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Abstract. The notion of a complex equifocal submanifold in a Riemannian symmetric space of non-compact
type has been recently introduced as a generalization of isoparametric hypersurfaces in the hyperbolic space. As
its subclass, the notion of a proper complex equifocal submanifold has been introduced. Some results for a proper
complex equifocal submanifold have been recently obtained by investigating the lift of its complete complexification
to some path space. In this paper, we give a new construction of the complete complexification of a proper complex
equifocal submanifold and, by using the construction, show that leaves of focal distributions of the complete com-
plexification are the images by the normal exponential map of principal orbits of a certain kind of pseudo-orthogonal
representation on the normal space of the corresponding focal submanifold.

1. Introduction

C. L. Terng and G. Thorbergsson [TT1] introduced the notion of an equifocal subman-
ifold in a Riemannian symmetric space, which is defined as a compact submanifold with
globally flat and abelian normal bundle such that the focal radii for each parallel normal vec-
tor field are constant. This notion is a generalization of isoparametric submanifolds in the
Euclidean space and isoparametric hypersurfaces in the sphere or the hyperbolic space. For
(not necessarily compact) submanifolds in a Riemannian symmetric space of non-compact
type, the equifocality is a rather weak property. So, we [K1, 2] introduced the notion of a
complex focal radius as a general notion of a focal radius and defined the notion of a complex
equifocal submanifold as a submanifold with globally flat and abelian normal bundle such
that the complex focal radii for each parallel normal vector field are constant with constant
multiplicities. E. Heintze, X. Liu and C. Olmos [HLO] defined the notion of an isoparametric
submanifold with flat section as a submanifold with globally flat and abelian normal bundle
such that sufficiently close parallel submanifolds are of constant mean curvature with respect
to the radial direction. The following fact is known (see Theorem 15 of [K2]):
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All isoparametric submanifolds with flat section are complex equifocal and, conversely,
all curvature-adapted and complex equifocal submanifolds are isoparametric submanifolds
with flat section.

Furthermore, as its subclass, we [K1, 2] introduced the notion of a proper complex
equifocal submanifold. For a proper complex equifocal submanifold, the following fact is
known ([K3]):

Principal orbits of Hermann type actions on a Riemannian symmetric space of non-
compact type are curvature-adapted and proper complex equifocal.

For a (general) submanifold in a Riemannian symmetric space of non-compact type, the
(non-real) complex focal radii are defined algebraically. We needed to find their geometrical
essence. For its purpose, we defined the complexification of the ambient Riemannian sym-
metric space and defined the extrinsic complexification of the submanifold as a certain kind
of submanifold in the complexified symmetric space, where the original submanifold needs
to be assumed to be complete and real analytic. We assume that all submanifolds in the Rie-
mannian symmetric space are complete and real analytic. We [K2] showed that the complex
focal radii of the original submanifold indicate the positions of the focal points of the com-
plexified submanifold. If the original submanifold is complex equifocal, then the extrinsic
complexification is an anti-Kaehlerian equifocal submanifold in the sense of [K2]. Also, if
the original submanifold is proper complex equifocal, then the complexified one is a proper
anti-Kaehlerian equifocal submanifold in the sense of this paper. Thus, the study of an anti-
Kaehlerian equifocal (resp. proper anti-Kaehlerian equifocal) submanifold leads to that of a
complex equifocal (resp. proper complex equifocal) submanifold. The complexified subman-
ifold is not necessarily complete. In the global problem, we need to extend the complexified
submanifold to a complete one. In [K2], we obtained the complete extension of the com-
plexified submanifold by the following method. We first lifted the complexified submanifold
to some path space (which is an infinite dimensional anti-Kaehlerian space) through some
submersion, extended the lifted submanifold to the complete one by repeating some kind of
extension infinitely many times and obtained the complete extension of the original complex-
ified submanifold as the image of the complete one by the submersion. In this paper, we
give a new construction of the complete extension of the complexified submanifold without
the infinite process (see the proof of Theorem B) and investigate the detailed structure of the
complete extension in terms of the new construction. First we prove the following fact for an
anti-Kaehlerian equifocal submanifold.

