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Abstract. The notion of a complex equifocal submanifold in a Riemannian symmetric space of non-compact
type has been recently introduced as a generalization of isoparametric hypersurfaces in the hyperbolic space. As
its subclass, the notion of a proper complex equifocal submanifold has been introduced. Some results for a proper
complex equifocal submanifold have been recently obtained by investigating the lift of its complete complexification
to some path space. In this paper, we give a new construction of the complete complexification of a proper complex
equifocal submanifold and, by using the construction, show that leaves of focal distributions of the complete com-
plexification are the images by the normal exponential map of principal orbits of a certain kind of pseudo-orthogonal
representation on the normal space of the corresponding focal submanifold.

1. Introduction

C. L. Terng and G. Thorbergsson [TT1] introduced the notion of an equifocal subman-
ifold in a Riemannian symmetric space, which is defined as a compact submanifold with
globally flat and abelian normal bundle such that the focal radii for each parallel normal vec-
tor field are constant. This notion is a generalization of isoparametric submanifolds in the
Euclidean space and isoparametric hypersurfaces in the sphere or the hyperbolic space. For
(not necessarily compact) submanifolds in a Riemannian symmetric space of non-compact
type, the equifocality is a rather weak property. So, we [K1, 2] introduced the notion of a
complex focal radius as a general notion of a focal radius and defined the notion of a complex
equifocal submanifold as a submanifold with globally flat and abelian normal bundle such
that the complex focal radii for each parallel normal vector field are constant with constant
multiplicities. E. Heintze, X. Liu and C. Olmos [HLO] defined the notion of an isoparametric
submanifold with flat section as a submanifold with globally flat and abelian normal bundle
such that sufficiently close parallel submanifolds are of constant mean curvature with respect
to the radial direction. The following fact is known (see Theorem 15 of [K2]):
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All isoparametric submanifolds with flat section are complex equifocal and, conversely,
all curvature-adapted and complex equifocal submanifolds are isoparametric submanifolds
with flat section.

Furthermore, as its subclass, we [K1, 2] introduced the notion of a proper complex
equifocal submanifold. For a proper complex equifocal submanifold, the following fact is
known ([K3]):

Principal orbits of Hermann type actions on a Riemannian symmetric space of non-
compact type are curvature-adapted and proper complex equifocal.

For a (general) submanifold in a Riemannian symmetric space of non-compact type, the
(non-real) complex focal radii are defined algebraically. We needed to find their geometrical
essence. For its purpose, we defined the complexification of the ambient Riemannian sym-
metric space and defined the extrinsic complexification of the submanifold as a certain kind
of submanifold in the complexified symmetric space, where the original submanifold needs
to be assumed to be complete and real analytic. We assume that all submanifolds in the Rie-
mannian symmetric space are complete and real analytic. We [K2] showed that the complex
focal radii of the original submanifold indicate the positions of the focal points of the com-
plexified submanifold. If the original submanifold is complex equifocal, then the extrinsic
complexification is an anti-Kaehlerian equifocal submanifold in the sense of [K2]. Also, if
the original submanifold is proper complex equifocal, then the complexified one is a proper
anti-Kaehlerian equifocal submanifold in the sense of this paper. Thus, the study of an anti-
Kaehlerian equifocal (resp. proper anti-Kaehlerian equifocal) submanifold leads to that of a
complex equifocal (resp. proper complex equifocal) submanifold. The complexified subman-
ifold is not necessarily complete. In the global problem, we need to extend the complexified
submanifold to a complete one. In [K2], we obtained the complete extension of the com-
plexified submanifold by the following method. We first lifted the complexified submanifold
to some path space (which is an infinite dimensional anti-Kaehlerian space) through some
submersion, extended the lifted submanifold to the complete one by repeating some kind of
extension infinitely many times and obtained the complete extension of the original complex-
ified submanifold as the image of the complete one by the submersion. In this paper, we
give a new construction of the complete extension of the complexified submanifold without
the infinite process (see the proof of Theorem B) and investigate the detailed structure of the
complete extension in terms of the new construction. First we prove the following fact for an
anti-Kaehlerian equifocal submanifold.

THEOREM A. Let M be an anti-Kaehlerian equifocal submanifold in a semi-simple
anti-Kaehlerian symmetric space of non-positive (or non-negative) curvature having a focal
submanifold F. If the sections of M are properly embedded, then M is an open portion of a
partial tube over F whose each fibre is the image by the normal exponential map of a principal
orbit of a pseudo-orthogonal representation on the normal space of F which is equivalent to
the direct sum representation of an aks-representation and a trivial representation.

REMARK 1.1. (i) For a focal submanifold F of M, we call (epr-|TxLF)_l
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(expl(TxJ- F) N M) (rather than epr-(TXJ- F) N M) the slice of M. This theorem states that
slices of a complete anti-Kaehlerian equifocal submanifold are homogeneous.

(i) The dual action H* of a Hermann type action H on a Riemannian symmetric space
G /K of non-compact type is a Hermann action on the compact dual G*/K of G/K, where G
is assumed to be a connected semi-simple Lie group admitting a faithful real representation.
Note that the existence of the dual action H* is assured by replacing H by the conjugate group
if necessary. Hence the sections of the H*-action are flat tori. From this fact, we see that the
sections of the H¢-action on G¢/K € are properly embedded, where H € is the complexification
of H and G°/K¢€ is the anti-Kaehlerian symmetric space associated with G/K. On the other
hand, the principal orbits of the H®-action are proper anti-Kaehlerian equifocal. Thus the
principal orbits are submanifolds as in the statement of Theorem A.

(iii) This result is an analogy of that of M. Briick [B] for an equifocal submanifold in a
simply connected Riemannian symmetric space of compact type.

In [K4, 5], we proved some global results for a proper complex equifocal submanifold
by investigating the lift of the complete complexification of the submanifold to some path
space through some submersion. Thus, in the global study of a proper complex equifocal
submanifold, it is important to investigate the detailed structure of its complete complexifica-
tion. By using Theorem A, we obtain a new construction of the complete complexification
of a proper complex equifocal submanifold (see the proof of Theorem B). From the construc-
tion and Theorem A, we obtain the following homogeneous slice theorem for the complete
complexification of a proper complex equifocal submanifold.

THEOREM B. Assume that the sections of the complexification of a proper complex
equifocal submanifold M in a Riemannian symmetric space G/K of non-compact type are
properly embedded. Then the following statements (i) and (ii) hold:

(1) Each leaf of any focal distribution of the complete complexification Me of M is
the image by the normal exponential map of a principal orbit of a pseudo-orthogonal repre-
sentation on the normal space of a focal submanifold which is equivalent to the direct sum
representation of an aks-representation and a trivial representation.

(i) Let Eq be the distribution on M¢ defined by (Ep)x := [\ (Ker R¢(-, v)vN

vETXLM\c
Ker AS) (x € M?¢), where R€ is the curvature tensor of G¢/ K€ and A€ is the shape tensor of
ME. Then there exists a family {E; |i = 1, ..., k} of focal distributions Ofﬂ//[\c such that the
leaves of E; (i = 1, ..., k) are the images by the normal exponential map of complex spheres

k —
in the normal spaces of focal submanifolds and that Eo @ Y E; = T M€ holds.
i=1
For a curvature-adapted and proper complex equifocal submanifold, we obtain the fol-
lowing fact in terms of Theorem B.

THEOREM C. Let M be a proper complex equifocal submanifold in a Riemannian
symmetric space of non-compact type as in Theorem B and {Ey, ..., Ex} be as in the state-
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ment (ii) of Theorem B. Assume that M is curvature-adapted. Then El.R = EilmMmNTM

(i =0,...,k) are integrable distributions on M, leaves of El.R are half-dimensional totally

k
real submanifolds of leaves of E; and TM = E(I} ey El.R, where E;|p is the restriction of
i=1

E;to M.

REMARK 1.2. B. Wu ([W2]) showed that leaves of curvature distributions of a com-
plete isoparametric submanifold in a hyperbolic space are totally umbilic spheres, totally um-
bilic hyperbolic spaces or horospheres, where we note that the complexifications of a totally
umbilic sphere and a totally umbilic hyperbolic space are totally anti-Kaehlerian umbilic com-
plex spheres in the complexification (which is a complex sphere) of the ambient hyperbolic
space. See [K2] for the definition of the totally anti-Kaehlerian umbilicity. Thus the statement
of Theorem C is interpreted as an analogy of this result by B. Wu.

As future research, by using Theorem B, we will investigate whether the complete com-
plexifications of proper complex equifocal submanifolds are homogeneous. By using Theo-
rems B and C, we will investigate whether curvature-adapted and proper complex equifocal
submanifolds are homogeneous.

2. Basic notions

In this section, we recall basic notions introduced in [K1~3]. We first recall the notion
of a complex equifocal submanifold introduced in [K1]. Let M be an immersed submanifold
with abelian normal bundle (i.e., the sectional curvature for each 2-plane in the normal space
is equal to zero) of a symmetric space N = G/K of non-compact type. Denote by A the shape
tensor of M. Letv € TXJ-M and X € TyM (x = gK). Denote by y, the geodesic in N with
7,(0) = v. The strongly M-Jacobi field Y along y, with Y(0) = X (hence Y'(0) = —A,X)
is given by

Y(5) = (P, © (DS — 5D} 0 A))(X),

where Y'(0) = V,,Y, P,
given by

, is the parallel translation along yy|[0,s) and Dy, (resp. D‘;f)) is

[0,s
DS = g0 cos(«/—lad(sg*_lv)) o g*_l
. sin(v/—Tad(sg; 'v))  _,;
resp. D! =g og .
( Y : \/—lad(sg*_lv) *
Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M along y,
o _soDS o A,) # {0}. So, we call a complex

Sov Sov

[¢]

are obtained as real numbers sy with Ker(D

: co ST
number zg with Ker(DZ, — z0D3,

call dim Ker(D<?, — zoD?! o A€

Zov 0V v

o AS) # {0} a complex focal radius of M along y, and

) the multiplicity of the complex focal radius zo, where D77,
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(resp. D%u) is a C-linear transformation of (7 N)¢ defined by

D, = gf o cos(v/—Tad®(zog; 'v)) 0 (¢5) "
; in(v/—Tad(z09; "
(resp. Dl =gfo Sin ac (Zoﬁ v) o (gi)l>,
V—=Tad"(zog5 'v)

where gf (resp. ad®) is the complexification of g, (resp. ad). Here we note that, in the
case where M is of class C”, complex focal radii along y, indicate the positions of focal
points of the extrinsic complexification M¢(— G¢/K€) of M along the complexified geo-
desic ¥, where G¢/K¢ is the anti-Kaehlerian symmetric space associated with G/K and

