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Abstract

Let K be a convex body in Rn and f : ∂K → R+ a continuous, strictly positive
function with

∫
∂K

f(x)dµ∂K(x) = 1. We give an upper bound for the approximation of

K in the symmetric difference metric by an arbitrarily positioned polytope Pf in Rn

having a fixed number of vertices. This generalizes a result by Ludwig, Schütt and
Werner [36]. The polytope Pf is obtained by a random construction via a probability
measure with density f . In our result, the dependence on the number of vertices is
optimal. With the optimal density f , the dependence on K in our result is also optimal.
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1 Introduction and main result

Much research has been devoted to the subject of approximation of convex bodies
by polytopes. This is due to the fact that it is fundamental in convex geometry and has
applications in stochastic geometry, complexity, geometric algorithms and many more.
We refer to, e.g., [13, 15, 17, 18, 19, 24, 25, 45, 47] for further details.

Random constructions are especially advantageous: when one considers random
approximation, many metrics, namely metrics related to quermassintegrals of a convex
body (see, e.g., [17, 50]), carry essentially the same amount of information as for best
approximation.

Volume, surface area and also the mean width are such quermassintegrals. Metrics
related to those quermassintegrals are the symmetric difference metric and the surface
deviation which reflect the volume deviation, respectively the surface deviation, of the
approximating and approximated objects. But many other metrics have been considered
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Approximation of smooth convex bodies by random polytopes

as well. In particular, approximation of a convex body K by inscribed or circumscribed
polytopes with respect to these metrics has been studied extensively and many of the
major questions have been resolved. The surveys and books by Gruber [23, 26, 27]
and the references cited therein and, e.g., [2, 7, 9, 10, 22, 20, 33, 46, 49, 51, 55] are
excellent sources in this context.

Typically, approximation by polytopes involves side conditions, like a prescribed
number of vertices, or, more generally, k-dimensional faces [7]. Most often in the
literature, it is required that the body contains the approximating polytope or vice versa.
In this paper, we drop this condition and investigate the approximation of the body by
arbitrarily positioned polytopes. Results in this direction for the Euclidean ball were
obtained in [36] for the symmetric difference metric and in [30] for the surface deviation.
These results show that one gains by a factor of dimension if one drops the restriction.

Here, we discuss the symmetric difference metric, which for convex bodies K and L
in Rn is defined as

voln(K∆L) := voln (K ∪ L)− voln (K ∩ L) . (1.1)

In the case when K is the n-dimensional unit ball Bn it was proved by Ludwig, Schütt
and Werner [36] that there exists an arbitrarily positioned polytope P having N vertices
such that for all sufficiently large N ,

voln(Bn∆P ) ≤ aN−
2

n−1 κn. (1.2)

Here, a ∈ (0,∞) is an absolute constant and κn = voln (Bn) is the volume of the n-
dimensional unit ball. The corresponding result for convex bodies K in Rn that are C2

+,
i.e., have twice continuously differentiable boundary ∂K with strictly positive Gaussian
curvature κK(x), x ∈ ∂K, then follows from (1.2), together with a result by Ludwig [33].
Indeed, it was proved in [33] that there exists a constant ldeln ∈ (0,∞) only depending
on the dimension n such that

lim
N→∞

inf{voln(K∆P ) : f0(P ) ≤ N}
N−

2
n−1

=
1

2
ldeln as(K)

n+1
n−1 , (1.3)

where f0(P ) denotes the number of vertices of P and

as(K) = as1(K) :=

∫
∂K

κK(x)
1

n+1 dµ∂K(x)

is the affine surface area of K. Here, µ∂K is the surface measure on ∂K. The affine
surface area [6, 32, 37, 54] is an important affine invariant from convex and differential
geometry with applications in, e.g., approximation theory [8, 48, 55], the theory of
valuations [3, 28, 29, 35, 34, 52], affine curvature flows [1, 58, 59], and has recently
been extended to spherical and hyperbolic space [4, 5]. Its related affine isoperimetric
inequality, which is equivalent to the famous Blaschke Santaló inequality (see, e.g.,
[17, 50]), says that (

as(K)

as(Bn)

) n+1
n−1

≤ voln (K)

voln (Bn)

with equality if and only if K is an ellipsoid. Thus, applying the affine isoperimetric
inequality, it follows from (1.2) and (1.3) that for sufficiently large N ,

voln(K∆P ) ≤ aN−
2

n−1 voln(K). (1.4)
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However, it is desirable to have a direct proof available for the approximation of K
without having to pass through the results of [33, 36]. Here, we do exactly that and
construct a well approximating polytope Pf that is obtained via a random construction.
It is the convex hull of randomly chosen points with respect to a probability measure
with density f . In fact, it is only via our new approach that different densities can be
considered, not just the uniform distribution as in [36]. The optimal density is related to
the affine surface area (see below). With this optimal density, the dependence on K in
our result is optimal. Our result also gives the optimal dependence on the number of
vertices.

Our main theorem reads as follows.

Theorem 1.1. Let K be a convex body in Rn, n ≥ 2, that is C2
+. Let f : ∂K → R+ be a

continuous and strictly positive function with∫
∂K

f(x)dµ∂K(x) = 1.

Then, for sufficiently large N there exists a polytope Pf in Rn having N vertices such
that

voln(K∆Pf ) ≤ aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x), (1.5)

where a ∈ (0,∞) is an absolute constant.

Remark 1.2. In particular, (1.4) yields that

ldeln ≤ C, (1.6)

where C ∈ (0,∞) is an absolute constant. On the other hand, it was shown by Böröczky
[7] that

voln(Bn∆P ) ≥ 1

67e2π

1

n
N−

2
n−1 κn

for all arbitrarily positioned polytopes P with at most N vertices. Combining the latter
estimate with (1.6), one deduces that there are absolute constants C1, C2 ∈ (0,∞), such
that

C1
1

n
≤ ldeln ≤ C2.