THEOREM A. Let M be an anti-Kaehlerian equifocal submanifold in a semi-simple
anti-Kaehlerian symmetric space of non-positive (or non-negative) curvature having a focal
submanifold F . If the sections of M are properly embedded, then M is an open portion of a
partial tube overF whose each fibre is the image by the normal exponential map of a principal
orbit of a pseudo-orthogonal representation on the normal space of F which is equivalent to
the direct sum representation of an aks-representation and a trivial representation.

REMARK 1.1. (i) For a focal submanifold F of M , we call (exp⊥ |T ⊥
x F
)−1
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(exp⊥(T ⊥
x F ) ∩ M) (rather than exp⊥(T ⊥

x F ) ∩ M) the slice of M . This theorem states that
slices of a complete anti-Kaehlerian equifocal submanifold are homogeneous.

(ii) The dual actionH ∗ of a Hermann type actionH on a Riemannian symmetric space
G/K of non-compact type is a Hermann action on the compact dualG∗/K ofG/K , whereG
is assumed to be a connected semi-simple Lie group admitting a faithful real representation.
Note that the existence of the dual actionH ∗ is assured by replacingH by the conjugate group
if necessary. Hence the sections of the H ∗-action are flat tori. From this fact, we see that the
sections of theH c-action onGc/Kc are properly embedded, whereH c is the complexification
of H and Gc/Kc is the anti-Kaehlerian symmetric space associated with G/K . On the other
hand, the principal orbits of the H c-action are proper anti-Kaehlerian equifocal. Thus the
principal orbits are submanifolds as in the statement of Theorem A.

(iii) This result is an analogy of that of M. Brück [B] for an equifocal submanifold in a
simply connected Riemannian symmetric space of compact type.

In [K4, 5], we proved some global results for a proper complex equifocal submanifold
by investigating the lift of the complete complexification of the submanifold to some path
space through some submersion. Thus, in the global study of a proper complex equifocal
submanifold, it is important to investigate the detailed structure of its complete complexifica-
tion. By using Theorem A, we obtain a new construction of the complete complexification
of a proper complex equifocal submanifold (see the proof of Theorem B). From the construc-
tion and Theorem A, we obtain the following homogeneous slice theorem for the complete
complexification of a proper complex equifocal submanifold.

THEOREM B. Assume that the sections of the complexification of a proper complex
equifocal submanifold M in a Riemannian symmetric space G/K of non-compact type are
properly embedded. Then the following statements (i) and (ii) hold:

(i) Each leaf of any focal distribution of the complete complexification M̂c of M is
the image by the normal exponential map of a principal orbit of a pseudo-orthogonal repre-
sentation on the normal space of a focal submanifold which is equivalent to the direct sum
representation of an aks-representation and a trivial representation.

(ii) Let E0 be the distribution on M̂c defined by (E0)x := ⋂
v∈T⊥

x M̂
c

(KerRc(·, v)v∩

KerAc
v) (x ∈ M̂c), where Rc is the curvature tensor of Gc/Kc and Ac is the shape tensor of

M̂c. Then there exists a family {Ei | i = 1, . . . , k} of focal distributions of M̂c such that the
leaves of Ei (i = 1, . . . , k) are the images by the normal exponential map of complex spheres

in the normal spaces of focal submanifolds and that E0 ⊕
k∑
i=1

Ei = T M̂c holds.

For a curvature-adapted and proper complex equifocal submanifold, we obtain the fol-
lowing fact in terms of Theorem B.

THEOREM C. Let M be a proper complex equifocal submanifold in a Riemannian
symmetric space of non-compact type as in Theorem B and {E0, . . . , Ek} be as in the state-
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ment (ii) of Theorem B. Assume that M is curvature-adapted. Then ER
i := Ei |M ∩ TM

(i = 0, . . . , k) are integrable distributions on M , leaves of ER
i are half-dimensional totally

real submanifolds of leaves of Ei and TM = ER
0 ⊕

k∑
i=1

ER
i , where Ei |M is the restriction of

Ei to M .

REMARK 1.2. B. Wu ([W2]) showed that leaves of curvature distributions of a com-
plete isoparametric submanifold in a hyperbolic space are totally umbilic spheres, totally um-
bilic hyperbolic spaces or horospheres, where we note that the complexifications of a totally
umbilic sphere and a totally umbilic hyperbolic space are totally anti-Kaehlerian umbilic com-
plex spheres in the complexification (which is a complex sphere) of the ambient hyperbolic
space. See [K2] for the definition of the totally anti-Kaehlerian umbilicity. Thus the statement
of Theorem C is interpreted as an analogy of this result by B. Wu.