¢ is the natural immersion of G/K into G¢/K€. See the following paragraph for the def-
initions of G/K¢, M“(—~ G°/K®) and yS,. Also, for a complex focal radius zo of M

along y,, we call zgv (€ (TXLM)C) a complex focal normal vector of M at x. Further-
more, assume that M has globally flat normal bundle (i.e., the normal holonomy group of
M is trivial). Let v be a parallel unit normal vector field of M. Assume that the number
(which may be oo) of distinct complex focal radii along y;_ is independent of the choice
of x € M. Let {r;x|i = 1,2,...} be the set of all complex focal radii along y;_, where
lrix|l < |rig1xlor “|rix| = [rig1x] & Rerjx > Rerjpy 7 or “|ri x| = |rit1,x] & Rer;x =
Rerit1x & Imr;y = —Imriyy, < 0”. Letr; (i = 1,2,...) be complex valued functions
on M defined by assigning r; » to each x € M. We call these functions r; (i = 1,2,...)
complex focal radius functions for v. We call r; U a complex focal normal vector field for v. If,
for each parallel unit normal vector field v of M, the number of distinct complex focal radii
along y5, is independent of the choice of x € M, each complex focal radius function for v is
constant on M and it has constant multiplicity, then we call M a complex equifocal submani-
fold. Let ¢ - H([0, 1], g) — G be the parallel transport map for G. See Section 4 of [K1]
for the definition of the parallel transport map. This map ¢ is a pseudo-Riemannian submer-
sion. Let w : G — G/K be the natural projection. It follows from Theorem 1 of [K2] that,
M is complex equifocal if and only if each component of (7 o ¢)~! (M) is complex isopara-
metric. See Section 2 of [K1] for the definition of a complex isoparametric submanifold. In
particular, if each component of (7 o ¢)~! (M) is proper complex isoparametric (i.e., com-
plex isoparametric and, for each unit normal vector v, the complexified shape operator AS is
diagonalizable with respect to a pseudo-orthonormal base), then we call M a proper complex
equifocal submanifold. For a complex equifocal submanifold, the following fact holds:

For a curvature-adapted and complex equifocal submanifold M, it is proper complex
equifocal submanifold if and only if it has no focal point of non-Euclidean type on the ideal
boundary of the ambient symmetric space.

Here the curvature-adaptedness means that, for each unit normal vector v, the Jacobi
operator R(-, v)v (R :the curvature tensor of G/K) preserves the tangent space invariantly
and it commutes with the shape operator A,. See [K6] for the notion of a focal point of
non-Euclidean type on the ideal boundary.

Next we recall the notions of an anti-Kaehlerian symmetric space associated with a sym-
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metric space of non-compact type which was introduced in [K2]. Let J be a parallel complex
structure on an even dimensional pseudo-Riemannian manifold (M, ( , )) of half index. If
(JX,JY) = —(X,Y) holds for every X, Y € TM, then (M, (, ), J) is called an anti-
Kaehlerian manifold.

Let N = G/K be a symmetric space of non-compact type and (g, o) be its orthog-
onal symmetric Lie algebra. Let g = | + p be the Cartan decomposition associated with
a symmetric pair (G, K). Note that § is the Lie algebra of K and p is identified with
the tangent space T,x N, where e is the identity element of G. Let (, ) be the Ad(G)-
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invariant non-degenerate inner product of g inducing the Riemannian metric of N and a

be a maximal abelian subspace of p and p = a + )  py be the root space decomposi-
aely

tion with respect to a, that is, p, = {X € p| ad(a)*(X) = a(a)’X foralla € a}. Let
g f° pS ap¢ and (, )¢ be the complexifications of g, f, p, a, py and (, ), respec-
tively. If g€ and ¢ are regarded as real Lie algebras, then (g€, f¢) is a semi-simple sym-

metric pair, a is a maximal split abelian subspace of p€ and p¢ = a®+ > pg is the root
aceN;

space decomposition with respect to a. Here we note that a® is the centralizer of a in p¢ and
ps = {X € p| (ad(@)9)?(X) = a(a)*X for all a € a}. See [R] and [OS] for general the-
ory of a semi-simple symmetric pair. Let G€ (resp. K€) be the complexification of G (resp.
K). The 2-multiple of the real part Re( , )€ of (, )¢ is the Killing form of g€ regarded as a
real Lie algebra. The restriction 2Re( , )¢|pexpe is an Ad(K €)-invariant non-degenerate inner
product of p€ (= T.x<(G®/K*)). Denote by ( , )’ the G¢-invariant pseudo-Riemannian met-
ric on G¢/K € induced from 2Re( , )¢|pexpe. Define an almost complex structure Jo of p¢ by
JoX = /=1 X (X € p®). Itis clear that Jo is Ad(K ©)-invariant. Denote by J the G¢-invariant
almost complex structure on G¢/K € induced from Jy. Itis shown that (G¢/K€, {, Y, 7) is an
anti-Kaehlerian manifold and a (semi-simple) pseudo-Riemannian symmetric space. We call
this anti-Kaehlerian manifold an anti-Kaehlerian symmetric space associated with G/K and
simply denote it by G¢/K°. Next we shall recall the notion of an anti-Kaehlerian equifocal
submanifold which was introduced in [K2]. Let f be an isometric immersion of an anti-
Kaehlerian manifold (M, {(, ), J) into G¢/K€. If J o f« = f«o J, then M is called an
anti-Kaehlerian submanifold immersed by f. If, for each x € M, expL(Tle ) is totally
geodesic, then M is called a a submanifold with section. Denote by exp™ the normal expo-
nential map of M. Letv € Tle. If expL(avx + bJvy) is a focal point of (M, x), then we
call the complex number a + b/—1 a complex focal radius along the geodesic Vv, Assume
that the normal bundle of M is abelian and globally flat and that, for each unit normal vector
field v, the number (which may be co) of distinct complex focal radii along the geodesic y,,
is independent of the choice of x € M. Then we can define the complex radius functions
as above. If, for a parallel unit normal vector field v, the number of distinct complex focal
radii along y,, is independent of the choice of x € M, complex focal radius functions for v
are constant on M and they have constant multiplicity, then M is called an anti-Kaehlerian
equifocal submanifold. Let ¢¢ : HO([0, 1], g) — G¢ be the parallel transport map for G¢.
See Section 6 of [K2] for the definition of the parallel transport map. This map ¢€ is an
anti-Kaehlerian submersion. Let 7€ : G¢ — G¢/K¢ be the natural projection. It is shown
that M is anti-Kaehlerian equifocal if and only if each component of (7€ o ¢€)~! (M) is
anti-Kaehlerian isoparametric. See Section 5 of [K2] for the definition of an anti-Kaehlerian
isoparametric submanifold. In particular, if each component of (7€ o ¢)~!(M) is proper
anti-Kaehlerian isoparametric (i.e., anti-Kaehlerian isoparametric and, for each unit normal
vector v, the shape operator A, is diagonalizable with respect to an orthonormal base of the
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tangent space regarded as a complex vector space), then we call M a proper anti-Kaehlerian
equifocal submanifold. Assume that M is anti-Kaehlerian equifocal. Let r be a complex focal
radius for a parallel unit normal vector field v. Then rv is called a focal normal vector field
of M. Then a focal map f,, : M — G¢/K°€ is defined by f,,(x) = exp-(rvy) (x € M). Set
Fry := fro(M). We call F,. the focal submanifold of M for rv. Define a distribution E;, on
M by (Ery)yx = Ker(fry)sx (x € M). We call E,, the focal distribution on M for rv. It is
clear that E,, is integrable. It is shown that the focal set of M at x consists of the images by
exp™ of infinitely many complex hyperplanes (which are called complex focal hyperplanes)
in TXLM (see [K2]). Denote by S the set of all complex focal hyperplanes of M at x. If
#{l € S|rvy €I} = 1, then the leaves of E,, are the images by the normal exponential map
of complex spheres in normal spaces of F;,, where fi(-) is the cardinal number of (-). Let r
(resp. rp) be a complex focal radius for a parallel unit normal vector field v (resp. vp). If
{le Sy el ={l€ S|r(v) €l}, then we have E, y;, = Ep,y,.

Next we recall the notion of the extrinsic complexification of a complete C“-submanifold
in a symmetric space of non-compact type which was introduced in [K2]. First we recall
the complexification of a complete C”-Riemannian manifold. Let M be a complete C*-
Riemannian manifold. The notion of the adapted complex structure on a neighborhood U of
the O-section of the tangent bundle 7'M is defined as the complex structure (on U) such that,
for each geodesic y : R — M, the restriction of its differential y,, : TR = C — TM to
y*_l (U) is holomorphic. We take U as large as possible under the condition that U NT, M is a
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star-shaped neighborhood of 0, for each x € M, where Oy is the zero vector of T, M. If M is
of non-negative curvature, then we have U = T M. Also, if all sectional curvatures of M are
larger than or equal to ¢ (¢ < 0), then U contains the ballbundle 7" M :={X e TM | || X|| <

r} of radius r := =Z—. In detail, see [Sz1~4]. Denote by J4 the adapted complex structure

= 3=
on U. The complex manifold (U, J4) is interpreted as the complexification of N. We denote
(U, Ja) by M€ and call it the complexification of M, where we note that M€ is given no
Riemannian metric. In particular, in the case of M = R™ (the Euclidean space), we have
(U, J4) = C™. Also, in the case where M is a symmetric space G/K of non-compact type,
there exists the holomorphic diffeomorphism § of (U, J4) onto an open subset of G¢/K €. Let
M be an immersed (complete) C”-submanifold in G/K. Denote by f its immersion. Let
M€ be the complexification of M (defined as above). We shall define the complexification
f€: M — G°/K€ of f, where we shrink M€ to a neighborhood of the 0-section of T M if
necessary. For its purpose, we first define the complexification of a C*-curve « : R — G/K.
Let g = {4+ p be the Cartan decomposition associated with G/K and W : R — p be the curve
in p with (exp W(#))K = a(t) (t € R), where we note that W is uniquely determined because
G/K is of non-compact type. Since « is of class C®, sois also W. Let W€ : D — p* (D : a
neighborhood of R in C) be the holomorphic extension of W. We define the complexification
a® : D — G®/K® of a by a®(z) = (exp W€(z))K€. It is shown that this complexification
of a C®-curve in G/K is a holomorphic curve in G¢/K€. By using this complexification of
a C®-curve in G/K, we define the complexification f¢: M¢ — G°/K€ of f by f¢(X) :=
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(f o y)’(”)c(\/—_l) (X € M¢(C TM)), where y)’(” is the geodesic in M with )};{W(O) = X.
Here we shrink M€ to a neighborhood of the 0-section of T M if necessary in order to assure
that +/—1 belongs to the domain of (f o y}/)¢ for each X € M®. It is shown that the map
f¢: M® — G®/K€ is holomorphic and that the restriction of f to a neighborhood U’ of the
0-section of T M is an immersion, where we take U’ as large as possible. Denote by M€ this
neighborhood U’ from now on. Give M® the Riemannian metric induced from that of G¢/K ¢
by f€. Then M€ is an anti-Kaehlerian submanifold in G¢/K¢ immersed by f¢. We call
this anti-Kaehlerian submanifold M€ immersed by f€ the extrinsic complexification of the
submanifold M. We consider the case where M is (extrinsically) homogeneous. Concretely
we consider the case where M = H(goK) and f is the inclusion map of M into G/K,
where H is a closed subgroup of G. Let ¢ be a natural immersion of G/K into G¢/ K€, that is,
1(gK) = gK*© (X € g). Itis shown that . is totally geodesic. Let g4, be the complexification of
the Lie algebra of H and set H® := exp g§,. For a homogeneous submanifold M = H(goK),
the image f€(M€®) is an open subset of the orbit H¢(gypK ). Hence this orbit is the complete
extension of M€. It is shown that M is complex equifocal if and only if M€ is anti-Kaehlerian
equifocal (see Theorem 5 of [K2]). Also, it is shown that M is proper complex equifocal if
and only if M€ is proper anti-Kaehlerian equifocal.