Thus, there is a gap between upper and lower bound by a factor of dimension. Adopting
the methods used in the proof of Theorem 1.1 below, it might be possible to show that
also the corresponding lower bound holds true, that is,

voln(K∆Pf ) ≥ aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x).

This would imply that with a random method one can not achieve a smaller lower bound
than the upper one given in (1.5), an indication that the upper bound may be of the right
order.

Simultaneously, it might be even possible to get rid of the factor 1/n in Böröczky’s
result without using a random approximation, that is, one would need to find a way to
get an effective approximation by some deterministic polytope.

We leave both issues to further research.
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Before we turn to the proof of the theorem, we want to discuss the expression on the
right hand side of (1.5) for various densities.

It has been shown in [55] that the minimum on the right hand side of (1.5) is attained
for the normalized affine surface area measure with density

fas(x) :=
κK(x)

1
n+1∫

∂K

κK(x)
1

n+1 dµ∂K(x)
.

In this case, the theorem yields that

voln(K∆Pf ) ≤ aN−
2

n−1 as(K)
n+1
n−1 . (1.7)

This shows that choosing the vertices of the random polytope according to curvature is
optimal.

Let now K be a convex body in Rn such that its centroid
∫
K

xdx/ voln(K) is at the

origin. For x ∈ ∂K, we denote the corresponding outer unit normal by NK(x). Put

fα,β(x) :=
〈x,NK(x)〉ακK(x)β∫

∂K

〈x,NK(x)〉ακK(x)βdµ∂K(x)
,

where α, β ∈ R. For p ∈ [−∞,∞], p 6= −n, let

asp(K) :=

∫
∂K

κK(x)
p

n+p

〈x,NK(x)〉
n(p−1)
n+p

dµ∂K(x)

be the p-affine surface area of K. Then, the application of Theorem 1.1 gives

voln(K∆Pf ) ≤ aN−
2

n−1

∫
∂K

κK(x)
1−2β
n−1

〈x,NK(x)〉
2α
n−1

dµ∂K(x)

×

 ∫
∂K

〈x,NK(x)〉ακK(x)βdµ∂K(x)

 2
n−1

.

The second integral is a p-affine surface area if and only if

α = −n(p− 1)

n+ p
and β =

p

n+ p
.

In this case, we obtain

voln(K∆Pf ) ≤ aN−
2

n−1 asp(K)
2

n−1 asq(K),

where q = n−p
n+p−2 . The p-affine surface area, an extension of the classical affine surface

area, was introduced by Lutwak for p > 1 in [38] and has been extended to all other
p in [56]. It is central to the rapidly developing Lp Brunn Minkowski theory, e.g.,
[12, 14, 31, 42, 57, 61].

The third measure of interest is the surface measure itself given by the constant
density

fsm(x) :=
1

voln−1(∂K)
,
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where voln−1(·) describes the (n− 1)-dimensional Hausdorff measure of the argument
set. For this measure, Theorem 1.1 yields

voln(K∆Pf ) ≤ aN−
2

n−1 voln−1(∂K)
2

n−1

∫
∂K

κK(x)
1

n−1 dµ∂K(x).

The remaining paper is organized as follows. In Section 2 we present results that are
needed for the proof of the main theorem. Its proof is given in Section 3.

2 Preliminaries

We start this section by introducing some more necessary notation. For u ∈ Sn−1 and
h ≥ 0, let H := H(u, h) be the hyperplane orthogonal to u and at distance h from the
origin. Let Pf be the probability measure on ∂K given by

dPf = f(x)dµ∂K(x).

Let H ∩K 6= ∅. Then, Pf∂K∩H is the probability measure on ∂K ∩H given by

dPf∂K∩H =
f(x)dµ∂K∩H∫

∂K∩H
f(x)dµ∂K∩H

.

For points x1, . . . , xi ∈ Rn, i ∈ N, we denote by [x1, . . . , xi] the convex hull of the
underlying point set. Moreover, let ωn denote the (n−1)-dimensional Hausdorff measure
of the unit sphere Sn−1.

In order to prove the main theorem, we need the following results. The first two were
proved in [55].

Theorem 2.1 ([55]). Denote by E[f,N ] the expected volume of the convex hull of N
points chosen randomly on ∂K with respect to Pf . Then,

lim
N→∞

voln(K)− E[f,N ]

N−
2

n−1

=
(n− 1)

n+1
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!ω

2
n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x).

Lemma 2.2 ([55]). Let σ = (σi)1≤i≤n be a sequence of signs, that is σi ∈ {−1, 1},
1 ≤ i ≤ n. We set

Kσ := {x = (x1, . . . , xn) ∈ K : sign(xi) = σi, 1 ≤ i ≤ n}.

Then,

PNf ({0 /∈ [x1, . . . , xN ]}) ≤ 2n

1−min
σ

∫
∂Kσ

f(x)dµ∂K

N

,

where PNf indicates that we choose N points on ∂K with respect to Pf .

We also need the following ‘Blaschke-Petkanchin-type’ formula that appears as a
special case of a result in [62]; an alternative and simpler proof for this version is also
given in [48].
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Theorem 2.3 ([62]). Let g(x1, . . . , xn) be a continuous, non-negative function. Then,∫
∂K

· · ·
∫
∂K

g(x1, . . . , xn)dPf (x1) · · ·dPf (xn)

= (n− 1)!

∫
Sn−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

g(x1, . . . , xn) voln−1([x1, . . . , xn])

×
n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)dhdµSn−1(u)

with

lH(xj) := ‖projH NK(xj)‖−1 ,

where projH is the orthogonal projection onto the hyperplane H.

