Open Access
2018 Martingales associated to peacocks using the curtain coupling
Nicolas Juillet
Electron. J. Probab. 23: 1-29 (2018). DOI: 10.1214/18-EJP138
Abstract

We consider right-continuous peacocks, that is, families of real probability measures $(\mu _t)_{t\in [0,1]}$ that are increasing in convex order. Given a sequence of time partitions we associate the sequence of martingales characterised by the fact that they are Markovian, constant on the partition intervals $[t_k,t_{k+1}[$, and such that the transition kernels at times $t_{k+1}$ are the curtain couplings of marginals $\mu _{t_k}$ and $\mu _{t_{k+1}}$. We study the limit curtain processes obtained when the mesh of the partition tends to zero and study existence, uniqueness and relevancy with respect to the original data. For any right-continuous peacock we show there exist sequences of partitions such that a limit process exists (for the finite-dimensional convergence).

Under certain additional regularity assumptions, we prove that there is a unique limit curtain process and that it is a Markovian martingale. We first study by elementary methods peacocks whose marginals correspond to uniform distributions in convex order. In this case, the results and techniques complete the results and techniques used in a parallel work by Henry-Labordère, Tan and Touzi [9]. We obtain the same type of results for all limit curtain processes associated to a class of analytic discrete peacocks, i.e., the measures $\mu _t$ are finitely supported and vary analytically in $t$.

Finally, we give examples of peacocks and sequences of partitions such that the limit curtain process is a non-Markovian martingale.

References

1.

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, second ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. 1145.35001[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré, Gradient flows in metric spaces and in the space of probability measures, second ed., Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008. 1145.35001

2.

[2] Andrew D. Barbour, Lars Holst, and Svante Janson, Poisson approximation, Oxford Studies in Probability, vol. 2, The Clarendon Press, Oxford University Press, New York, 1992, Oxford Science Publications. 0746.60002[2] Andrew D. Barbour, Lars Holst, and Svante Janson, Poisson approximation, Oxford Studies in Probability, vol. 2, The Clarendon Press, Oxford University Press, New York, 1992, Oxford Science Publications. 0746.60002

3.

[3] Mathias Beiglböck, Alexander M. G. Cox, and Martin Huesmann, Optimal transport and Skorokhod embedding, Invent. Math. 208 (2017), no. 2, 327–400. 1371.60072 10.1007/s00222-016-0692-2[3] Mathias Beiglböck, Alexander M. G. Cox, and Martin Huesmann, Optimal transport and Skorokhod embedding, Invent. Math. 208 (2017), no. 2, 327–400. 1371.60072 10.1007/s00222-016-0692-2

4.

[4] Mathias Beiglböck, Martin Huesmann, and Florian Stebegg, Root to Kellerer, Séminaire de Probabilités XLVIII, Lecture Notes in Math., vol. 2168, Springer, Cham, 2016, pp. 1–12.[4] Mathias Beiglböck, Martin Huesmann, and Florian Stebegg, Root to Kellerer, Séminaire de Probabilités XLVIII, Lecture Notes in Math., vol. 2168, Springer, Cham, 2016, pp. 1–12.

5.

[5] Mathias Beiglböck and Nicolas Juillet, On a problem of optimal transport under marginal martingale constraints, Ann. Probab. 44 (2016), no. 1, 42–106.[5] Mathias Beiglböck and Nicolas Juillet, On a problem of optimal transport under marginal martingale constraints, Ann. Probab. 44 (2016), no. 1, 42–106.

6.

[6] Jean-David Benamou and Yann Brenier, A numerical method for the optimal time-continuous mass transport problem and related problems, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), Contemp. Math., vol. 226, Amer. Math. Soc., Providence, RI, 1999, pp. 1–11.[6] Jean-David Benamou and Yann Brenier, A numerical method for the optimal time-continuous mass transport problem and related problems, Monge Ampère equation: applications to geometry and optimization (Deerfield Beach, FL, 1997), Contemp. Math., vol. 226, Amer. Math. Soc., Providence, RI, 1999, pp. 1–11.

