Math. J. 62, 235–247 (2013). 1288.52002 10.1512/iumj.2013.62.4875[45] Paouris, G. and Werner, E.: On the approximation of a polytope by its dual $L_{p}$-centroid bodies. Indiana Univ. Math. J. 62, 235–247 (2013). 1288.52002 10.1512/iumj.2013.62.4875

46.

[46] Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005). MR2102847 1065.52004 10.1016/j.aim.2004.03.006[46] Reitzner, M.: The combinatorial structure of random polytopes. Adv. Math. 191, 178–208 (2005). MR2102847 1065.52004 10.1016/j.aim.2004.03.006

47.

[47] Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004). MR2220208 1109.52007 10.1112/S0025579300015473[47] Reitzner, M.: Stochastical approximation of smooth convex bodies. Mathematika 51, 11–29 (2004). MR2220208 1109.52007 10.1112/S0025579300015473

48.

[48] Reitzner, M.: Random points on the boundary of smooth convex bodies. Trans. Amer. Math. Soc. 354, 2243–2278 (2002). MR1885651 0993.60012 10.1090/S0002-9947-02-02962-8[48] Reitzner, M.: Random points on the boundary of smooth convex bodies. Trans. Amer. Math. Soc. 354, 2243–2278 (2002). MR1885651 0993.60012 10.1090/S0002-9947-02-02962-8

49.

[49] Schneider, R.: Zur optimalen Approximation konvexer Hyperflächen durch Polyeder. Math. Ann. 256, 289–301 (1981). 0445.52004 10.1007/BF01679698[49] Schneider, R.: Zur optimalen Approximation konvexer Hyperflächen durch Polyeder. Math. Ann. 256, 289–301 (1981). 0445.52004 10.1007/BF01679698

50.

[50] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (2013). 0798.52001[50] Schneider, R.: Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge (2013). 0798.52001

51.

[51] Schneider, R. and Weil, W.: Stochastic and integral geometry. Springer-Verlag, Berlin (2008). 1175.60003[51] Schneider, R. and Weil, W.: Stochastic and integral geometry. Springer-Verlag, Berlin (2008). 1175.60003

52.

[52] Schuster, F.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1–30 (2010). MR2668553 1205.52004 10.1215/00127094-2010-033 euclid.dmj/1279140505[52] Schuster, F.: Crofton measures and Minkowski valuations. Duke Math. J. 154, 1–30 (2010). MR2668553 1205.52004 10.1215/00127094-2010-033 euclid.dmj/1279140505

53.

[53] Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994).[53] Schütt, C.: Random polytopes and affine surface area. Math. Nachr. 170, 227–249 (1994).

54.

[54] Schütt, C. and Werner, E.: The convex floating body. Math. Scand. 66, 275–290 (1990). 0739.52008 10.7146/math.scand.a-12311[54] Schütt, C. and Werner, E.: The convex floating body. Math. Scand. 66, 275–290 (1990). 0739.52008 10.7146/math.scand.a-12311

55.

[55] Schütt, C. and Werner, E.: Polytopes with vertices chosen randomly from the boundary of a convex body (Geometric aspects of functional analysis, Lecture Notes in Math. 1807). Springer-Verlag, 241–422 (2003).[55] Schütt, C. and Werner, E.: Polytopes with vertices chosen randomly from the boundary of a convex body (Geometric aspects of functional analysis, Lecture Notes in Math. 1807). Springer-Verlag, 241–422 (2003).

56.

[56] Schütt, C. and Werner, E.: Surface bodies and p-affine surface area. Adv. Math. 187, 98–145 (2004). MR2074173 1089.52002 10.1016/j.aim.2003.07.018[56] Schütt, C. and Werner, E.: Surface bodies and p-affine surface area. Adv. Math. 187, 98–145 (2004). MR2074173 1089.52002 10.1016/j.aim.2003.07.018

57.

[57] Stancu, A.: On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem. Adv. Math. 180, 290–323 (2003). 1054.52001 10.1016/S0001-8708(03)00005-7[57] Stancu, A.: On the number of solutions to the discrete two-dimensional $L_0$-Minkowski problem. Adv. Math. 180, 290–323 (2003). 1054.52001 10.1016/S0001-8708(03)00005-7

58.

[58] Trudinger, N.S. and Wang, X.: The affine Plateau problem. J. Amer. Math. Soc. 18, 253–289 (2005). 1229.53049 10.1090/S0894-0347-05-00475-3[58] Trudinger, N.S. and Wang, X.: The affine Plateau problem. J. Amer. Math. Soc. 18, 253–289 (2005). 1229.53049 10.1090/S0894-0347-05-00475-3

59.

[59] Trudinger, N.S. and Wang, X.: Boundary regularity for the Monge-Ampre and affine maximal surface equations. Ann. of Math. 167, 993–1028 (2008). 1176.35046 10.4007/annals.2008.167.993[59] Trudinger, N.S. and Wang, X.: Boundary regularity for the Monge-Ampre and affine maximal surface equations. Ann. of Math. 167, 993–1028 (2008). 1176.35046 10.4007/annals.2008.167.993

60.

[60] Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962). 0108.31603 10.7146/math.scand.a-10655[60] Wendel, J.G.: A problem in geometric probability. Math. Scand. 11, 109–111 (1962). 0108.31603 10.7146/math.scand.a-10655

61.

[61] Werner, E. and Ye, D.: New $L_p$ affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008). 1155.52002 10.1016/j.aim.2008.02.002[61] Werner, E. and Ye, D.: New $L_p$ affine isoperimetric inequalities. Adv. Math. 218, 762–780 (2008). 1155.52002 10.1016/j.aim.2008.02.002

62.

[62] Zähle, M.: A kinematic formula and moment measures of random sets. Math. Nachr. 149, 325–340 (1990). 0725.60014 10.1002/mana.19901490125[62] Zähle, M.: A kinematic formula and moment measures of random sets. Math. Nachr. 149, 325–340 (1990). 0725.60014 10.1002/mana.19901490125
Julian Grote and Elisabeth Werner "Approximation of smooth convex bodies by random polytopes," Electronic Journal of Probability 23(none), 1-21, (2018). https://doi.org/10.1214/17-EJP131
Received: 20 June 2017; Accepted: 22 December 2017; Published: 2018
Vol.23 • 2018
Back to Top