The next result is a special case of [43, equation (29)].

Lemma 2.4 ([43]). It holds that∫
Sn−2

· · ·
∫

Sn−2

(voln−1([x1, . . . , xn]))2dµSn−2(x1) · · ·dµSn−2(xn) =
n ωnn−1

(n− 1)! (n− 1)n−1
.

3 Proof of the main result

We now turn to the proof of our main theorem. As in [36] we will obtain the ap-
proximating polytope in a probabilistic way. To be more precise, we consider a convex
body that is slightly bigger than the body K and then choose N points randomly on the
boundary of the bigger body and take the convex hull of these points. Such a random
polytope exists with high probability.

Without loss of generality we can assume that the origin, denoted by 0, is in the
interior of K, namely at the center of gravity of K. Since our density functions live on
the boundary of K, we will choose the random points on ∂K and approximate a slightly
smaller body, say (1− c)K, where c := cn,N depends on the dimension n and the number
of points N and has to be carefully chosen. In fact, we choose c such that

E[f,N ] = voln((1− c)K) = (1− c)n voln(K). (3.1)

By Theorem 2.1, we get for sufficiently large N ,

voln(K)− E[f,N ] ∼ N−
2

n−1

(n− 1)
n+1
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!ω

2
n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

where for two functions g1(x) and g2(x) the relation g1(x) ∼ g2(x) means that

lim
x→∞

g1(x)

g2(x)
= 1.

Hence, with the choice (3.1) of c,

voln(K)− (1− c)n voln(K) ∼ N−
2

n−1

(n− 1)
n+1
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!ω

2
n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),
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as N →∞. This leads to

c ∼ N−
2

n−1

(n− 1)
n+1
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!ω

2
n−1

n−1

1

n voln(K)

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x), (3.2)

as N →∞. In particular, for sufficiently large N we get that

c ≥
(

1− 1

n

)
N−

2
n−1

(n− 1)
n+1
n−1 Γ

(
n+ 1 + 2

n−1

)
2(n+ 1)!ω

2
n−1

n−1

1

n voln(K)

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x). (3.3)

In what follows, we calculate the expected volume difference E[voln((1 − c)K∆PN )]

between (1− c)K and a random polytope PN := [x1, . . . , xN ] whose vertices are randomly
chosen from the boundary of K according to the probability measure Pf . Please note
that random polytopes are simplicial with probability 1. We split the proof of the main
theorem into several lemmas.

Let us recall that for fixed u ∈ Sn−1 and h ≥ 0, we denote by H := H(u, h) the
unique hyperplane orthogonal to u and at distance h from the origin. Let H+ be the
corresponding half space containing the origin and put

Pf (∂K ∩H+) :=

∫
∂K∩H+

f(x)dµ∂K . (3.4)

For fixed u ∈ Sn−1 and sufficiently large N , let ε > 0 be such that chK(u) < ε ≤ hK(u)/n,
where hK(u) := max

x∈K
〈x, u〉 is the support function of K in direction u.

In what follows, a ∈ (0,∞) will always be an absolute constant that may changes
from line to line.

Lemma 3.1. For sufficiently large N , for all ε > chK(u) sufficiently small,

E[voln((1− c)K∆PN )]

≤ a
(
N

n

)
(n− 1)!

∫
Sn−1

hK(u)∫
hK(u)−ε

(
Pf (∂K ∩H+)

)N−n
max{0, ((1− c)hK(u)− h)}

×
∫

∂K∩H

· · ·
∫

∂K∩H

(voln−1([x1, . . . , xn]))2
n∏
j=1

lH(xj)

× dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)dhdµSn−1(u).

Proof of Lemma 3.1. With the above choice of the parameter c in (3.1) we obtain for
sufficiently large N ,

voln(K \ (1− c)K) =

∫
∂K

· · ·
∫
∂K

voln(K \ PN ) dPf (x1) . . .dPf (xN ).

We combine this observation with the relation

voln((1− c)K∆PN ) = voln(K \ (1− c)K)− voln(K \ PN ) + 2 voln((1− c)K ∩ P cN )
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and Lemma 2.2 and obtain that for sufficiently large N ,

E[voln((1− c)K∆PN )]

=

∫
∂K

· · ·
∫
∂K

voln((1− c)K∆PN )dPf (x1) . . .dPf (xN )

= voln(K \ (1− c)K)−
∫
∂K

· · ·
∫
∂K

voln(K \ PN )dPf (x1) . . .dPf (xN )

+ 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )dPf (x1) . . .dPf (xN )

= 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )dPf (x1) . . .dPf (xN )

= 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )1{0∈PN}dPf (x1) . . .dPf (xN )

+ 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )1{0/∈PN}dPf (x1) . . .dPf (xN )

≤ 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )1{0∈PN}dPf (x1) . . .dPf (xN )

+ 2 voln(K)PNf ({0 /∈ [x1, . . . , xN ]})

≤ 2

∫
∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )1{0∈PN}dPf (x1) . . .dPf (xN )

+ 2 voln(K) 2n

1−min
σ

∫
∂Kσ

f(x)dµ∂K

N

.

The density f is strictly positive everywhere and since the origin is in the interior of K,
the second summand is essentially of order b−N , where b > 1. Later we will see that the
first summand is of order N−

2
n−1 and thus it is enough to consider the first one in what

follows.