3. aks-representations

In this section, we shall first introduce the notions of an anti-Kaehlerian symmetric pair
and an anti-Kaehlerian symmetric Lie algebra, and investigate the correspondence relations
of those notions with an anti-Kaehlerian symmetric space. Let (M, J,(, )) be an anti-
Kaehlerian manifold (i.e., J2 = —id, VJ = 0 (V : the Levi-Civita connection of { , )))
and (JX,JY) = —(X,Y) (X,Y € TM)). We denote by the same symbol id the iden-
tity transformations of various sets. If there exists an involutive holomorphic isometry s, of
M having p as an isolated fixed point for each p € M, then we call (M, J, (, )) an anti-
Kaehlerian symmetric space. Also, if there exists a local involutive holomorphic isometry
defined on a neighborhood of p having p as an isolated fixed point for each p € M, then we
call (M, J, (, )) alocally anti-Kaehlerian symmetric space. In this section, we introduce the
notions of an anti-Kaehlerian symmetric pair and an anti-Kaehlerian symmetric Lie algebra in
relation with an anti-Kaehlerian symmetric spaces. Let G be a connected complex Lie group
and K be a closed complex subgroup of G. If there exists an involutive (complex) automor-
phism p of G such that Gg C K C G, (G, : the group of all fixed points of p, Gg : the
identity component of G ) then we call the pair (G, K) an anti-Kaehlerian symmetric pair. If
g be a complex Lie algebra and 7 be a complex involution of g, then we call such a pair (g, 7)
an anti-Kaehlerian symmetric Lie algebra. Let f := Ker(r —id) and p := Ker(z +id). Denote
by Adg and adg the adjoint representations of G and g, respectively. Also, denote by j the
complex structure of g. Let pgr be the totally real subspace of p such that { , )|pgxjpg = 0
and that (, )|pgxpg 1S positive definite. Here we note that such a totally real subspace is
determined uniquely. Set adg |y (f) := {adg(X)|p | X € f}, Adglp(K) := {Adg(k)|p | k € K},



THE HOMOGENEOUS SLICE THEOREM 11

adglpg (f) 1= {prp, 0 adg(X)lpg | X € f} and Adglpg(K) := expgy(pg)(@dglpg (), where
eXPGL (pg) 18 the exponential map of GL(pr). Let SOk (p) be the identity component of the
group {A € GL(p) | A*(, Y=1{(, ), Aoj=joA}andsetsosg(p) :={A e€glp)|Aoj=
joA, (AX,Y)=—(X,AY) (¥ X,Y € p)}, which is the Lie algebra of SOk (p). Then we
have the following fact.

LEMMA 3.1. The complexification so(pr)€ of so(pr) coincides with sosg (p) and
hence SO (pR) is a half-dimensional totally real compact subgroup of SOak(p). Also,
the complexification (adglpg (1))€ of adglpg (f) coincides with adg|p () and adg|pg (f) is con-
tained in so(pr). Hence Adg|pg (K) is a half-dimensional totally real compact subgroup of
Adglp (K) contained in SO (pR).

PROOF. For A € gl(pr), denote by A the element of glip,j):={Beglp)|Boj=
J o B} whose restriction to pg is equal to A. Let C € soag(p). Set A := pry. o Clpy
and B := —j oprj,. o Clpg. Then we have C = A+ jE. Take X,Y € pr. Then it
follows from (pg, jpr) = O that (CX, jY) = —(BX,Y) and (X, C(jY)) = —(BY, X).
Hence it follows from (CX, jY) = —(X, C(jY)) that (BX,Y) = —(X, BY). Thus we have
B € so(pr). Also we have (CX,Y) = (AX,Y) and (X,CY) = —(X, AY). Hence we
have (AX,Y) = —(X, AY). Thus we have A € so(pr). Therefore we have C € so(pRr)®.
Thus we have sog (p) C so(pr)€. Since so4x (p) and so(pRr)€ are of the same dimension,
we have s04k (p) = so(pr)€. Therefore the first-half statement of this lemma is shown. Let
C € ad|p(f). Set A := pry, o Clpg and B := —j o prj,. o Clp,. From the definition of
adpg (), we have A € ad|pi(f). Also, it follows from —j o C € ad|,(f) that —(prpR ojo
O)lpr € ad|pg(f). Clearly we have —(prpR o joC)lpg = B. Thus we have B € ad|pg (f).
Therefore we have C(= A +jo 1§) € (ad|pg (H))C. Thus ad|p () C (ad|pg ()€ is obtained.
From dimgad|, (f) = dimg(ad|p, ()€, it follows that ad|,(f) = (ad|pg (). Also, since
C € ad|p(f) C soak (p), we can show A € so(pRr) as above. Therefore we obtain ad|yg (f) C
s0(pr). Hence Ad|pg (K) C SO (pR) is obtained. Furthermore, since Ad|p,(K) is closed in
SO (pR), it is compact. Thus the second-half statement of this lemma follows. g.e.d.

Now we show that an anti-Kaehlerian symmetric pair arises from an anti-Kaehlerian
symmetric space.

PROPOSITION 3.2. Let (M, J, (, )) be an anti-Kaehlerian symmetric space, G be the
identity component of the isometry group of (M, J, { , )) and K be the isotropy group of G
at some po € M. Then the pair (G, K) is an anti-Kaehlerian symmetric pair.

PROOF. Identify M with G/K under the correspondence g(pg) <> gK (g € G). De-
fineamap p : G — G by p(g) = sp, 0 gosp, (9 € G), whichis an involutive automorphism
of G. Easily we can show that Gg C K C G, (see the proof of (ii) of Theorem 3.3 of Chapter
IV in [H]). Let f := Ker(p. — id) and p := Ker(p« + id), where e is the identity element of
G. The space p is identified with 7,y M. Define the /—1-multiple in g by /—1X = J o X
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(X € p=TpM)and [v/—1Y,Z] =Y, Jp,Z] (Y € f, Z € p), where [ , ]is the Lie bracket
product of g. Note that this /—I-multiple in g is well-defined because f acts on p effec-
tively. Since ad(X) o Jp, = Jp, cad(X) onp (X € f), [Y, Z] = —Rp, (Y, Z) (Y, Z € p) and
Rpy(UpoY, Z) = JpoRpy(Y, Z) (Y, Z € p) by anti-Kaehlerity of M, we see that (g, [ , ) is
a complex Lie algebra under this /—1-multiple. Also, it is easy to show that f is a complex
Lie subalgebra and p,. is the complex involution. Hence G, K and p are regarded as a com-
plex Lie group, a complex Lie subgroup of G and an involutive complex automorphism of G,
respectively. g.e.d.

By using Lemma 3.1, we show that an anti-Kaehlerian symmetric space arises from an
anti-Kaehlerian symmetric pair.

PROPOSITION 3.3. Let (G, K) be an anti-Kaehlerian symmetric pair. Then there
exists an anti-Kaehlerian structure (J, ( , )) of G/K such that (G/K, J,( , )) is an anti-
Kaehlerian symmetric space.

PROOF. Since (G, K) is an anti-Kaehlerian symmetric pair, there exists an involutive
(complex) automorphism p of G with Gg C K C Gy. Letg := LieG, § := Lie K and
p := Ker(pge + id). Then we can show Adg(K)(p) C p (see the first part of the proof of
Proposition 3.4 of Chapter IV in [H]). Define an almost complex structure j of p by j(X) =
V—=1X (X € p). Itis clear that j is Adg (K )-invariant. Denote by J the G-invariant almost
complex structure on G/K arising from j. Let GL((p, j)) :={A € GL(p)| Ao j = jo A},
where GL(p) is the group of all (real) linear isomorphisms of p. Take a half-dimensional
subspace pr of p with pr & jpr = p. The group GL(pRr) of all linear isomorphisms of
pR is regarded as a half-dimensional totally real subgroup of GL((p, j)) by identifying each
A € GL(pR) with A € GL((p, j)) defined by A(X 4+ jY) = AX + jAY (X, Y € pg). Let
adg|pg (f) be as in the proof of Proposition 3.2 and Adg|pg (K) = eXPGL(pR) (adg|pr (). It
is clear that the group Adg|pg (K) is regarded as a half-dimensional totally real subgroup of
Adglp(K). By taking an anti-Kaehlerian inner product g of (p, j) such that B|ppxjpg = 0
and that B|pg xpg 18 positive definite and using Lemma 3.1, Adg |pg (K) is a half-dimensional
totally real compact subgroup of Adg|, (K). Define a real bilinear form Sy on p by