As future research, by using Theorem B, we will investigate whether the complete com-
plexifications of proper complex equifocal submanifolds are homogeneous. By using Theo-
rems B and C, we will investigate whether curvature-adapted and proper complex equifocal
submanifolds are homogeneous.

2. Basic notions

In this section, we recall basic notions introduced in [K1∼3]. We first recall the notion
of a complex equifocal submanifold introduced in [K1]. Let M be an immersed submanifold
with abelian normal bundle (i.e., the sectional curvature for each 2-plane in the normal space
is equal to zero) of a symmetric spaceN = G/K of non-compact type. Denote byA the shape
tensor of M . Let v ∈ T ⊥

x M and X ∈ TxM (x = gK). Denote by γv the geodesic in N with
γ̇v(0) = v. The strongly M-Jacobi field Y along γv with Y (0) = X (hence Y ′(0) = −AvX)
is given by

Y (s) = (Pγv |[0,s] ◦ (Dcosv − sDsisv ◦ Av))(X) ,
where Y ′(0) = ∇̃vY, Pγv |[0,s] is the parallel translation along γv|[0,s] and Dcosv (resp. Dsisv) is
given by

Dcosv = g∗ ◦ cos(
√−1ad(sg−1∗ v)) ◦ g−1∗(

resp. Dsisv = g∗ ◦ sin(
√−1ad(sg−1∗ v))√−1ad(sg−1∗ v)

◦ g−1∗
)
.

Here ad is the adjoint representation of the Lie algebra g of G. All focal radii of M along γv
are obtained as real numbers s0 with Ker(Dcos0v − s0D

si
s0v

◦ Av) �= {0}. So, we call a complex

number z0 with Ker(Dcoz0v
− z0D

si
z0v

◦ Ac
v) �= {0} a complex focal radius of M along γv and

call dim Ker(Dcoz0v
− z0D

si
z0v

◦Ac
v) the multiplicity of the complex focal radius z0, where Dcoz0v
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(resp.Dsiz0v
) is a C-linear transformation of (TxN)c defined by

Dcoz0v
= gc∗ ◦ cos(

√−1adc(z0g−1∗ v)) ◦ (gc∗)−1(
resp. Dsisv = gc∗ ◦ sin(

√−1adc(z0g−1∗ v))√−1adc(z0g−1∗ v)
◦ (gc∗)−1

)
,

where gc∗ (resp. adc) is the complexification of g∗ (resp. ad). Here we note that, in the
case where M is of class Cω, complex focal radii along γv indicate the positions of focal
points of the extrinsic complexification Mc(↪→ Gc/Kc) of M along the complexified geo-
desic γ c

ι∗v , where Gc/Kc is the anti-Kaehlerian symmetric space associated with G/K and

ι is the natural immersion of G/K into Gc/Kc. See the following paragraph for the def-
initions of Gc/Kc, Mc(↪→ Gc/Kc) and γ c

ι∗v . Also, for a complex focal radius z0 of M

along γv , we call z0v (∈ (T ⊥
x M)

c) a complex focal normal vector of M at x. Further-
more, assume that M has globally flat normal bundle (i.e., the normal holonomy group of
M is trivial). Let ṽ be a parallel unit normal vector field of M . Assume that the number
(which may be ∞) of distinct complex focal radii along γṽx is independent of the choice
of x ∈ M . Let {ri,x | i = 1, 2, . . . } be the set of all complex focal radii along γṽx , where
|ri,x | < |ri+1,x | or “|ri,x | = |ri+1,x | & Re ri,x > Re ri+1,x” or “|ri,x | = |ri+1,x | & Re ri,x =
Re ri+1,x & Im ri,x = −Im ri+1,x < 0”. Let ri (i = 1, 2, . . . ) be complex valued functions
on M defined by assigning ri,x to each x ∈ M . We call these functions ri (i = 1, 2, . . . )
complex focal radius functions for ṽ. We call ri ṽ a complex focal normal vector field for ṽ. If,
for each parallel unit normal vector field ṽ of M , the number of distinct complex focal radii
along γṽx is independent of the choice of x ∈ M , each complex focal radius function for ṽ is
constant on M and it has constant multiplicity, then we call M a complex equifocal submani-

fold. Let φ : H 0([0, 1], g) → G be the parallel transport map for G. See Section 4 of [K1]
for the definition of the parallel transport map. This map φ is a pseudo-Riemannian submer-
sion. Let π : G → G/K be the natural projection. It follows from Theorem 1 of [K2] that,