Next, we introduce the function Φj1,...,jn : ∂K × · · · × ∂K → R as

Φj1,...,jn(x1, . . . , xN )

:=

{
0 : [xj1 , . . . , xjn ] /∈ Fn−1(PN ) or 0 /∈ PN

voln((1− c)K ∩ P c
N ∩ cone(xj1 , . . . , xjn))1{0∈PN} : [xj1 , . . . , xjn ] ∈ Fn−1(PN ) and 0 ∈ PN ,

where Fn−1(PN ) denotes the set of facets of PN and

cone(x1, . . . , xn) :=

{
n∑
i=1

ai xi : ai ≥ 0, 1 ≤ i ≤ n

}
.

For all random polytopes PN that contain the origin as an interior point, we have that

Rn =
⋃

[xj1 ,...,xjn ]∈Fn−1(PN )

cone(xj1 , . . . , xjn).
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Moreover,

PN−nf ({(xn+1, . . . , xN ) : [x1, . . . , xn] ∈ Fn−1(PN ) and 0 ∈ PN})

=

 ∫
∂K∩H+

f(x)dµ∂K

N−n

=
(
Pf (∂K ∩H+)

)N−n
,

where H is the hyperplane spanned by the points x1, . . . , xn and we recall the definition
of Pf (∂K ∩ H+) given in (3.4). Now, note that a random polytope is simplicial with
probability 1. Therefore, and since the set where H is not well defined has measure zero
and all N points are identically distributed, we arrive at∫

∂K

· · ·
∫
∂K

voln((1− c)K ∩ P cN )1{0∈PN}dPf (x1) . . .dPf (xN )

=

∫
∂K

· · ·
∫
∂K

∑
{j1,...,jn}⊆{1,...,N}

Φj1,...,jn(x1, . . . , xN )dPf (x1) . . .dPf (xN )

=

(
N

n

) ∫
∂K

· · ·
∫
∂K

Φ1,...,n(x1, . . . , xN )dPf (x1) . . .dPf (xN )

=

(
N

n

) ∫
∂K

· · ·
∫
∂K

(
Pf (∂K ∩H+)

)N−n
× voln((1− c)K ∩H− ∩ cone(x1, . . . , xn))1{0∈PN}dPf (x1) . . .dPf (xn)

≤
(
N

n

) ∫
∂K

· · ·
∫
∂K

(
Pf (∂K ∩H+)

)N−n
× voln((1− c)K ∩H− ∩ cone(x1, . . . , xn))dPf (x1) . . .dPf (xn).

Theorem 2.3 now yields that for sufficiently large N ,

E[voln((1− c)K∆PN )]

≤ a
(
N

n

)
(n− 1)!

∫
Sn−1

∞∫
0

∫
∂K∩H

· · ·
∫

∂K∩H

(
Pf (∂K ∩H+)

)N−n
voln−1([x1, . . . , xn])

× voln((1− c)K ∩H− ∩ cone(x1, . . . , xn))

n∏
j=1

lH(xj)

× dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)dhdµSn−1(u).

Notice that h ∈ [0, hK(u)], where we recall that hK(u) is the support function of K in
direction u. The same arguments as in [36, page 9] and [48, page 2255] show that it is
enough to bound the range of integration for h from below by hK(u) − ε, where ε > 0

is sufficiently small, since the remaining expression decreases exponentially fast. In
particular, for sufficiently large N we can choose ε such that chK(u) < ε ≤ hK(u)/n.
Similar to [36, page 9],

voln((1− c)K ∩H− ∩ cone(x1, . . . , xn))

≤ h

n
voln−1([x1, . . . , xn]) ·max

{
0,

(
(1− c)hK(u)

h

)n
− 1

}
.

Since c is of the order N−
2

n+1 and ε ≤ hK(u)/n, for sufficiently large N ,

(1− c)hK(u)− h
h

≤ (1− c)hK(u)− hK(u) + ε

hK(u)− ε
≤

1
n − c
1− 1

n

≤ 1

n− 1
.
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Approximation of smooth convex bodies by random polytopes

Thus,

1

n

[(
(1− c)hK(u)

h

)n
− 1

]
=

1

n

[(
h+ (1− c)hK(u)− h

h

)n
− 1

]
=

1

n

[(
1 +

(1− c)hK(u)− h
h

)n
− 1

]
=

1

n

[
n

(1− c)hK(u)− h
h

+
n(n− 1)

2

(
(1− c)hK(u)− h

h

)2

+ · · ·

]

≤ (1− c)hK(u)− h
h

·
∞∑
k=0

nk

k!

(
(1− c)hK(u)− h

h

)k
≤ exp

(
n

n− 1

)
(1− c)hK(u)− h

h

≤ a (1− c)hK(u)− h
h

.

Therefore, for sufficiently large N ,

voln((1− c)K ∩H− ∩ cone(x1, . . . , xn))

≤ a voln−1([x1, . . . , xn]) ·max{0, ((1− c)hK(u)− h)}.

This proves the lemma.

To evaluate the innermost integral in the expression of the foregoing lemma, we first
recall the necessary notation and results we need from [48].

Let x(u) be the point on ∂K with fixed outer unit normal vector u ∈ Sn−1. Since K

has a twice differentiable boundary, there is a paraboloid Q(x(u))
2 given by a quadratic

form b2 := b
(x(u),x(u))
2 that osculates ∂K at x(u). An explicit construction can be found in,

e.g., [48, page 2265].
Let Rn = (R+×Sn−2)×R, and denote by (rv, z) a point in Rn, where v ∈ Sn−2, r ∈ R+

and z ∈ R. We identify the support plane of ∂K at x(u) with the plane z = 0 and x(u)

with the origin, so that K is contained in the half space corresponding to z ≥ 0. Please
note also that h = hK(u) − z by construction. The following lemma that summarizes
results from [48, pages 2265 and 2271] will be crucial.