Bo(X, Y)=/ BaX,aY)o (X,Y €p),
aeAdg|pg (K)
where w is the Haar measure of Adglpg(K) and each a € Adg|pg(K) is extended to the
linear transformation of p in the natural manner. We shall show that Sy is an anti-Kaehlerian
inner product of (p, j). Let X € pr. Since B(aX,aX) > 0 forany a € Adg|pg (K), we have
Bo(X, X) = 0. If Bo(X, X) = 0, then we have (aX,aX) = 0 forany a € Adglpz(K). In
particular, we have (X, X) = 0, thatis, X = 0. Thus Bo|pgxpg is positive definite. Let Y
be another vector of pr. Since B(aX, ajY) = 0 (a € Adglpg(K)), we have Bo(X, jY) = 0.
Thus it follows from the arbitrariness of X and Y that Bo|pgx jpg = 0. On the other hand, it
is clear that Bo(jZ, jW) = —Bo(Z, W) (Z, W € p). These facts imply that Sy is an anti-
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Kaehlerian inner product of (p, j). Next we shall show that B¢ is Adg|p (K)-invariant. It is
clear that By is Adg|pg (K)-invariant. Fix X,Y € p. Define a complex-valued function f
on Adgly(K) by f(a) = PoaX,aY) — /—1Bo(aX,ajY) (a € Adglp(K)). Since f =
Bo(X,Y) — /—1Bo(X, jY) on Adg|pgr(K), f is holomorphic and Adg|pg(K) is a half-
dimensional totally real subgroup of Adg|, (K), we see that f = Bo(X,Y) —+/—1Bo(X, jY)
on Adg |, (K), which implies that 8y is Adg|p (K)-invariant. Denote by ( , ) the G-invariant
pseudo-Riemannian metric on G/K arising from g. It is clear that (G/K, J, { , )) is an anti-
Kaehlerian manifold. Next we shall show that (G/K, J, { )) is an anti-Kaehlerian symmetric
space. Let m : G — G/K be the natural projection. Define amap s, : G/K — G/K by
So(m(g9)) = w(p(g)) (g € G). Itis clear that s, is well-defined and that sg = id. Also, it
is shown that s, is an isometry of (G/K, ( , )) (see the proof of Proposition 3.4 of Chapter
IV in [H]). Furthermore, it is shown that s, is holomorphic. Also, we have Sy (e) © TTxe =
Tse O Pre = —Tse ON P, that is, Spur(e) = —id, which implies that 7 (e) is an isolated fixed
point of s,. For each g € G, define a map sy(y) : G/K — G/K by szq) = gos, 0
g~ . Easily we can show that S7(g) 18 an involutive holomorphic isometry of (G/K, J, ( , ))
having 7 (g) as an isolated fixed point. Thus (G/K, J, { , )) is an anti-Kaehlerian symmetric
space. q.e.d.

Let (g, v) be an anti-Kaehlerian symmetric Lie algebra and § := Ker(r — id). Let G be
a connected complex Lie group with Lie G = g and K be a complex Lie subgroup of G with
Lie K = . We call such a pair (G, K) a pair associated with (g, 7).

PROPOSITION 3.4. Let (g, T) be an anti-Kaehlerian symmetric Lie algebra, (G, K)
be a pair associated with (g, T) such that K is connected and (5, I?) be a pair associated
with (g, T) such that G is simply connected and that K is connected. Then the following
statements (1) and (ii) hold:

(i) (5, K ) is an anti-Kaehlerian symmetric pair.

(i) Assume that K is closed. Let (J, { , )) be a G-invariant anti-Kaehlerian structure
on G/K defined as in the proof of Proposition 3.3. Then (G/K, J,{ , )) is a locally anti-
Kaehlerian symmetric space and the universal anti-Kaehlerian covering of (G/K, J, (, ))
is isometric to an anti-Kaehlerian symmetric space G / K equipped with a suitable anti-
Kaehlerian structure defined as in the proof of Proposition 3.3.

PROOF. First we shall show the statement (i). Since G is simply connected, there
uniquely exists an involutive (complex) automorphism p of G with pxe = T. By a standard
method, we can show that K is equal to the identity component 52 of the group of all fixed

points of p because K is connected. Thus (G, K) is an anti-Kaehlerian symmetric pair.

Next we shall show the statement (ii). The groups Adg(K) and Adg (I? ) coincide with
each other because they are connected complex Lie subgroups of the adjoint group int g and
have the same Lie algebra. Let (J, (, )) (resp. (JN, {(,)Y))beaG (resp. 5)—invariant anti-
Kaehlerian structure on G/K (resp. G / K) as in the proof of Proposition 3.3. Let ¢ be the
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homomorphism of G onto G with Yee = id. It is clear that K is the identity component of
¥~ 1(K). Hence amap ¥ : G/K — G/K is well-defined by ¥ (GK) = ¥(9)K (§ € G). It
is shown that this map v is a covering map (see Lemma 13.4 of Chapter I in [H]). It is easy
to show that v is an anti-Kaehlerian covering map of (5/1?, 7, {(, )Y )onto (G/K,J,{,)).
Hence (G/K, J, (, )) is a locally anti-Kaehlerian symmetric space. Since 5/ K is simply
connected (see the proof of Proposition 3.6 of Chapter IV in [H]), (5 / K , J ,{,)7) is the
universal anti-Kaehlerian covering of (G/K, J, (, )). g.e.d.

Let (M, J, (, )) be an irreducible anti-Kaehlerian symmetric space, G be the identity
component of the isometry group of (M, J, (, )) and K be the isotropy group of G at some
point pg € M, where the irreducibility implies that M is not decomposed into the non-trivial
product of two anti-Kaehlerian symmetric spaces. Assume that (M, J, ( , )) does not have a
pseudo-Euclidean part in its de Rham decomposition. Note that an anti-Kaehlerian symmetric
space without pseudo-Euclidean part is not necessarily semi-simple (see [CP],[W1]). Also,
let (g, t) be the anti-Kaehlerian symmetric Lie algebra associated with the anti-Kaehlerian
symmetric pair (G, K) and p := Ker(r + id). The space Ker(z — id) is equal to the Lie
algebra f of K and p is identified with Tp,M (= T.x(G/K)). We call the linear isotropy
representation Adg|p : K — GL(p) an aks-representation, where p is regarded as an anti-
Kaehlerian space under the identification p = T,,M. Let a; be a maximal split abelian
subspace of p (see [R] or [OS] for the definition of a maximal split abelian subspace) and

p=7po+ Y. Ppo bethe root space decomposition with respect to as (i.e., the simultaneous
aey

eigenspace decomposition of ad(a)?’s (a € ay)), where the space p is defined by py, := {X €
p| ad(a)2(X) = a(a)*X for all a € as} and A is the positive root system with respect to a;
under some lexicographic ordering of af. Set a := po (D ay), j = Jpyand (, Yo :={, )p,.
Itis shown that ( , )ola,xa, is positive (or negative) definite, a = a;@ jas and { , )ola;xja, =
0. Note that p, = {X € p|ad(a)*>(X) = a(a)*X for all a € a} for each @ € A, where
o is the complexification of « : a; — R, a is regarded as the complexification a$ of a;
and «®(a)*>X means Re(a®(a)?)X + Im(a®(a)?)jX. Let Iy := («®)~'(0) (@ € A)and D :=
a\ U ly. Take u € D and let M be the orbit through u of the K -action by the linear isotropy
aey
representation (Adglp)lx. Since u € D, M is a principal orbit. Denote by A the shape
tensor of M. Take v € T;*M(= a). Then we have T, M = anA: po and Aylp, = —gig;ld
+
(a € Ay). Itiseasy to show that the K -action by (Adg|p)|k is an anti-Kaehlerian polar action
having a as a section, where an anti-Kaehlerian polar action means the finite dimensional

version of an anti-Kaehlerian polar action on an infinite dimensional anti-Kaehlerian space
defined in [K2]. Furthermore, from A,|p, = @*(v)

ot
we see that each principal orbit of the K -action is proper anti-Kaehlerian isoparametric in the
sense of [K4].

idp, and the arbitrariness of v and u,



THE HOMOGENEOUS SLICE THEOREM 15

In the 2-dimensional anti-Kaehlerian space V = (Rz, Jo, {, )o), there uniquely exists a
1-dimensional totally real subspace W of V such that (W, JoW)o = 0 and that (, )o|wxw is
positive definite. Let w € W U JoW. The quotient manifold V /Zw is a flat anti-Kaehlerian
manifold whose universal anti-Kaehlerian covering is V. We call such an anti-Kaehlerian
manifold an anti-Kaehlerian cylinder. Let (G/K, J, { , )) be a semi-simple anti-Kaehlerian
symmetric space and a be a maximal abelian subspace of p = T,x(G/K). It is easy to
show that exp a is a flat totally geodesic submanifold in G/K and that it is holomorphic and
isometric to the product of some anti-Kaehlerian cylinders. We call exp a a maximal anti-
Kaehlerian cylindrical product. Here we note that, if (M, J, (, )) is not semi-simple, then
exp a is holomorphic and isometric to the product of some anti-Kaehlerian cylinders and an
anti-Kaehlerian space.

At the end of this section, we shall recall the notion of the anti-Kaehlerian symmetric
space associated with a Riemannian symmetric space of non-compact type which was intro-
duced in [K2]. Let G/K be a Riemannian symmetric space of non-compact type and p be the
Cartan involution, where G is assumed to be a connected semi-simple Lie group admitting a
faithful real representation and K can be assumed to be a maximal compact subgroup of G.
Let g := Lie G, f := Lie K and p := Ker(p4 + id), where p is identified with T,x (G/K).
Also, let g¢ (resp. pg,) be the complexification of g (resp. p..). Since G admits a faithful
real representation, we can define the complexification G (resp. K€¢) of G (resp. K) and the
compact dual G*(C G€) of G. It is shown that (G¢, K€) is an anti-Kaehlerian symmetric
pair. Let B8 be the Adg (K)-invariant (positive definite) inner product of p arising the Rie-
mannian metric of G/K. Let (, ) be the pseudo-Riemannian metric of G¢/K € arising from
Re B¢ (p€ x p¢ — R) and J be the natural almost complex structure of G¢/ K€, where p€ is
identified with T,xec(G¢/K€). Then (G¢/K€, J, (, )) is an anti-Kaehlerian symmetric space.
We call this anti-Kaehlerian symmetric space the anti-Kaehlerian symmetric space associated
with G /K, where we note that G¢/K € is a semi-simple anti-Kaehlerian symmetric space.

REMARK 3.1. If 8 is the Killing-Cartan form of g, 2Re 8¢ is that of g¢ regarded as a
real Lie algebra.

4. Anti-Kaehlerian holonomy systems

Let (V, R, G) be a triple consisting of a Euclidean space V, a curvature-like tensor R (€
V*® V*® V*® V) and a compact connected Lie subgroup G of the linear isometry group
O (V) of V. J. Simons [Si] called (V, R, G) a holonomy system if R(v1, v2) € Lie G for all
vy, v2 € V. In this section, we introduce the notion of an anti-Kaehlerian holonomy system
and show some facts concerning such a system. Let (V, J, (, )) be a (finite dimensional)
anti-Kaehlerian space and R (€ V*Q V*® V*® V) be a curvature-like tensor. Let SOk (V)
be the identity component of the group {A € GL(V)|A*(, ) ={(, ), [A,J] =0}and G
be a connected complex Lie subgroup of SOk (V). We call the triple ((V, J, {, )), R, G)
an anti-Kaehlerian holonomy system if the following two conditions hold:

(AH-i)) J o R(vi,v2) = R(Jvy,v2) = R(vi, ) o J forallvy, vy € V,
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(AH-ii) R(vy, v2) € LieG forall vy, v, € V.
Furthermore, if the following condition (S) holds, then we say that the triple is symmetric:
(S) R(gvi, gva)gvs = gR(vy, vo)vz forallv; € V(i =1,2,3)andall g € G.
Also, if G is weakly irreducible, then we say that the triple is weakly irreducible, where the
weak irreducibility of G implies that there exists no G-invariant non-degenerate subspace W
of V with W #£ {0} and W # V. Here we give examples of an anti-Kaehlerian holonomy
system.