M is complex equifocal if and only if each component of (π ◦ φ)−1(M) is complex isopara-
metric. See Section 2 of [K1] for the definition of a complex isoparametric submanifold. In

particular, if each component of (π ◦ φ)−1(M) is proper complex isoparametric (i.e., com-
plex isoparametric and, for each unit normal vector v, the complexified shape operator Ac

v is
diagonalizable with respect to a pseudo-orthonormal base), then we call M a proper complex
equifocal submanifold. For a complex equifocal submanifold, the following fact holds:

For a curvature-adapted and complex equifocal submanifold M , it is proper complex
equifocal submanifold if and only if it has no focal point of non-Euclidean type on the ideal
boundary of the ambient symmetric space.

Here the curvature-adaptedness means that, for each unit normal vector v, the Jacobi
operator R(·, v)v (R : the curvature tensor of G/K) preserves the tangent space invariantly
and it commutes with the shape operator Av . See [K6] for the notion of a focal point of
non-Euclidean type on the ideal boundary.

Next we recall the notions of an anti-Kaehlerian symmetric space associated with a sym-
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FIGURE 1.

FIGURE 2.

metric space of non-compact type which was introduced in [K2]. Let J be a parallel complex
structure on an even dimensional pseudo-Riemannian manifold (M, 〈 , 〉) of half index. If
〈JX, JY 〉 = −〈X,Y 〉 holds for every X, Y ∈ TM , then (M, 〈 , 〉, J ) is called an anti-
Kaehlerian manifold.

Let N = G/K be a symmetric space of non-compact type and (g, σ ) be its orthog-
onal symmetric Lie algebra. Let g = f + p be the Cartan decomposition associated with
a symmetric pair (G,K). Note that f is the Lie algebra of K and p is identified with
the tangent space TeKN , where e is the identity element of G. Let 〈 , 〉 be the Ad(G)-
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invariant non-degenerate inner product of g inducing the Riemannian metric of N and a

be a maximal abelian subspace of p and p = a + ∑
α∈�+

pα be the root space decomposi-

tion with respect to a, that is, pα = {X ∈ p | ad(a)2(X) = α(a)2X for all a ∈ a}. Let
gc, fc, pc, ac pc

α and 〈 , 〉c be the complexifications of g, f, p, a, pα and 〈 , 〉, respec-
tively. If gc and fc are regarded as real Lie algebras, then (gc, fc) is a semi-simple sym-
metric pair, a is a maximal split abelian subspace of pc and pc = ac + ∑

α∈�+
pc
α is the root

space decomposition with respect to a. Here we note that ac is the centralizer of a in pc and

pc
α = {X ∈ pc | (ad(a)c)2(X) = α(a)2X for all a ∈ a}. See [R] and [OS] for general the-

ory of a semi-simple symmetric pair. Let Gc (resp. Kc) be the complexification of G (resp.
K). The 2-multiple of the real part Re〈 , 〉c of 〈 , 〉c is the Killing form of gc regarded as a
real Lie algebra. The restriction 2Re〈 , 〉c|pc×pc is an Ad(Kc)-invariant non-degenerate inner
product of pc (= TeKc(Gc/Kc)). Denote by 〈 , 〉′ the Gc-invariant pseudo-Riemannian met-
ric on Gc/Kc induced from 2Re〈 , 〉c|pc×pc . Define an almost complex structure J0 of pc by