Lemma 3.2 ([48]). Let δ > 0 be sufficiently small. Then, there exists λ > 0, only
depending on δ and K, such that for each boundary point x(u) ∈ ∂K the λ-neighbourhood
Uλ of x(u) in ∂K defined by projRn−1 Uλ = λBn−1 can be represented by a convex
function z := g(rv) := g(x(u))(rv) that satisfies

(1 + δ)−
1
2 b2(v)−

1
2 z

1
2 ≤ r ≤ (1 + δ)

1
2 b2(v)−

1
2 z

1
2 (3.5)

and

(1 + δ)−
3
2 2−1 b2(v)−

1
2 z−

1
2 ≤ lH(rv)

〈v,NK∩H(rv)〉
≤ (1 + δ)

3
2 2−1 b2(v)−

1
2 z−

1
2 (3.6)

in this neighborhood Uλ. Here, for fixed rv, H is the hyperplane that contains (rv, g(rv))

and is parallel to Rn−1 and NK∩H(rv) is the outer unit normal vector to ∂K ∩H at this
point.

Moreover, for the density f , for all p ∈ Uλ, it holds that

(1 + δ)−1 f(x(u)) ≤ f(p) ≤ (1 + δ)f(x(u)). (3.7)
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We next estimate the innermost integral of Lemma 3.1.

Lemma 3.3. Let x(u) be the point on ∂K with fixed outer unit normal vector u ∈ Sn−1
and denote by z the distance fromH to the support plane of ∂K at x(u), i.e., z = hK(u)−h.
Then, for all sufficiently small δ > 0,∫

∂K∩H

· · ·
∫

∂K∩H

(voln−1([x1, . . . , xn]))2
n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)

≤ (1 + δ)
n(n+3)

2 2
n2−n−2

2 z
n2−n−2

2
n ωnn−1

(n− 1)! (n− 1)n−1
f(x(u))n κK(x(u))−

n
2−1

+ δO(z
n2−n−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ.

Proof of Lemma 3.3. The proof follows closely the arguments given in [48]. We first
replace the random points xi, i ∈ {1, . . . , n}, chosen on ∂K ∩H by random points chosen

on the intersection of H with the paraboloid Q(x(u))
2 . In order to do this, we write each

point xi, i ∈ {1, . . . , n}, as xi = r(vi)vi, where r(vi) is the radial function of K ∩H with
estimates given above in (3.5). The result presented in [48, equation (68)] then implies
that

|voln−1([x1, . . . , xn])− voln−1([r2(v1)v1, . . . , r2(vn)vn])| ≤ δO(z
n−1
2 ),

where r2(v) := b2(v)−
1
2 z

1
2 , δ > 0 is arbitrarily small and the constant in O(·) can be

chosen independently of x(u) and δ. We therefore obtain that

∫
∂K∩H

· · ·
∫

∂K∩H

(voln−1([x1, . . . , xn]))2
n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)

=

∫
∂K∩H

· · ·
∫

∂K∩H

[
(voln−1([r2(v1)v1, . . . , r2(vn)vn]))2 + δO(zn−1)

]
×

n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn),

where the constant in O(·) can be chosen independently of x(u) and δ.

We first evaluate the integral involving the O(·) term. Notice that the density f is
uniformly bounded and that by (3.6), integration concerning lH(xj)dPf∂K∩H (xj) results in

terms of order O(z−
1
2 ) voln−2(∂K∩H). Since, in view of (3.5), voln−2(∂K∩H) = O(z

n−2
2 ),

∫
∂K∩H

· · ·
∫

∂K∩H

δO(zn−1)

n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)

= δO(zn−1)O(z−
n
2 )(voln−2(∂K ∩H))n

= δO(zn−1−
n
2 +nn−2

2 )

= δO(z
n2−n−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ.

Now, we turn to the first summand. Rewriting the integral over Sn−2 and using (3.5),
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(3.6) and (3.7), we get as in [48, page 2274] that∫
∂K∩H

· · ·
∫

∂K∩H

(voln−1([r2(v1)v1, . . . , r2(vn)vn]))2
n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)

=

∫
Sn−2

· · ·
∫

Sn−2

(voln−1([r2(v1)v1, . . . , r2(vn)vn]))2

×
n∏
j=1

f(r(vj)vj)
lH(r(vj)vj) r(vj)

n−2

〈vj , NK∩H(r(vj)vj)〉
dµSn−2(v1) · · ·dµSn−2(vn)

≤ (1 + δ)
n(n+3)

2 2−n z−n f(x(u))n
∫

Sn−2

· · ·
∫

Sn−2

(voln−1([r2(v1)v1, . . . , r2(vn)vn]))2

×
n∏
j=1

r2(vj)
n−1 dµSn−2(v1) · · ·dµSn−2(vn),

where again r2(v) = b2(v)−
1
2 z

1
2 . Define the ellipsoid E as the (n− 1)-dimensional convex

body with radial function b2(v)−
1
2 , i.e., E is the intersection of Q(x(u))

2 with the hyperplane
z = 1. Thus, since voln−1 is homogeneous, the integral appearing in the latter expression
can be rewritten as an integral where the random points are chosen in the interior of E
according to the uniform distribution. That is,∫
Sn−2

· · ·
∫

Sn−2

(voln−1([r2(v1)v1, . . . , r2(vn)vn]))2
n∏
j=1

r2(vj)
n−1 dµSn−2(v1) · · ·dµSn−2(vn)

= z
n(n−1)

2

∫
Sn−2

· · ·
∫

Sn−2

b2(u1)
− 1

2∫
0

· · ·
b2(un)

− 1
2∫

0

(voln−1([b2(u1)−
1
2 z

1
2u1, . . . , b2(un)−

1
2 z

1
2un]))2

×
n∏
j=1

((n− 1)tn−2j ) dt1 · · ·dtndµSn−2(u1) · · ·dµSn−2(un)

= z
n(n−1)

2 +n−1
∫

Sn−2

· · ·
∫

Sn−2

b2(u1)
− 1

2∫
0

· · ·
b2(un)

− 1
2∫

0

(voln−1([b2(u1)−
1
2u1, . . . , b2(un)−

1
2un]))2

×
n∏
j=1

((n− 1)tn−2j ) dt1 · · ·dtndµSn−2(u1) · · ·dµSn−2(un)

= z
n2+n−2

2 (n− 1)n
∫
E

· · ·
∫
E

(voln−1([x̃1, . . . , x̃n]))2dx1 · · ·dxn,

where x̃i is the projection of the point xi onto the boundary of E, i.e.,

x̃i =
xi
‖xi‖

rE

(
xi
‖xi‖

)
.