EXAMPLE 1. Let (M, J,{, )) be an anti-Kaehlerian manifold. Let V be the Levi-
Civita connection of ( , ), R be the curvature tensor of V and @, be the restricted holonomy
group of V at x (¢ M). Then the triple (TxM, Jx, {, )x), Ry, @) is an anti-Kaehlerian
holonomy system. In particular, if (M, J, (, )) is locally symmetric (resp. irreducible), then
this anti-Kaehlerian holonomy system is symmetric (resp. weakly irreducible).

EXAMPLE 2. Let (M, J,{, )) be acomplex n-dimensional anti-Kaehlerian subman-
ifold in an anti-Kaehlerian manifold (M, J, (, )~), T1M be the normal bundle, A be the
shape tensor, V-1 be the normal connection, R+ be the curvature tensor of V-+ and @j be the
restricted holonomy group of V* at x (¢ M). Define Ry € T M*Q@T M * QT M*@T M
by

2n
Ry (vi, v2)vs := ) (ei, &) Ry (Avyei, Avyei)vs

i=1
where (eq, ..., ez;) is an orthonormal base of TyM. Then the triple ((TXJ-M , .chTXL Mo

(o 0 lrtmxria)s Ry, @3 is an anti-Kaehlerian holonomy system.

We have the following fact for a weakly irreducible symmetric anti-Kaehlerian holonomy
system.

LEMMA 4.1. Let S = (V,J,{, )), R, G) be a weakly irreducible symmetric anti-
Kaehlerian holonomy system with R # 0. Then the G-action on V is equivalent to an aks-
representation.

PROOF. Let g® be the Lie algebra generated by the set {R(vy, v2) |vi,v2 € V}(C
soax (V) := Lie(SOsx(V))) and GR := exp gR, where exp is the exponential map of
SOk (V). Set £ := gR @ V. Define the «/—_1-multiples of elements of £ by J=1v:=Jv
(v e V)and v/—1R(v1, v2) := J o R(v1, v2) (v1, v2 € V). Also, define[, ]G £x & — £)
by [A1, A2] := A1 0 Ay — Az 0 Ay (A1, Az € gB®), [v1,v2] := R(v1,v2) (v1,v2 € V) and
[A,v] .= A(v) (A € gR, v € V). Then it follows from the symmetry of S that (£,[, ])
is a complex Lie algebra. Define a (complex) involution p of (£,[, ]) by ,O|gR = id and
ply = —id. Take a totally real subspace W of V such that (, )lwxysw = 0 and that
(, Ywxw is positive definite. Let (g®)w := {pry o R(vi, v2)|w |vi,v2 € V}. By imi-
tating the proof of Lemma 3.1, we can show that (g%)y is a Lie subalgebra of so(W) and
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(g®)w)¢ = g&. Thus (£, [, 1), p) is an anti-Kaehlerian symmetric Lie algebra. Let (Z, 5)
be a pair associated with ((£,[, 1), o) such that L is simply connected and that G is con-
nected. According to Proposition 3.4, (Z , 5) is an anti-Kaehlerian symmetric pair. Hence, it
follows from Proposition 3.3 that there exists an anti-Kaehlerian structure (J, ( , )) such that
(L / G, J, (', )) is an anti-Kaehlerian symmetric space. On the other hand, we can show that
the G-action on V is equivalent to both the restricted holonomy group action G¥ of L / G ateG
and the linear isotropy group action AdzITeé(z/a)(é) (see P359~360 of [W1]). Since the G-

action is weakly irreducible by the assumption, L / G is irreducible. Hence, Adylp (@15 (G)-

action is an aks-representation. Therefore, we obtain the statement of this lemma. g.e.d.

Now we shall define the notion of the complexification of a holonomy system. Let
S=(V,({,)),R,G)beaholonomy system. Then the triple S := ((V¢, Re(, )¢), R¢, G
gives an anti-Kaehlerian holonomy system, where V¢, (, )¢, R® and G€¢ are the complexifi-
cations of V, (, ), R and G, respectively. We call this system S the complexification of S.
Next we shall define the notion of a totally real holonomy subsystem of an anti-Kaehlerian
holonomy system. Let S = ((V, J,(, )), R, G) be an anti-Kaehlerian holonomy system.
Take a totally real subspace W of V such that ( , )|wxsw = 0andthat {(, )|wxw is positive
definite. Set Rw := pry o Rlwxwxw. Let gw be the Lie subalgebra of so(W) spanned
by {pryy o Alw | A € g} and Gw = expgow)(gw). It is shown that Gw is compact and
connected. Hence the triple Sy := (W, (, Ywxw), Rw, Gw) is a holonomy system. If
GY, = G, then we have S}, = S. Then we call Sy a totally real holonomy subsystem of S.
Note that, if S is symmetric and R # 0, then Gf,v = G automatically holds. In fact, the Lie
algebra g of G is then generated by {R(vy, v2) | v, v2 € V} and the Lie algebra gw of Gw
includes {Rw (w1, w2) | wi, wa € W}. Hence we have g C gf,, thatis, G C GY,. On the
other hand, it is clear that G}, C G. Thus we have G}, = G.

Now we show the following fact for a weakly irreducible anti-Kaehlerian holonomy
system.

LEMMA 4.2. Let S = (V,J,{, ), R, G) be a weakly irreducible anti-Kaehlerian
holonomy system. Assume that there exists a totally real holonomy subsystem of S having
non-zero scalar curvature. Then the G-action on V is equivalent to an aks-representation.

PROOF. Let S := (W, (, )wxw), Rw, Gw) be a totally real holonomy subsystem
of S having non-zero scalar curvature, which is irreducible because S is weakly irreducible.
According to the proof of Theorem 5 of [Si], we can construct a non-zero curvature-like tensor
R(: WxWxW — W) such that (W, {, Ywxw), R', Gw) is a symmetric holonomy
system. Define ¢ : G x Vi v by ¥ (g, v1,v2,v3) = gR/c(g’lm,g’lvz)g’ltg —
R'¢(v1, v)vs ((g, vy, v2,v3) € G X V3), where R’C is the complexification of R’. Since
¥ is holomorphic and ¥/ = 0 over a totally real submanifold Gy x W3 of G x V3, we
have ¥ = 0 by the theorem of identity. Then the triple ((V, J, {, )), R’, G) is a weakly
irreducible symmetric anti-Kaehlerian holonomy system. Hence we obtain the statement of
this lemma by Lemma 4.1. q.e.d.
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5. Partial tubes with flat and abelian normal bundle

For a submanifold in a Riemannian symmetric space of non-positive (or non-negative)
curvature, M. Briick [B] defined a certain kind of partial tube with abelian normal bundle
including the normal holonomy tube, where the submanifold is assumed to admit the e-tube
for a sufficiently small positive number ¢. In this section, we shall define the similar partial
tube for an anti-Kaehlerian submanifold in a non-flat anti-Kaehlerian symmetric space of non-
positive (or non-negative) curvature. Let M be an anti-Kaehlerian submanifold in such an anti-
Kaehlerian symmetric space N = G/K. Let &, := inf{|r||r : focal radius of M along y},

where y is a unit speed normal geodesic of M. Denote by ei” (resp. M) inf{e, |y :
unit speed spacelike (resp. timelike) normal geodesic}. Assume that sf > 0 (resp. eM > 0).
Denote the metric, the curvature tensor and the complex structure of N by ( , ), Rand J. , re-
spectively. Fix xo € M. Let €, :={c : [0, 1] = M : a piecewise smooth path with c(0) =
X0}, @SO be the restricted normal holonomy group of M at xo and £y, be the Lie sub-
algebra of SOAK(TxtM) generated by {PC*1 o prTCﬁ)M o ﬁc(l)(Pcvl, P.vy) o P, v1p €
TiM, ¢ € €y}, where soax (T M) = {A € gl(TxM) | (Avi, v2)yy + (1, Av2)y, =
0 (Yvi, vy € TXJ(;M), [A, .7;0|TA%M] = 0}, P, is the parallel transport along ¢ with respect

to the normal connection V- of M and pry LM is the orthogonal projection onto chl)M .
=

Also, let Exo be the Lie algebra generated by £y, and Lie @20. Let Ly, := exp £y, and
ZXO 1= exp EXO, where exp is the exponential map of GL(TxtM ). Note that L,, and Zxo are
Lie subgroups of SOk (T;sM) := {A € GL(T;M) | (Avi, Ava)yy = (v1, v2)x, (V01,12 €
TiM). 1A, Jylriy] = 0). Set Re := P oprys vy o Rey(Pe(). Pe()) © Pe for
each ¢ € €. Foreach ¢ € €, it is clear that S, := (TxtM, ﬁc, Ly,) is an anti-
Kaehlerian holonomy system. Fix cp € €, and a totally real subspace W of TXJ(;M such
that (, )x,lwxw is positive definite. Let 2;‘3 be the Lie subalgebra of so(W) generated by
{pry o Re(v1, v2)lw |vi, v2 € V, ¢ € €} and set LY :=exp £, where exp is the exponen-
tial map of GL(W). The group L}?g is compact because it is a closed subgroup of the compact
group SO(W). Hence S¢j|lw := (W, (, )xolwxw), pry o ﬁc()lWXWXW, L)‘?g) is a holonomy
system. Clearly we have (Ez)c = £, that is, (L;‘(;)c = L,,. Itis shown that S¢,|w is a
totally real holonomy subsystem of S¢,. Let W = Wo & Wi @ --- & Wi be the decompo-
sition of W such that W; (i = 0, 1,...,k) are L%-invariant, LES‘) = {idw,} and that L;‘é"
(i = 1,..., k) are irreducible (non-trivial), where LK)’ =1{glw, g € LES} (i=0,1,...,k).
Let Vi := W; @ JWi(= Wf) (i =0,1,...,k). Note that the Lie algebra of L%" is equal to

{ert_ o ﬁc(vl, v)lw, |vi,v2 € V, c € &} Let &YS (i =0,1,...,k)be the Lie subalgebra

of so4x (V;) generated by {per_ o ﬁc(vl, vy lvi,v2 € V, ¢ € €} and L}C/é ‘= exp 2,‘6/(’;,
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where exp is the exponential map of GL(V;). Clearly we have TXJ(;M =VeVid--- -V

and L)\C/(’; = (L)‘:‘(/)’)c (@ =0,1,...,k). Also, it is easy to show that V; (i = 0,1, ...,k) are

L, -invariant, Ly? = {idy,} and that L\’ (i = 1, ..., k) are weakly irreducible (non-trivial).
We have the following fact.