J0X = √−1X (X ∈ pc). It is clear that J0 is Ad(Kc)-invariant. Denote by J̃ theGc-invariant
almost complex structure onGc/Kc induced from J0. It is shown that (Gc/Kc, 〈 , 〉′, J̃ ) is an
anti-Kaehlerian manifold and a (semi-simple) pseudo-Riemannian symmetric space. We call
this anti-Kaehlerian manifold an anti-Kaehlerian symmetric space associated with G/K and
simply denote it by Gc/Kc. Next we shall recall the notion of an anti-Kaehlerian equifocal
submanifold which was introduced in [K2]. Let f be an isometric immersion of an anti-
Kaehlerian manifold (M, 〈 , 〉, J ) into Gc/Kc. If J̃ ◦ f∗ = f∗ ◦ J , then M is called an
anti-Kaehlerian submanifold immersed by f . If, for each x ∈ M , exp⊥(T ⊥

x M) is totally

geodesic, then M is called a a submanifold with section. Denote by exp⊥ the normal expo-
nential map of M . Let v ∈ T ⊥

x M . If exp⊥(avx + bJvx) is a focal point of (M, x), then we

call the complex number a + b
√−1 a complex focal radius along the geodesic γvx . Assume

that the normal bundle of M is abelian and globally flat and that, for each unit normal vector
field v, the number (which may be ∞) of distinct complex focal radii along the geodesic γvx
is independent of the choice of x ∈ M . Then we can define the complex radius functions
as above. If, for a parallel unit normal vector field v, the number of distinct complex focal
radii along γvx is independent of the choice of x ∈ M , complex focal radius functions for v
are constant on M and they have constant multiplicity, then M is called an anti-Kaehlerian

equifocal submanifold. Let φc : H 0([0, 1], gc) → Gc be the parallel transport map for Gc.
See Section 6 of [K2] for the definition of the parallel transport map. This map φc is an
anti-Kaehlerian submersion. Let πc : Gc → Gc/Kc be the natural projection. It is shown

that M is anti-Kaehlerian equifocal if and only if each component of (π c ◦ φc)−1(M) is
anti-Kaehlerian isoparametric. See Section 5 of [K2] for the definition of an anti-Kaehlerian
isoparametric submanifold. In particular, if each component of (π c ◦ φc)−1(M) is proper
anti-Kaehlerian isoparametric (i.e., anti-Kaehlerian isoparametric and, for each unit normal
vector v, the shape operator Av is diagonalizable with respect to an orthonormal base of the
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FIGURE 3.

tangent space regarded as a complex vector space), then we call M a proper anti-Kaehlerian
equifocal submanifold. Assume thatM is anti-Kaehlerian equifocal. Let r be a complex focal
radius for a parallel unit normal vector field v. Then rv is called a focal normal vector field

of M . Then a focal map frv : M → Gc/Kc is defined by frv(x) = exp⊥(rvx) (x ∈ M). Set
Frv := frv(M). We call Frv the focal submanifold of M for rv. Define a distribution Erv on
M by (Erv)x := Ker(frv)∗x (x ∈ M). We call Erv the focal distribution on M for rv. It is
clear that Erv is integrable. It is shown that the focal set of M at x consists of the images by
exp⊥ of infinitely many complex hyperplanes (which are called complex focal hyperplanes)
in T ⊥

x M (see [K2]). Denote by S the set of all complex focal hyperplanes of M at x. If
	{l ∈ S | rvx ∈ l} = 1, then the leaves of Erv are the images by the normal exponential map
of complex spheres in normal spaces of Frv , where 	(·) is the cardinal number of (·). Let r1
(resp. r2) be a complex focal radius for a parallel unit normal vector field v1 (resp. v2). If
{l ∈ S | r1(v1)x ∈ l} = {l ∈ S | r2(v2)x ∈ l}, then we have Er1v1 = Er2v2 .

Next we recall the notion of the extrinsic complexification of a completeCω-submanifold
in a symmetric space of non-compact type which was introduced in [K2]. First we recall
the complexification of a complete Cω-Riemannian manifold. Let M be a complete Cω-
Riemannian manifold. The notion of the adapted complex structure on a neighborhood U of
the 0-section of the tangent bundle TM is defined as the complex structure (on U ) such that,
for each geodesic γ : R → M , the restriction of its differential γ∗ : TR = C → TM to

γ−1∗ (U) is holomorphic. We take U as large as possible under the condition that U ∩TxM is a
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FIGURE 4.

star-shaped neighborhood of 0x for each x ∈ M , where 0x is the zero vector of TxM . If M is
of non-negative curvature, then we have U = TM . Also, if all sectional curvatures of M are
larger than or equal to c (c < 0), then U contains the ball bundle T rM := {X ∈ TM | ‖X‖ <
r} of radius r := π