Here, rE is the radial function of E and ‖ · ‖ is the Euclidean norm, with 0 at the center
of E. The random elements dxi as well as voln−1 are homogeneous and invariant with
respect to volume preserving affinities acting in the affine subspace {z = 1}. Moreover,
since the volume of E equals 2

n−1
2 κK(x(u))−

1
2κn−1, we get by first transforming the

ellipsoid E into the Euclidean ball Bn−1 (using a suitable affinity), then again rewriting
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the integral as an integral over the sphere Sn−2 and finally using Lemma 2.4,

z
n2+n−2

2 (n− 1)n
∫
E

· · ·
∫
E

(voln−1([x̃1, . . . , x̃n]))2dx1 · · ·dxn

= z
n2+n−2

2

(
2
n−1
2 κK(x(u))−

1
2

)2 (
2
n−1
2 κK(x(u))−

1
2

)n
×
∫

Sn−2

· · ·
∫

Sn−2

(voln−1([x1, . . . , xn]))2dµSn−2(x1) · · ·dµSn−2(xn)

= z
n2+n−2

2 2
n2+n−2

2 κK(x(u))−
n
2−1

n ωnn−1
(n− 1)! (n− 1)n−1

.

Combining the above calculations yields that for all sufficiently small δ > 0 it holds that∫
∂K∩H

· · ·
∫

∂K∩H

(voln−1([x1, . . . , xn]))2
n∏
j=1

lH(xj)dPf∂K∩H (x1) · · ·dPf∂K∩H (xn)

≤ (1 + δ)
n(n+3)

2 2
n2−n−2

2 z
n2−n−2

2
nωnn−1

(n− 1)! (n− 1)n−1
f(x(u))n κK(x(u))−

n
2−1

+ δO(z
n2−n−2

2 ),

where the constant in O(·) can be chosen independently of x(u) and δ. This proves the
lemma.

Now, we further analyze the expression appearing in Lemma 3.1. In order to do this,
we put s := Pf (∂K ∩H−), i.e., Pf (∂K ∩H+) = 1− s. The results stated in [48, equation
(71)] also imply the following estimates.

Lemma 3.4 ([48]). For all sufficiently small δ > 0, it holds that

(1 + δ)−n 2
n−1
2 f(x(u))κK(x(u))−

1
2 κn−1 z

n−1
2

≤ s ≤ (1 + δ)n+1 2
n−1
2 f(x(u))κK(x(u))−

1
2 κn−1 z

n−1
2

(3.8)

Therefore,

z ≤ (1 + δ)
2n
n−1

κK(x(u))
1

n−1 (n− 1)
2

n−1

2 f(x(u))
2

n−1 ω
2

n−1

n−1

s
2

n−1 (3.9)

and

dz

ds
≤ (1 + δ)n

κK(x(u))
1
2 2−

n−3
2

f(x(u))ωn−1
z−

n−3
2 . (3.10)

Using once more results from [48], we continue the proof of the main theorem as
follows.

Lemma 3.5. For sufficiently large N and sufficiently small δ > 0, we have

E[voln((1− c)K∆PN )] ≤ I + II,

where

I := (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1
1∫

0

(1− s)N−n sn−1 (z − chK(u)) dsdµSn−1(u)
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and

II := (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1

×
s(chK(u))∫

0

(1− s)N−n sn−1 (chK(u)− z) dsdµSn−1(u).

Here, z = z(s) and

s(chK(u)) :=

∫
∂K∩H−

f(x)dµ∂K ,

where H is the unique hyperplane with unit normal vector u ∈ Sn−1 and distance
(1− c)hK(u) from the origin and H− the corresponding half space that does not contain
the origin.

Proof of Lemma 3.5. Observe first that

max{0, ((1− c)hK(u)− h)} = 0 if h > (1− c)hK(u).

This, Lemma 3.1, Lemma 3.3 and the substitution z = hK(u)− h then yield that

E[voln((1− c)K∆PN )]

≤ (1 + δ)
n(n+3)

2 a 2
n2−n−2

2

(
N

n

)
nωnn−1

(n− 1)n−1

∫
Sn−1

f(x(u))n κK(x(u))−
n
2−1

×
(1−c)hK(u)∫
hK(u)−ε

(
Pf (∂K ∩H+)

)N−n
z
n2−n−2

2 ((1− c)hK(u)− h)dhdµSn−1(u)

+ δ

(
N

n

)
(n− 1)!

∫
Sn−1

(1−c)hK(u)∫
hK(u)−ε

(
Pf (∂K ∩H+)

)N−n
O(z

n2−n−2
2 )

× ((1− c)hK(u)− h)dhdµSn−1(u)

= (1 + δ)
n(n+3)

2 a 2
n2−n−2

2

(
N

n

)
nωnn−1

(n− 1)n−1

∫
Sn−1

f(x(u))n κK(x(u))−
n
2−1

×
ε∫

chK(u)

(
Pf (∂K ∩H+)

)N−n
z
n2−n−2

2 (z − chK(u))dzdµSn−1(u)

+ δ

(
N

n

)
(n− 1)!