LEMMA 5.1. The action ofL)\C/é on V; is equivalent to an aks-representation.

PROOF. It is easy to show that §; := (V;, pry, o §CO|fofoVi» L}C/é) is a weakly irre-

ducible anti-Kaehlerian holonomy system and that (W;, pry, o ECO [W: xW; xW; » LES") is an ir-
reducible totally real holonomy subsystem of S;. Since N is of non-positive (or non-negative)
curvatures, we see that the scalar curvature of pry, o Reolw; xw; xw; does not vanish. Hence,

it follows from Lemma 4.2 that the L)‘(/(’;—action is equivalent to an aks-representation.  q.e.d.
As in Lemma 3.3 of [B], we have the following statements.
LEMMA 5.2. () Vi (i=0,1,...,k)are P -invariant.

(i) @1y, C Ly (i=1,...,k), where 0 v = {glv; g € 29 }.
(iii) Let Wo = Wo,0 ® Wo,1 @ --- ® Wo,; be the decomposition of Wy such that Wy ;

(j=0.1,....1) are @ |y,-invariant, DY |w,, = {idw,,} and that @2 |w,; (i =1,....1])
are irreducible, where ¢)(C)0|W0,j ={glw,, lg € @20} (G =01,....,D. Set Vy ; = W&j
(j =1,...,1). Then the (b)(c)oh’o,j -action on Vy_; is equivalent to an aks-representation (j =
1,...,D.

PROOF. From the definition of L, it follows that <1§)90 is contained in the normalizer
of Ly, in SOAK(TXtM). Hence V; i =0,1,...,k) are @20—invariant. The group ¢)90|Vf is
contained in the normalizer N (L,\C/(’;) of L,‘C/(’; (i > 1). On the other hand, according to Theorem
5 of [Si], the normalizer of L)‘C}E’ coincides with oneself. From this fact, N (L )\C/(’;) =L )‘C/(’) follows.
Hence we have &0 |y, C Ly (> 1). We define Rt € T M* @ TEM* ® TEM* ® T- M by
Ié)ﬂa(vl, m)vy = Zizil(e,-, e,-)R)J(;)(Avlei, Ay,ei)v3, where (eq, ..., ez;) is an orthonormal
base of Ty, M. Let (IQXLO)W0 ‘= pry, © R)}O|W0Xwoxw0 and (@20)% be the image by the
exponential map of the Lie subalgebra of so(Wo) generated by {pryy, o Pc_loRCl(l)(PcX ,P.Y)o
Pelwy | X, Y € TyyM, ¢ € &,}. The triple (W, (RXLO)WO, (CD)?O)WO) is a holonomy system.
Since R(wq, wp) = O for all wy, wy € Wy, we have

(6.1 (RXLO(X, Ywi, w2) = ([Auw,, Aw 1X, Y) (X, Y € TiyM, wy, w2 € Wo)

by the Ricci equation. By using this relation, we have

_ 1
(5:2)  ((Ry)wy(wi, wa)ws, wa) = ETT([Aw,, Auy] o [Auy, Awy) (Wi, ..., wa € Wo).
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By imitating the proof of Theorem 3.1 of [O] (in terms of (5.1) and (5.2)), we can show
that the triples SWO,_, = (W, ;, (erO,j o R$)|Wo,_/xWo,ijo,p (¢;?0)W0|Wo,_/) G=1,...,D
are holonomy systems having non-zero scalar curvature, where we use the fact that N is
of non-positive (or non-negative) curvature. Also, it is clear that Sy, ; = (Vp,j, (prvoj_ o
R;JCB)WO, ixVo i xVoj» cbfc)o | Vo,_/) (j =1, ..., are weakly irreducible anti-Kaehlerian holonomy
systems having Sw, ; as a totally real holonomy subsystem. Hence it follows from Lemma

4.2 that the ‘p)(r)()'Vo, j-action (j =1, ..., ) is equivalent to an aks-representation. q.e.d.
From these lemmas, we have the following fact directly.

THEOREM 5.3. There exists a decomposition TxtM =VWeVie - -aVieV/e eV
of TXJ(;M such that V; (i = 0,1,...,1) and Vl./ (i=1,...,k) are ZXO-invariant, Zx()h/0 =
{idy,}, the sz|Vi -actions (i =1, ...,1) and the ZXOlv_/-actions (i =1,...,k)are equivalent

to aks-representations, Ly)|v,e..0v, = @Qolvle;...@vl and that LXO'V{EB"'GBV/‘,/ = LXO'V,’69~~~®V/[~
For vg € TXJ(;M, define a subbundle By, (M) of T+ M by
Bvo(M) = {Pc(gvo) | g € on’ C € Q:xo}

and By, (M) := exp®(By,(M)), where exp" is the normal exponential map of M. For each
spacelike (resp. timelike) vector vg with [Jvg|| < 8_]‘;1 (resp. e¥), gvo (M) is an immersed
submanifold, that is, a partial tube over M whose fibre over xq is exp~— (ZXO vp). This partial
tube EUO(M ) is a notion similar to a partial tube defined for a submanifold in a Riemannian
symmetric space of non-positive (or non-negative) curvature by M. Briick [B]. Denote by
Hol,, (M) the normal holonomy tube over M through vg. Clearly we have Hol,, (M) C
EUO(M ). Also, we have the following facts.

THEOREM 5.4. Assume that ZXO vo is a principal orbit of the ZXO-action. Then the
following statements (i)~(iii) hold.
(i) The normal connection of EUO (M) is flat,
(i) EUO (M) has abelian normal bundle,
(iii)) Assume that M is simply connected. The ZXO—action and the normal parallel trans-
port map of M preserve the focal structure of M if and only if 1§U0 (M) is anti-Kaehlerian
equifocal. Then M is a focal submanifold of 1§U0 (M).

PROOF. These statements are shown by imitating the discussions in Sections 4.2 ~ 4.4
of [B]. g.e.d.
6. Anti-Kaehlerian submanifolds with abelian normal bundle

Let N = G/K be a semi-simple anti-Kaehlerian symmetric space. Denote by ( , )
(resp. J) the metric (resp. the complex structure) of N. Let E be a vector bundle along a
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smooth curve ¢ : [0,1] — N (i.e.,, E : a subbundle of ¢*T N) such that each fibre E,
(t € [0, 1]) is an anti-Kaehlerian and abelian subspace of T,.;) N and that each expy (E;) (¢t €
[0, 1]) is properly embedded into N. Since N is semi-simple, exp (E;) is an anti-Kaehlerian
cylindrical product. There exists a totally real subspace EtR of E; such that expy (EtR) is a
torus (with a flat pseudo-Riemannian metric). Denote by G the full holomorphic isometry
group of N from now on. Also, denote by K; the isotropy group of G at c(¢) and denote by
(K1), the isotropy group of the linear isotropy action K; x T.;)N — TN atvg € Ter)N.
Then we have the following fact.

LEMMA 6.1. The set E' := | J {vo € E; |dim (K,)y, <1} is open in E for each
te[0,1]
leN.

PROOF. The statement of this lemma is shown by imitating the discussion in Page 81
of [PT]. g.e.d.

Set Iy := min{/| E! # ¥}. Fix 1o € [0,1] and vg € E; N El. By using some J-
orthonormal frame field (vy, Jv1, ..., v, Jv,) of E, we define maps V;; : E;y — E; (¢ €
[0, 1) by Wror (V7)) = (0)r and Yy (J (Vi)ry) = J (Vi) (0 = 1,..., 7). Let vy := Yy (vo).
Let Iy be the maximal sub-interval of [0, 1] containing 7o such that v, € E b forall t € I,
which is open because E’ is open in E. Take a smooth curve ¢ : Iy — G satisfying é(fg) = e
(e : the identity element of G) and ¢(¢)(c(tg)) = c(¢) for all # € Iy. Let E = E(t);l(Et)
and h(t) = ¢(t); Y(v) (t € Ip). Take a tubular neighborhood T of the principal orbit Ky,vo
in T;(4p)N. Let I; be the maximal sub-interval of Iy containing #( satisfying 2(/;) C T and
define y : Iy — K;vo by h(t) € S, (t € I1), where S, () is the slice of K;,vg through y (7).
Leto : I1 — Kj, be a smooth curve such that o(#p) = e and o(t)(vg) = y(¢) forall t € I;.
Then we can prove the following fact by imitating the proof of Lemma 5.2 of [B].

LEMMA 6.2. The set Uo(t)fl(lzft) is contained in a maximal abelian anti-
tel
Kaehlerian subspace of T, N.

PROOF. Letw € Sy, HE,. From w € §) (), we have (K;))w C (Kyy)y () (see Page 81
of [PT]). This together with dim(K,)y, = lo deduces that dim(Ky)),, = dim(Ky,), (), which
implies that (K;))w = (Kz)y(r)- Leta, := Tyl(t)(Ktovo) (t € I1), which is the maximal abelian
anti-Kaehlerian subspace of T, N containing y (t). Since K; w is parallel to K,vp and

w € Sy,, we have T Kyyw = Tyl(t)

where we use /(7) € E. Hence, since g, is the maximal abelian anti-Kaehlerian subspace
containing h(t), h(t) € E, and E, is abelian, we have E, C ay, that is, o(t)_lft C ag. Thus
the statement of this lemma follows. q.e.d.

K;yvo. Similarly we have Thl(t)K,Oh(t) = Tyl(t)K,0 vy = ay,

Furthermore we can show the following fact by imitating the proof of Lemma 5.3 of [B].
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LEMMA 6.3. The space o(t)™! (E,) is independent of the choice of t € 1.

PROOF. According to Lemma 6.2, U o(t)*l(f,) is contained in some maximal
tel
abelian anti-Kaehlerian subspace ag of T, N. Since N is semi-simple, exp ag is an anti-

Kaehlerian cylindrical product. There exists a totally real subspace aOR of ap such that exp aOR
is a torus. Denote exp ag by TX (k = %rank N). Since exp E; is an anti-Kaehlerian cylin-
drical product by the assumption, so is also exp(o(t)’1 (E)). Hence exp(o(t)’1 (E,) N ag) is
a torus, which we denote by 7, (r = Ldim E;). Let {eq, ..., e} be the lattice of T*. Since

k
T/ is a sub-torus of T*, the lattice of T/ is expressed as {a; :== > a;;(t)e;|i =1,...,r}
j=1
(aij(t) € Z). Furthermore, since 7;" varies continuously with respect to ¢, the g;;’s are contin-
uous. Hence the a;;’s are constant, so 7} is independent of the choice of #. This implies that

o)~ ! (E,) is independent of the choice of ¢. q.e.d.
From this lemma, we have the following fact.
LEMMA 6.4. There exists a smooth curve w : Iy — G with w(t)«Ey, = E; (t € I).