2
√−c . In detail, see [Sz1∼4]. Denote by JA the adapted complex structure

on U . The complex manifold (U, JA) is interpreted as the complexification of N . We denote
(U, JA) by Mc and call it the complexification of M , where we note that Mc is given no
Riemannian metric. In particular, in the case of M = Rm (the Euclidean space), we have
(U, JA) = Cm. Also, in the case where M is a symmetric space G/K of non-compact type,
there exists the holomorphic diffeomorphism δ of (U, JA) onto an open subset ofGc/Kc. Let
M be an immersed (complete) Cω-submanifold in G/K . Denote by f its immersion. Let
Mc be the complexification of M (defined as above). We shall define the complexification
f c : Mc → Gc/Kc of f , where we shrink Mc to a neighborhood of the 0-section of TM if
necessary. For its purpose, we first define the complexification of a Cω-curve α : R → G/K .
Let g = f+p be the Cartan decomposition associated withG/K andW : R → p be the curve
in p with (expW(t))K = α(t) (t ∈ R), where we note thatW is uniquely determined because
G/K is of non-compact type. Since α is of class Cω, so is also W . Let W c : D → pc (D : a
neighborhood of R in C) be the holomorphic extension ofW . We define the complexification
αc : D → Gc/Kc of α by αc(z) = (expW c(z))Kc. It is shown that this complexification
of a Cω-curve in G/K is a holomorphic curve in Gc/Kc. By using this complexification of
a Cω-curve in G/K , we define the complexification f c : Mc → Gc/Kc of f by f c(X) :=
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(f ◦ γMX )c(
√−1) (X ∈ Mc (⊂ TM)), where γMX is the geodesic in M with γ̇ MX (0) = X.

Here we shrink Mc to a neighborhood of the 0-section of TM if necessary in order to assure

that
√−1 belongs to the domain of (f ◦ γMX )c for each X ∈ Mc. It is shown that the map

f c : Mc → Gc/Kc is holomorphic and that the restriction of f c to a neighborhood U ′ of the
0-section of TM is an immersion, where we take U ′ as large as possible. Denote by Mc this
neighborhood U ′ from now on. GiveMc the Riemannian metric induced from that ofGc/Kc

by f c. Then Mc is an anti-Kaehlerian submanifold in Gc/Kc immersed by f c. We call
this anti-Kaehlerian submanifold Mc immersed by f c the extrinsic complexification of the
submanifold M . We consider the case where M is (extrinsically) homogeneous. Concretely
we consider the case where M = H(g0K) and f is the inclusion map of M into G/K ,
whereH is a closed subgroup ofG. Let ι be a natural immersion ofG/K intoGc/Kc, that is,
ι(gK) = gKc (X ∈ g). It is shown that ι is totally geodesic. Let gc

H be the complexification of
the Lie algebra of H and set H c := exp gc

H . For a homogeneous submanifold M = H(g0K),
the image f c(Mc) is an open subset of the orbit H c(g0K

c). Hence this orbit is the complete
extension ofMc. It is shown thatM is complex equifocal if and only ifMc is anti-Kaehlerian
equifocal (see Theorem 5 of [K2]). Also, it is shown that M is proper complex equifocal if
and only if Mc is proper anti-Kaehlerian equifocal.

3. aks-representations

In this section, we shall first introduce the notions of an anti-Kaehlerian symmetric pair
and an anti-Kaehlerian symmetric Lie algebra, and investigate the correspondence relations
of those notions with an anti-Kaehlerian symmetric space. Let (M, J, 〈 , 〉) be an anti-

Kaehlerian manifold (i.e., J 2 = −id,∇J = 0 (∇ : the Levi-Civita connection of 〈 , 〉))
and 〈JX, JY 〉 = −〈X,Y 〉 (X,Y ∈ TM)). We denote by the same symbol id the iden-
tity transformations of various sets. If there exists an involutive holomorphic isometry sp of
M having p as an isolated fixed point for each p ∈ M , then we call (M, J, 〈 , 〉) an anti-
Kaehlerian symmetric space. Also, if there exists a local involutive holomorphic isometry
defined on a neighborhood of p having p as an isolated fixed point for each p ∈ M , then we
call (M, J, 〈 , 〉) a locally anti-Kaehlerian symmetric space. In this section, we introduce the
notions of an anti-Kaehlerian symmetric pair and an anti-Kaehlerian symmetric Lie algebra in
relation with an anti-Kaehlerian symmetric spaces. Let G be a connected complex Lie group
and K be a closed complex subgroup of G. If there exists an involutive (complex) automor-
phism ρ of G such that G0