∫
Sn−1

ε∫
chK(u)

(
Pf (∂K ∩H+)

)N−n
O(z

n2−n−2
2 )(z − chK(u))dzdµSn−1(u).

As the later calculations will show, the order of both summands is N−
2

n−1 . Since δ is
arbitrarily small, it is enough to consider the first summand in what follows.

We use (3.10) and then (3.9) to change from z
(n−1)2

2 to sn−1 and obtain that, for
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sufficiently large N ,

E[voln((1− c)K∆PN )]

≤ (1 + δ)
n(n+3)

2 +n a 2
n2−n−2

2 2−
n−3
2

(
N

n

)
nωnn−1

(n− 1)n−1

∫
Sn−1

f(x(u))n−1 κK(x(u))−
n
2−

1
2

×
1∫

s(chK(u))

(1− s)N−n z
n2−n−2−n+3

2 (z − chK(u))dsdµSn−1(u)

≤ (1 + δ)
n2+5n

2 a 2
n2−2n+1

2

(
N

n

)
nωn−1n−1

(n− 1)n−1

∫
Sn−1

f(x(u))n−1 κK(x(u))−
n
2−

1
2

×
1∫

s(chK(u))

(1− s)N−n z
(n−1)2

2 (z − chK(u))dsdµSn−1(u)

≤ (1 + δ)
n2+5n

2 +n(n−1) a 2
(n−1)2

2 2−
(n−1)2

2

(
N

n

)
n

∫
Sn−1

κK(x(u))−1

×
1∫

s(chK(u))

(1− s)N−n sn−1 (z − chK(u))dsdµSn−1(u)

≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1

×
1∫

s(chK(u))

(1− s)N−n sn−1 (z − chK(u))dsdµSn−1(u)

= (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1
1∫

0

(1− s)N−n sn−1 (z − chK(u)) dsdµSn−1(u)

+ (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1

×
s(chK(u))∫

0

(1− s)N−n sn−1 (chK(u)− z) dsdµSn−1(u).

This proves the lemma in view of the definitions of I and II.

We start with the first term.

Lemma 3.6. For sufficiently large N and sufficiently small δ > 0, we have that

I ≤ (1 + δ)
3n2+3n

2 aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

where a ∈ (0,∞) is an absolute constant.

Proof of Lemma 3.6. We apply (3.9) and (3.3), to get that for all sufficiently small δ > 0
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and sufficiently large N ,

I ≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n

2

(n− 1)
2

n−1

ω
2

n−1

n−1

[
(1 + δ)

2n
n−1

∫
Sn−1

κK(x(u))−1+
1

n−1

f(x(u))
2

n−1

dµSn−1(u)

×
1∫

0

(1− s)N−n sn−1+
2

n−1 ds

−
(

1− 1

n

)
N−

2
n−1

(n− 1) Γ
(
n+ 1 + 2

n−1

)
(n+ 1)!

1

n voln(K)

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x)

×
∫

Sn−1

hK(u)κK(x(u))−1dµSn−1(u)

1∫
0

(1− s)N−n sn−1 ds

]
.

For u ∈ Sn−1, let x = x(u) ∈ ∂K be such that NK(x) = u. Then, the relation dµSn−1(u) =

κK(x)dµ∂K(x) gives that

n voln(K) =

∫
∂K

〈x,NK(x)〉dµ∂K(x) =

∫
∂K

hK(u(x))dµ∂K(x) =

∫
Sn−1

hK(u)

κK(x(u))
dµSn−1(u)

(3.11)

and that ∫
Sn−1

κK(x(u))−1+
1

n−1

f(x(u))
2

n−1

dµSn−1(u) =

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x).

We use those, together with the definition of the Beta function next and arrive at

I ≤ (1 + δ)
3n2+3n

2 a

(
N

n

)
n

2

(n− 1)
2

n−1

ω
2

n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x)

×

[
(1 + δ)

2n
n−1

Γ(N − n+ 1)Γ
(
n+ 2

n−1

)
Γ
(
N + 1 + 2

n−1

)
−
(

1− 1

n

)
N−

2
n−1

(n− 1)Γ
(
n+ 1 + 2

n−1

)
(n+ 1)!

Γ(N − n+ 1)Γ (n)

Γ (N + 1)

]

= (1 + δ)
3n2+3n

2 a
n

2

(
N

n

)
(n− 1)

2
n−1

ω
2

n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x)
Γ(N − n+ 1)Γ

(
n+ 2

n−1

)
Γ
(
N + 1 + 2

n−1

)
×

[
(1 + δ)

2n
n−1 −

(
1− 1

n

)
N−

2
n−1

(n− 1)
(
n+ 2

n−1

)
n(n+ 1)

Γ
(
N + 1 + 2

n−1

)
Γ (N + 1)

]
,

where in the last equality we have also used that

Γ

(
n+ 1 +

2

n− 1

)
= Γ

(
n+

2

n− 1

)(
n+

2

n− 1

)
.

Now, observe that for sufficiently large N ,

Γ(N − n+ 1)Γ
(
n+ 2

n−1

)
Γ
(
N + 1 + 2

n−1

) ∼ 1(
N
n

)
nN

2
n−1

and Γ(N + 1 +
2

n− 1
) ∼ N

2
n−1 Γ (N + 1) .
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Thus, we obtain that for sufficiently large N and sufficiently small δ,

I ≤ (1 + δ)
3n2+3n

2 aN−
2

n−1
(n− 1)

2
n−1

ω
2

n−1

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x)

×

[
(1 + δ)

2n
n−1 −

(
1− 1

n

) (n− 1)
(
n+ 2

n−1

)
n(n+ 1)

]

≤ (1 + δ)
3n2+3n

2 aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

where in the last inequality we have also used that ω
2

n−1

n−1 ∼ 1
n and that (n− 1)

2
n−1 ≤ 2.