PROOF. Define a smooth curve w : I} — G by w(¢) := ¢(t) oo(t) (¢t € I). This curve
w is the desired curve. g.e.d.

Furthermore, we can show the following fact from this lemma.

LEMMA 6.5. There exists a smooth curve w : [0, 1] — G with w(t)+Eqg = E; (t €
[0, 1]).

PROOF. Let G‘Z“rK (N) = U {IT|IT : 2r-dimensional anti-Kaehlerian subspace
xXeN
of T, N}, which is a submanifold of the Grassmann bundle of N consisting of 2r-dimensional

subspaces. The group G acts on G;‘rK (N) naturally. Let /> be the maximal interval such that

to € I and U E; C G(Ey)). From Lemma 6.4, it follows that /> is open. On the other hand,
tel

since t — E; (¢t € [0, 1]) is a continuous curve in G;‘rK (N), I, is closed. Therefore we have

I, = [0, 1], which implies that the above interval I; is equal to [0, 1]. g.e.d.

Also we shall need the following lemma.

LEMMA 6.6. Fixty € [0,1]. Let g : (—e,&) — G be a smooth curve such that
g(0) = e and that %I;:og(t)c(to) is orthogonal to Eyj, and X be the vector field along
exp E;, defined by X, = %bzog(t)x (x € exp Ey). Then X is a normal vector field of
exp Ey,.
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PROOF. Denote by Xlz the T (exp E,l(})- component 0fX|exp ER- Lety : R — exp E,%
0

be a geodesic in exp E,l(} (and hence N). Defineamap 4 : (—¢,&6) Xx R - N by d(t,s) =
g(t)y(s). Since § is a geodesic variation, the variational vector field %l,:() (=Xoy)isa

Jacobi field along y. Hence X1€ o y is also a Jacobi field. By using this fact, we have

d? . S s . ~ e

T 3&g 0y 7) = (V;Vy(Xg07).7) = —=(R(Xg oy, 7)7,7) = 0.

Hence we can express as (X1€ oy, y)(s) =as+b (a,b € R). Since y(R) is contained in the
IE?
is constant. Hence we have (V};(XIT1 oy), y) = 0. Since this relation holds for any geodesic
[1;7
(X1€)C(to) = 0 implies that X1€ = 0. Denote by X T the T (exp E;))-component of X. We have

only to show X7 = 0. Since X7 is real holomorphic (i.e., X — +/=1JXT : holomorphic)
and XlT1 = 0 on the totally real submanifold exp E,% of exp E;,, we see that X T = 0 along

compact set exp E;°, we have sup || (Xlz oy, Y}l < oo. Therefore, we see that <X1€ oy, V)

y inexp E X1€ is a Killing vector field on a flat torus exp E,l(}. This fact together with

exp E t‘;. It follows from the theorem of identity that X7 = 0 on the whole of exp E 1o~ This
completes the proof. g.e.d.

Let M be an anti-Kaehlerian submanifold with abelian normal bundle in N. Assume that
expN(TXLM ) is properly embedded for each x € M. By using Lemma 6.6, we can show the
following fact.

LEMMA 6.7. Let x be a point of M and g : R — G be a C*°-curve such that g(0) =

e, g(t)x € M (t € R) and that g(t), T} M = Tgl(t)xM (t € R). Let c(t) := g(t)x (t € R).
Then g(t)4 : TXJ-M — TCJ(t)M is the parallel transport along c|(0,1] with respect to the normal

connection V* of M.

PROOF. Take an arbitrary v € Tle . Let y, be the geodesic in expl(TxLM ) with
1v(0) = v and define a map 8 : RZ > N by &(¢, s) := g(¢)(yy(s)). Since 5*(%) is a normal
vector field of exp(Tit)M ) by Lemma 6.6 and exp(Tc%t)M ) is totally geodesic, we have

~ ~ 0 ~ a
Vé‘g(t)*v = V£S=08*<£> = v§|v=08*(5)

d
1
=V 5*<5) S Tc%t) CXp(TCt)M) = TC(I)M s

9
ﬁ‘s:O

where V1 is the normal connection of exp(Tc%t)M ). Hence we have Vc-l g(t)s«v = 0. From

the arbitrariness of v, this implies that g(#) : Tle — TCfI)M is the parallel transport along
cljo.r) with respect to V-+. q.e.d.

By using Lemmas 6.5 and 6.7, we can show the following fact.
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THEOREM 6.8. Let M be as above. The normal connection of M is flat.

PROOF. Letc: 1 — M be aloop at x(€ M) such that the homotopy class [c] of ¢ is
the identity element of the fundamental group 71 (M, x). From the assumption, it follows that

1
t— Tc(t)

6.5 that there exists a smooth curve w : I — G with w(t)*(TXJ-M ) = TCJ(-I)M (t € I). Further-

M satisfies the same conditions as the above ¢t — E;. Hence it follows from Lemma

more, it follows from Lemma 6.7 that w(1)y : TXJ-M — TXJ-M is the parallel transport along
¢ with respect to V. The element w(1) of G is an isometry of the anti-Kaehlerian cylindrical
product expy (T;- M) having x as a fixed point. Furthermore, since [c] is the identity element
of w1 (M, x), w(l) preserves the orientation. Hence, since the full orientation-preserving
isometry group of an anti-Kaehlerian cylindrical product is a free action, w(1) is the identity
transformation of exp N(TXLM ) and hence w(l), (i.e., the parallel transport along ¢ with re-
spect to V1) is the identity transformation of TXLM . From the arbitrariness of c, it follows
that the restricted normal holonomy group of M at x is trivial, that is, the normal connection
of M is flat. q.e.d.

7. Proofs of Theorems A, B and C

Let M and F be as in Theorem A. Fix xo € F and v, € TXJ(;F with epr-(vo) e M.
Without loss of generality, we may assume that 0 < (v,, vy) < (8}“)2 or 0 > (v,, vy) >
—(8;)2, where stE is asin Section 5. Let Ly, ZXO, B,,(F) and gvo (F) be the quantities as in
Section 5 defined for F. Let mr : M — F be the focal map onto F and M)(C)0 be the component
containing v, of (exp* |T$ F)_1 (JT;1 (x0)), where exp™* is the normal exponential map of

F. Then we can show the following fact.
LEMMA 7.1. The intersection ZXO Vo N M)(C)0 is open in ZXO Vo.

PROOF. By imitating the proof of (11) in Page 91 of [B], we can show the statement
of this lemma. g.e.d.

By using Theorem 5.3, Lemmas 6.5, 6.7 and 7.1, we prove Theorem A.

PROOF OF THEOREM A. It suffices to show that M,?O is an open portion of ZXO Vo. In

fact, M is then an open portion of Evo (F) and each fibre of Evo (F) are the image by the normal
exponential map of a principal orbit of a pseudo-orthogonal representation on the normal
space of F which is equivalent to the direct sum representation of an aks-representation and a
trivial representation by Theorem 5.3. Letc : [0, 1] — M)?O be a smooth curve with ¢(0) = v,

and v; be an element of Tei-p ey )M with epr-M (v1) = x¢. Let U be the VJ-_parallel vector

field along ¢ := exp™* oc with ¥ (0) = v;, where V- is the normal connection of M. Define
a vector bundle E along ¢by E; := TZJ(-I)M (t € [0, 1]). For simplicity, set N := G/K. Since
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E; is an anti-Kaehlerian and abelian subspace of Tz;)N and expy (E;) is properly embedded
by the assumption, it follows from Lemma 6.5 that there exists a smooth curve w : [0, 1] — G
with w(t)(explF(vo)) =¢(¢) and w(t)+Eg = E; (t € [0, 1]). Furthermore, it follows from
Lemma 6.7 that w(t), : Eg — E; is the parallel transport along ¢]jo, ;] with respect to vi.
Hence we have w(t),v; = v (¢). From this fact and exle V1()) = x9 (¢t € [0, 1]), we have

w(r)(x0) = w(t)(exp™ (v1)) = exp™™ (w(t)«v1) = X0,

thatis, w(?) € Ky,, where K, is the isotropy group of G at xo. Also, we have

expy (c()) = expF (c(1)) = w(r)(expr7 (v5)) = expy (W (1)« (V)

and hence c(f) = w(#)«(vy) € Kx,V,. From the arbitrariness of ¢, it follows that
(7.1) MY C Kayvo.

Let $ be the Lie subalgebra of SOAK(Txt F) generated by the set {pry, LF © R(ui, U2)|TXLO Fl
v, V2 € TXJ(;F } and set H := expgg AK(TS r) 9, where expgg AK(TS F) is the exponential
map of SOAK(TXtF). Clearly we have H C ZXO. Letv € Tthvo N TXLOF. Then we
have (R(vo, v)vp,v) = 0 because R(vp,v)vg € Ty, Hvg. This implies that Span{vg, v}
is an abelian subspace of TXJ(;F . Hence we see that Span{vg, v} C TUJ(;(KXOU()), that is,
v e Tvt(l( +v0). From the arbitrariness of v, we have Tth vo N TxtF c Tvt(l( xv0) and

hence Ty, (Kx,v0) N TxtF C TyyHvp. On the other hand, it follows from Lemma 7.1 and
(7.1) that

ToyHvo C Tyy(Leyvo) C TugMY C Tyy(Kigvo) N T F .

Therefore, we obtain Ty, (Zxo vo) = Ty, M)?O. Similarly, we obtain T (ZXO vg) = TUM)?0 for
other v € MSO. Hence we see that M)?O is an open portion of ZXO vo. This completes the
proof. g.e.d.

We need the following lemma to prove Theorem B.

LEMMA 7.2. Letn®: G® — G®/K® be the natural projection, $¢ : H([0, 1], g%) —
G°€ be the parallel transport map for G¢ and H, be the horizontal space of the submersion
€0 ¢ atu (e HO([0, 1], g%). Then the restriction (7€ o o9)\m, of ©€ o @€ to Hy can be
regarded as the exponential map of G¢/ K€ at (€ o ¢)(u) under the identification of H, with
T(reope)) (G/K©).