ρ ⊂ K ⊂ Gρ (Gρ : the group of all fixed points of ρ, G0
ρ : the

identity component ofGρ) then we call the pair (G,K) an anti-Kaehlerian symmetric pair. If
g be a complex Lie algebra and τ be a complex involution of g, then we call such a pair (g, τ )
an anti-Kaehlerian symmetric Lie algebra. Let f := Ker(τ− id) and p := Ker(τ+ id). Denote
by AdG and adg the adjoint representations of G and g, respectively. Also, denote by j the
complex structure of g. Let pR be the totally real subspace of p such that 〈 , 〉|pR×jpR = 0
and that 〈 , 〉|pR×pR is positive definite. Here we note that such a totally real subspace is
determined uniquely. Set adg|p(f) := {adg(X)|p |X ∈ f}, AdG|p(K) := {AdG(k)|p | k ∈ K},
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adg|pR(f) := {prpR
◦ adg(X)|pR |X ∈ f} and AdG|pR(K) := expGL(pR)

(adg|pR(f)), where
expGL(pR)

is the exponential map of GL(pR). Let SOAK(p) be the identity component of the

group {A ∈ GL(p) |A∗〈 , 〉 = 〈 , 〉, A◦j = j ◦A} and set soAK(p) := {A ∈ gl(p) |A◦j =
j ◦ A, 〈AX,Y 〉 = −〈X,AY 〉 (∀X,Y ∈ p)}, which is the Lie algebra of SOAK(p). Then we
have the following fact.

LEMMA 3.1. The complexification so(pR)
c of so(pR) coincides with soAK(p) and

hence SO(pR) is a half-dimensional totally real compact subgroup of SOAK(p). Also,
the complexification (adg|pR(f))

c of adg|pR(f) coincides with adg|p(f) and adg|pR(f) is con-
tained in so(pR). Hence AdG|pR(K) is a half-dimensional totally real compact subgroup of
AdG|p(K) contained in SO(pR).

PROOF. For A ∈ gl(pR), denote by Ã the element of gl(p, j) := {B ∈ gl(p) |B ◦ j =
j ◦ B} whose restriction to pR is equal to A. Let C ∈ soAK(p). Set A := prpR

◦ C|pR

and B := −j ◦ prjpR
◦ C|pR . Then we have C = Ã + jB̃. Take X,Y ∈ pR. Then it

follows from 〈pR, jpR〉 = 0 that 〈CX, jY 〉 = −〈BX, Y 〉 and 〈X,C(jY )〉 = −〈BY,X〉.
Hence it follows from 〈CX, jY 〉 = −〈X,C(jY )〉 that 〈BX, Y 〉 = −〈X,BY 〉. Thus we have
B ∈ so(pR). Also we have 〈CX, Y 〉 = 〈AX,Y 〉 and 〈X,CY 〉 = −〈X,AY 〉. Hence we
have 〈AX,Y 〉 = −〈X,AY 〉. Thus we have A ∈ so(pR). Therefore we have C ∈ so(pR)

c.
Thus we have soAK(p) ⊂ so(pR)

c. Since soAK(p) and so(pR)
c are of the same dimension,

we have soAK(p) = so(pR)
c. Therefore the first-half statement of this lemma is shown. Let

C ∈ ad|p(f). Set A := prpR
◦ C|pR and B := −j ◦ prjpR

◦ C|pR . From the definition of

adpR(f), we have A ∈ ad|pR(f). Also, it follows from −j ◦ C ∈ ad|p(f) that −(prpR
◦ j ◦

C)|pR ∈ ad|pR(f). Clearly we have −(prpR
◦ j ◦ C)|pR = B. Thus we have B ∈ ad|pR(f).

Therefore we have C(= Ã + j ◦ B̃) ∈ (ad|pR(f))
c. Thus ad|p(f) ⊂ (ad|pR(f))

c is obtained.
From dimRad|p(f) = dimR(ad|pR(f))

c, it follows that ad|p(f) = (ad|pR(f))
c. Also, since

C ∈ ad|p(f) ⊂ soAK(p), we can show A ∈ so(pR) as above. Therefore we obtain ad|pR(f) ⊂
so(pR). Hence Ad|pR(K) ⊂ SO(pR) is obtained. Furthermore, since Ad|pR(K) is closed in
SO(pR), it is compact. Thus the second-half statement of this lemma follows. q.e.d.

