Translator Disclaimer
June 2010 The Homogeneous Slice Theorem for the Complete Complexification of a Proper Complex Equifocal Submanifold
Naoyuki KOIKE
Tokyo J. Math. 33(1): 1-30 (June 2010). DOI: 10.3836/tjm/1279719575

Abstract

The notion of a complex equifocal submanifold in a Riemannian symmetric space of non-compact type has been recently introduced as a generalization of isoparametric hypersurfaces in the hyperbolic space. As its subclass, the notion of a proper complex equifocal submanifold has been introduced. Some results for a proper complex equifocal submanifold have been recently obtained by investigating the lift of its complete complexification to some path space. In this paper, we give a new construction of the complete complexification of a proper complex equifocal submanifold and, by using the construction, show that leaves of focal distributions of the complete complexification are the images by the normal exponential map of principal orbits of a certain kind of pseudo-orthogonal representation on the normal space of the corresponding focal submanifold.

Citation

Download Citation

Naoyuki KOIKE. "The Homogeneous Slice Theorem for the Complete Complexification of a Proper Complex Equifocal Submanifold." Tokyo J. Math. 33 (1) 1 - 30, June 2010. https://doi.org/10.3836/tjm/1279719575

Information

Published: June 2010
First available in Project Euclid: 21 July 2010

zbMATH: 1208.53060
MathSciNet: MR2682878
Digital Object Identifier: 10.3836/tjm/1279719575

Subjects:
Primary: 53C35
Secondary: 53C40

Rights: Copyright © 2010 Publication Committee for the Tokyo Journal of Mathematics

JOURNAL ARTICLE
30 PAGES


SHARE
Vol.33 • No. 1 • June 2010
Back to Top