7.

[7] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999, A Wiley-Interscience Publication.[7] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999, A Wiley-Interscience Publication.

8.

[8] Oclide José Dotto, Dilations and stochastic processes, J. Math. Anal. Appl. 118 (1986), no. 2, 410–421. 0597.60039 10.1016/0022-247X(86)90270-2[8] Oclide José Dotto, Dilations and stochastic processes, J. Math. Anal. Appl. 118 (1986), no. 2, 410–421. 0597.60039 10.1016/0022-247X(86)90270-2

9.

[9] Pierre Henry-Labordère, Xiaolu Tan, and Nizar Touzi, An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint, Stochastic Process. Appl. 126 (2016), no. 9, 2800–2834. MR3522302 1346.60058 10.1016/j.spa.2016.03.003[9] Pierre Henry-Labordère, Xiaolu Tan, and Nizar Touzi, An explicit martingale version of the one-dimensional Brenier’s theorem with full marginals constraint, Stochastic Process. Appl. 126 (2016), no. 9, 2800–2834. MR3522302 1346.60058 10.1016/j.spa.2016.03.003

10.

[10] Pierre Henry-Labordère and Nizar Touzi, An explicit martingale version of the one-dimensional Brenier theorem, Finance Stoch. 20 (2016), no. 3, 635–668.[10] Pierre Henry-Labordère and Nizar Touzi, An explicit martingale version of the one-dimensional Brenier theorem, Finance Stoch. 20 (2016), no. 3, 635–668.

11.

[11] Francis Hirsch, Christophe Profeta, Bernard Roynette, and Marc Yor, Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series, vol. 3, Springer, Milan, 2011. 1227.60001[11] Francis Hirsch, Christophe Profeta, Bernard Roynette, and Marc Yor, Peacocks and associated martingales, with explicit constructions, Bocconi & Springer Series, vol. 3, Springer, Milan, 2011. 1227.60001

12.

[12] Francis Hirsch and Bernard Roynette, On $\mathbb{R} ^d$-valued peacocks, ESAIM Probab. Stat. 17 (2013), 444–454.[12] Francis Hirsch and Bernard Roynette, On $\mathbb{R} ^d$-valued peacocks, ESAIM Probab. Stat. 17 (2013), 444–454.

13.

[13] Francis Hirsch, Bernard Roynette, and Marc Yor, Kellerer’s theorem revisited, Asymptotic Laws and Methods in Stochastics. Volume in Honour of Miklos Csorgo (Springer, ed.), Fields Institute Communications Series, 2014.[13] Francis Hirsch, Bernard Roynette, and Marc Yor, Kellerer’s theorem revisited, Asymptotic Laws and Methods in Stochastics. Volume in Honour of Miklos Csorgo (Springer, ed.), Fields Institute Communications Series, 2014.

14.

[14] Nicolas Juillet, Stability of the shadow projection and the left-curtain coupling, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 4, 1823–1843. 1356.60067 10.1214/15-AIHP700 euclid.aihp/1479373250[14] Nicolas Juillet, Stability of the shadow projection and the left-curtain coupling, Ann. Inst. Henri Poincaré Probab. Stat. 52 (2016), no. 4, 1823–1843. 1356.60067 10.1214/15-AIHP700 euclid.aihp/1479373250

15.

[15] Teturo Kamae and Ulrich Krengel, Stochastic partial ordering, Ann. Probab. 6 (1978), no. 6, 1044–1049 (1979). MR512419 0392.60012 10.1214/aop/1176995392 euclid.aop/1176995392[15] Teturo Kamae and Ulrich Krengel, Stochastic partial ordering, Ann. Probab. 6 (1978), no. 6, 1044–1049 (1979). MR512419 0392.60012 10.1214/aop/1176995392 euclid.aop/1176995392

16.