PROOF. Lety (: R — G¢/K*) be a geodesic in G¢/K* and y,* be the horizontal lift of
ytou € (m€0p®) (¥ (0)). Since 7€ o ¢ is an anti-Kaehlerian submersion, yuL is a geodesic
in HO([0, 1], g%). Since H([0, 1], g) is a flat space, we have yL (1) = u +ty,L(0) (¢ H,),
where ¢t € R. From this fact, the statement of this lemma follows. g.e.d.
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PROOF OF THEOREM B. Let M — G/K be as in the statement of Theorem B and
M€ — G°/K€ be the (extrinsic) complexification of M, where we note that G¢/K € is a semi-
simple anti-Kaehlerian symmetric space of non-positive curvature. Define a distribution Ej
on M€ by (Ep)x := ﬂ (Ker AS N Ker RE(., v)v) (x € M*®), where A€ is the shape tensor

veTdMe

of M€ and R€ is the curvature tensor of G¢/K€. Then M¢® is an open portion of a product
submanifold M x G§/K§(C G/K® x G§/K§ = G°/K®), where the decomposition
G*/K® x G§/K§ is an anti-Kaehlerian product such that the distribution T(G§/K§) on
M x G§/K§ is the extension of Eq and M* is an anti-Kaehlerian equifocal submanifold in
G*'/K*. Denote from now on M x G§/K§ by M€ and T(G§/K§) by Eo. Fix x € M.
Since M€ is proper anti-Kaehlerian equifocal, the focal set F of M€ at x consists of infinitely
many complex hyperplanes {/,}1c4 in Txl(M ). Take a focal normal vector field v such that
vy € I, for some Ao € I and that vy ¢ [, (A € I\ {Ao}). Denote by E the focal distribution
for v. Now we shall show that each leaf of E is the image by the normal exponential map
of an open portion of a complex sphere of a normal space of the focal submanifold F :=
So(M€), where f, is the focal map for v. Let L be a leaf of E. Denote by E the focal
distribution on (7€ o ¢)~1 (M) corresponding to E. Set F:= (%0 #9)~1(F), which is a
focal submanifold corresponding to E. 1tis clear that L is the image of some leaf Lof E by
7€ 0 ¢¢. According to Theorem 2 of [K2], L is an open portion of a complex sphere in the
normal space TuJ(;F of F atsome ug € F. According to Lemma 7.2, (n°o¢°)|TuLOf is regarded
as the normal exponential map exp(J;Tco 50 (o) of F at (7€ o ¢)(ug) under the identification
of T,EF (C Tug HO(10, 11, g°) = HO([0, 11, ) with Ti=e g,

is the image of an open portion of a complex sphere in T(nco¢c)(u0)F by XD e o) ()" Let

)F . Therefore, we see that L

€ := {E;}ics be the family of all focal distributions on M€ whose leaves are the images by
the normal exponential map of open portions of complex spheres of the normal spaces of
focal submanifolds. Then it follows from the above fact that Eq @ ) ;.; E; = TM*€. Also,
it is clear that [ is finite. Let € = {Eq, ..., Ex}. Take a focal normal vector field v; with
Ker fy,» = Ej and that Fy := f, (M*®). Take w; € T+ F| with explFl (wy) € M€, where
expLF 1 is the normal exponential map of Fj. According to the proof of Theorem A, the
partial tube Ewl (F1) includes M€ as an open portion. It is clear that Ewl (F1) is proper anti-
Kaehlerian equifocal. Let {E Ly eens I:fk} be the family of all focal distributions of Ewl (Fy)
with E,-|Mc = E; i = 1,...,k). Take a focal normal vector field v, of Ewl(Fl) with
Ker fy,« = Ez and set [> := f, (Ewl (F))). Take wy € T+F, with explF2 (wy) € gwl (F1),
where epr“‘i is the normal exponential map of F>. According to the proof of Theorem A,
the partial tube sz (F2) includes Ewl (F1) as an open portion. It is clear that sz (F) is
proper anti-Kaehlerian equifocal. By repeating (k — 2)-times the same process, we obtain the
complete extension M€ of M®. From this construction of M¢ and Theorem A, the statements
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(i) and (ii) of Theorem B follow. g.e.d.

Next we prove Theorem C.

PROOF OF THEOREM C. Let {Eg, E1, ..., E¢} be as in the statement (ii) of Theo-

rem B. Fix x = gK € M. Since M is curvature-adapted, each (E;), (i = 1,...,k)

is expressed as (E;), = @ (Ker(A, — Aid) N Ker(R(-, v)v — p id))® for some unit nor-

(A,p)es

mal vector v of M at x, where A is the shape tensor of M and R is the curvature tensor

of G/K, S is a subset of (Spec A, x Spec R(-, v)v) \ {(0,0)}. Hence we have (E;), N

T M = EB (Ker(A, — 2id) N Ker(R(-, v)v — wid)). Also, we have (Eg)y N TeM =

(A, m)es

ﬂ (Ker A, N Ker R(-, v)v). From these relations, the statement of Theorem C follows.
veTdM

q.e.d.

8. Examples

Let M be a principal orbit of a Hermann type action H x G/K — G/K and 6 be
the Cartan involution of G with (Fix6)g C K C Fix6 and o be an involution of G with
(Fixo)o € H C Fixo. Without loss of generality, we may assume that 0 0o = 6 o o. It
can be shown that M is proper complex equifocal and curvature-adapted (see [K3]). Denote
by A the shape tensor of M. Then H (eK) is a totally geodesic orbit (which is a singular orbit
except for one case) of the H-action and M is regarded as a partial tube over H(eK). Let
L := Fix(o o 0). The submanifold expl(TeJ;( (H (eK))) is totally geodesic and it is isometric
to the symmetric space L/H N K, where exp' is the normal exponential map of H (eK). Let
g, f and b be the Lie algebras of G, K and H. Denote by the same symbols the involutions
of g associated with 8 and o. Set p := Ker(6 + id) (C g) and q := Ker(c + id) (C g). Take
x :=exp(§) = expg (§)K € M Nexp™(T;% (H(eK))), where & € p = Ker(d +1id) (C g).
For simplicity, set g := expg(§). Let X' be the section of M through x, which pass through
eK. Let b := T,x ¥, a be a maximal abelian subspace of p := T,x (G/K) containing b, A

be the root system with respect to a and p = a + ) pg be the root space decomposition
acN

with respect to a. Set p’ := p N q(= T;% (H(eK))). The orthogonal complement p’ Lof

p’inpisequaltop Nh. Set A = {alp|a € A s.t. alp # 0}, which is a root system by

Theorem B of [K6]. Let Z+ be a positive root system of A with respect to some lexicographic
. — —H —

ordering, pg := Y ycn, si aly=tpPaTOr B € A, AL i={f €Dy Pt n pg # {0}} and

Z_‘: = {B € A_|p' Npp # {0}}. Since both p’ and p'* are Lie triple systems of p and b is

contained in p’, we have p'* = Bt (0)+ X (p'J‘ﬂpﬁ) andp’ = b+ > (p'Npp). Note that
pen”! Ber,
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r o= ZK U(—ZI) is the root system of the symmetric space L/HNK . Take n € T;*M. For

each X € p'Lﬂpﬁ (B e Z{:), we have Angg = —B(1) tanh,B(S)gg (see the proof of Theorem
B of [K3]), where )?g is the horizontal lift of X to & (see Section 3 of [K3] for this definition)

and 7 is the element of b with expjs(ﬁ) = 7 (where 7 is regarded as an element of T¢p’
under the natural identification of p” with T¢p’. Also, foreach Y € T.(M N exp(p’)) N gup 8
(B e ZK), we have A,)Y = taﬁl(g(s) Y (see the proof of Theorem B of [K3]). By using these
relations, for the focal set F' of M€ at x, we have

g 'F = ( U U<—5+(ﬁ°)1(jm/—_1)>>

pehn —V JjeZ

(Y (-3)

*H JjeZ

(8.1)

where B¢ is the complexification of 8. Let FD® := {E;|i = 1,...,k} be the family of
all focal distributions of M¢ whose leaves are the images by the normal exponential map
of complex spheres in the normal spaces of focal submanifolds and FDS' = {(E;)x|i =

1,...,k}. Foreach 8 € A, we set
—V 1 —H
Ef,:=gppNp)° (Beh)) and Ef, :=g(ppnp ) (Behl).
Then we have

(8.2) 32 (0) @ < b E,{x) ® < b E,éfx) = T M.
Ben,

—H
N

Also, for each subspace E of TXI\//I\C, we set FN(E) = {v € TXLIT/I\c | Ker(f7)«x = E},
where v is the parallel normal vector field of M¢ with ¥, = v and fv is the focal map for
v. For B € A with 28, 2,3 ¢ A+, ﬁx is a member of FDS and, for B’ € ZH with
28, ,3 ¢ A+, , . isamember of FD{’. In fact, EV (resp. E ) 1s the focal distribution
for a focal normal vector field v with v, € (=€ + (89)~1(0)) \ (g;1 F\ (=& + (B971(0)))
(resp. vy € (—€+(/3/°)*‘(1\/—1))\(g;‘F\(—é+(/3’°)*‘(£«/— )))) Hence, according
to Theorem 2 in [K2], we have E/3 o ﬂ’ € FD{. However, for 8 € A with 28 € A+ or
2,3 € A+, Eﬁ is not necessarily a member of F D$* but there exists E € FDS® with E D

EV

B Forexample,1f,3€A+, E,BEA OA+and2,3¢A+,thenwehaveEV ¢ FD but

H S Vv Vv cs Vv Vv
ﬁx@E [ € FDS andEﬂ’xeaE%ﬁ) € FD¢ . In fact, Eﬁx@E (respE GBE%ﬁ,x)

is the focal distribution for a focal normal vector field v with v, € (—«‘E + (B9~ l(JT V=1)\
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(g5 'F\ (=€ + (B9~ (wv/=1))) (resp. v € (=€ + (B O\ (g5 F\ (=€ + (89 (0))))

but there exists no focal normal vector field having E/‘S/ . as a focal distribution. Similarly,

for g/ e Zi[ with 28" € A, or 3B’ € A, EH is not necessarily a member of F DS but

B,
there exists E' € FDS with £’ D E g{ . Thus, if A (which is the root system) is reduced,
k
then we have TM¢ = @Ei (orthogonal direct sum), where Ey is defined by (Eg), :=
i=0

ﬂ (KerAf} N Ker R°(, v)v) (x € M%) and {E\, ..., Ex} = FDS . However, if A is not

veTE Mt

k
reduced, then we have T M¢ = ZE,- but the right-hand side is not necessarily an orthogonal
i=0
direct sum. Assume that A is reduced. Foreachi € {1, ..., k}, we have (E;), = EV’X or EI{X

for some B € A. Itis easy to show that the leaves of El.R := E;|ym NT M are diffeomorphic to
a sphere (resp. an affine space) in the case of (E;), = Eg{x (resp. Eg{x).
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