Now, we deal with the second summand in Lemma 3.5.

Lemma 3.7. For sufficiently large N and sufficiently small δ > 0, we have that

II ≤ (1 + δ)
3n2+3n

2 aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

where a ∈ (0,∞) is an absolute constant.

Proof of Lemma 3.7. By definition of II,

II = (1 + δ)
3n2+3n

2 a

(
N

n

)
n

∫
Sn−1

κK(x(u))−1

×
s(chK(u))∫

0

(1− s)N−n sn−1 (chK(u)− z) dsdµSn−1(u),

where a ∈ (0,∞) is an absolute constant. First of all, notice that by (3.2) we get that

c ≤ a 1

voln(K)N
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x). (3.12)

By Lemma 3.4 and again by (3.2),

s(chK(u)) ≤ (1 + δ)n+1 2
n−1
2 κn−1

f(x(u)) hK(u)
n−1
2

κK(x(u))
1
2

c
n−1
2

≤ (1 + δ)n+1 e
1
12 n

e N

f(x(u)) hK(u)
n−1
2

κK(x(u))
1
2


∫
∂K

κK(x)
1

n−1

f(x)
2

n−1
dµ∂K(x)

n voln(K)


n−1
2

,

(3.13)

since it has been shown in [36] that

(
n− 1

n+ 1

) 2
n−1

∼ 1

e
and

Γ
(
n+ 1 + 2

n−1

)
n!


n−1
2

≤ e 1
12n.

Now, we distinguish two cases.

Case 1: s(chK(u)) ≤ (n−1)
n−1
n

n
1

2(n−1) N
.
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The function (1− s)N−nsn−1 has its maximum at n−1
N−1 and (n−1)

n−1
n

n
1

2(n−1) N
≤ n−1

N−1 . Therefore,

(1− s)N−nsn−1 is increasing on

[
0, (n−1)

n−1
n

n
1

2(n−1) N

]
and thus, since

(
N
n

)
n ∼ Nnen√

2π
√
n nn−1

,

(
N

n

)
n

s(chK(u))∫
0

(1− s)N−n sn−1 (chK(u)− z) ds

≤ c hK(u)

(
N

n

)
n

s(chK(u))∫
0

(1− s)N−n sn−1ds

≤ c hK(u)

(
N

n

)
n s(chK(u))

(
1− (n− 1)

n−1
n

n
1

2(n−1) N

)N−n (
(n− 1)

n−1
n

n
1

2(n−1) N

)n−1

≤ a c hK(u)
Nnen√

2π
√
n nn−1

(n− 1)
n−1
n

n
1

2(n−1) N

(
1− (n− 1)

n−1
n

n
1

2(n−1) N

)N−n (
(n− 1)

n−1
n

n
1

2(n−1) N

)n−1

≤ a c hK(u)
en

n
exp

(
− (N − n)(n− 1)

n−1
n

n
1

2(n−1) N

)

≤ a c hK(u)

n
,

where we used in the last step that (n−1)
n−1
n

n
1

2(n−1)
∼ n. Hence, with (3.12) and (3.11),

II ≤ (1 + δ)
3n2+3n

2 a
c

n

∫
Sn−1

κK(x(u))−1 hK(u)dµSn−1(u)

≤ (1 + δ)
3n2+3n

2 a N−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x),

which finishes the proof of the lemma in Case 1.

Case 2: s(chK(u)) > (n−1)
n−1
n

n
1

2(n−1) N
.

The inequality s(chK(u)) > (n−1)
n−1
n

n
1

2(n−1) N
is in view of (3.13) equivalent to

(1 + δ)n+1 n f(x(u)) hK(u)
n−1
2

e
11
12 κK(x(u))

1
2


∫
∂K

κK(x)
1

n−1

f(x)
2

n−1
dµ∂K(x)

n voln(K)


n−1
2

>
(n− 1)

n−1
n

n
1

2(n−1)

,

which is equivalent to

hK(u)

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1
dµ∂K(x)

n voln(K)
>

e
11

6(n−1) (n− 1)
2
n

(1 + δ)
2(n+1)
n−1 n

2n−1

(n−1)2

κK(x(u))
1

n−1

f(x(u))
2

n−1

.

We integrate both sides over ∂K with respect to µ∂K and get that

(1 + δ)
2(n+1)
n−1 >

e
11

6(n−1) (n− 1)
2
n

n
2n−1

(n−1)2

,
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and arrive at a contradiction, since for all n ≥ 3 the right hand side is strictly bigger
than 1 and δ can be chosen arbitrarily small. This shows that Case 2 is not possible and
therefore finishes the proof of the lemma.

Proof of Theorem 1.1. Lemma 3.6 and Lemma 3.7 imply that for sufficiently large N and
sufficiently small δ > 0,

E[voln((1− c)K∆PN )] ≤ (1 + δ)
3n2+3n

2 aN−
2

n−1

∫
∂K

κK(x)
1

n−1

f(x)
2

n−1

dµ∂K(x), (3.14)

where a ∈ (0,∞) is an absolute constant. Taking into account that we were approximating
the body (1− c)K instead of K, we need to multiply the bound (3.14) by (1− c)−n. Since

(1− c)n ≥ 1− nc,

and c → 0, as N → ∞, we have, for sufficiently large N , that (1 − c)−n ≤ a, where
a ∈ (0,∞) is an absolute constant. Finally, since the bound (3.14) holds for all δ > 0, the
theorem follows.
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