[16] Hans G. Kellerer, Markov-Komposition und eine Anwendung auf Martingale, Math. Ann. 198 (1972), 99–122. 0229.60049 10.1007/BF01432281[16] Hans G. Kellerer, Markov-Komposition und eine Anwendung auf Martingale, Math. Ann. 198 (1972), 99–122. 0229.60049 10.1007/BF01432281

17.

[17] Hans G. Kellerer, Integraldarstellung von Dilationen, Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to the memory of Antonín Špaček), Academia, Prague, 1973, pp. 341–374.[17] Hans G. Kellerer, Integraldarstellung von Dilationen, Transactions of the Sixth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes (Tech. Univ., Prague, 1971; dedicated to the memory of Antonín Špaček), Academia, Prague, 1973, pp. 341–374.

18.

[18] Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, second ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002.[18] Steven G. Krantz and Harold R. Parks, A primer of real analytic functions, second ed., Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Boston, Inc., Boston, MA, 2002.

19.

[19] Stefano Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations 28 (2007), no. 1, 85–120. 1132.60004 10.1007/s00526-006-0032-2[19] Stefano Lisini, Characterization of absolutely continuous curves in Wasserstein spaces, Calc. Var. Partial Differential Equations 28 (2007), no. 1, 85–120. 1132.60004 10.1007/s00526-006-0032-2

20.

[20] George Lowther, Fitting Martingales To Given Marginals, ArXiv e-prints (2008).[20] George Lowther, Fitting Martingales To Given Marginals, ArXiv e-prints (2008).

21.

[21] George Lowther, Properties of Expectations of Functions of Martingale Diffusions, ArXiv e-prints (2008).[21] George Lowther, Properties of Expectations of Functions of Martingale Diffusions, ArXiv e-prints (2008).

22.

[22] George Lowther, Limits of one-dimensional diffusions, Ann. Probab. 37 (2009), no. 1, 78–106. 1210.60087 10.1214/08-AOP397 euclid.aop/1234881685[22] George Lowther, Limits of one-dimensional diffusions, Ann. Probab. 37 (2009), no. 1, 78–106. 1210.60087 10.1214/08-AOP397 euclid.aop/1234881685

23.

[23] Robert J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179. 0901.49012 10.1006/aima.1997.1634[23] Robert J. McCann, A convexity principle for interacting gases, Adv. Math. 128 (1997), no. 1, 153–179. 0901.49012 10.1006/aima.1997.1634

24.

[24] Brendan Pass, On a class of optimal transportation problems with infinitely many marginals, SIAM J. Math. Anal. 45 (2013), no. 4, 2557–2575. 1278.49031 10.1137/120881427[24] Brendan Pass, On a class of optimal transportation problems with infinitely many marginals, SIAM J. Math. Anal. 45 (2013), no. 4, 2557–2575. 1278.49031 10.1137/120881427

25.

[25] Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. I, Probability and its Applications (New York), Springer-Verlag, New York, 1998, Theory.[25] Svetlozar T. Rachev and Ludger Rüschendorf, Mass transportation problems. Vol. I, Probability and its Applications (New York), Springer-Verlag, New York, 1998, Theory.

26.

[26] Volker Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423–439. 0135.18701 10.1214/aoms/1177700153 euclid.aoms/1177700153[26] Volker Strassen, The existence of probability measures with given marginals, Ann. Math. Statist. 36 (1965), 423–439. 0135.18701 10.1214/aoms/1177700153 euclid.aoms/1177700153

27.

[27] Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003.[27] Cédric Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003.
Nicolas Juillet "Martingales associated to peacocks using the curtain coupling," Electronic Journal of Probability 23(none), 1-29, (2018). https://doi.org/10.1214/18-EJP138
Received: 15 March 2016; Accepted: 7 January 2018; Published: 2018
Vol.23 • 2018
Back to Top