Now we show that an anti-Kaehlerian symmetric pair arises from an anti-Kaehlerian
symmetric space.

PROPOSITION 3.2. Let (M, J, 〈 , 〉) be an anti-Kaehlerian symmetric space,G be the
identity component of the isometry group of (M, J, 〈 , 〉) and K be the isotropy group of G
at some p0 ∈ M . Then the pair (G,K) is an anti-Kaehlerian symmetric pair.

PROOF. Identify M with G/K under the correspondence g(p0) ↔ gK (g ∈ G). De-
fine a map ρ : G → G by ρ(g) = sp0 ◦ g ◦ sp0 (g ∈ G), which is an involutive automorphism

ofG. Easily we can show thatG0
ρ ⊂ K ⊂ Gρ (see the proof of (ii) of Theorem 3.3 of Chapter

IV in [H]). Let f := Ker(ρ∗e − id) and p := Ker(ρ∗e + id), where e is the identity element of

G. The space p is identified with Tp0M . Define the
√−1-multiple in g by

√−1X = Jp0X
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(X ∈ p = Tp0M) and [√−1Y,Z] = [Y, Jp0Z] (Y ∈ f, Z ∈ p), where [ , ] is the Lie bracket

product of g. Note that this
√−1-multiple in g is well-defined because f acts on p effec-

tively. Since ad(X) ◦ Jp0 = Jp0 ◦ ad(X) on p (X ∈ f), [Y,Z] = −Rp0(Y,Z) (Y,Z ∈ p) and
Rp0(Jp0Y,Z) = Jp0Rp0(Y,Z) (Y,Z ∈ p) by anti-Kaehlerity of M , we see that (g, [ , ]) is

a complex Lie algebra under this
√−1-multiple. Also, it is easy to show that f is a complex

Lie subalgebra and ρ∗e is the complex involution. Hence G, K and ρ are regarded as a com-
plex Lie group, a complex Lie subgroup ofG and an involutive complex automorphism ofG,
respectively. q.e.d.

By using Lemma 3.1, we show that an anti-Kaehlerian symmetric space arises from an
anti-Kaehlerian symmetric pair.

PROPOSITION 3.3. Let (G,K) be an anti-Kaehlerian symmetric pair. Then there
exists an anti-Kaehlerian structure (J, 〈 , 〉) of G/K such that (G/K, J, 〈 , 〉) is an anti-
Kaehlerian symmetric space.

PROOF. Since (G,K) is an anti-Kaehlerian symmetric pair, there exists an involutive

(complex) automorphism ρ of G with G0
ρ ⊂ K ⊂ Gρ . Let g := LieG, f := LieK and

p := Ker(ρ∗e + id). Then we can show AdG(K)(p) ⊂ p (see the first part of the proof of
Proposition 3.4 of Chapter IV in [H]). Define an almost complex structure j of p by j (X) =√−1X (X ∈ p). It is clear that j is AdG(K)-invariant. Denote by J the G-invariant almost
complex structure on G/K arising from j . Let GL((p, j)) := {A ∈ GL(p) |A ◦ j = j ◦ A},
where GL(p) is the group of all (real) linear isomorphisms of p. Take a half-dimensional
subspace pR of p with pR ⊕ jpR = p. The group GL(pR) of all linear isomorphisms of
pR is regarded as a half-dimensional totally real subgroup of GL((p, j)) by identifying each
A ∈ GL(pR) with Ã ∈ GL((p, j)) defined by Ã(X + jY ) = AX + jAY (X,Y ∈ pR). Let
adg|pR(f) be as in the proof of Proposition 3.2 and AdG|pR(K) := expGL(pR)

(adg|pR(f)). It
is clear that the group AdG|pR(K) is regarded as a half-dimensional totally real subgroup of
AdG|p(K). By taking an anti-Kaehlerian inner product β of (p, j) such that β|pR×jpR = 0
and that β|pR×pR is positive definite and using Lemma 3.1, AdG|pR(K) is a half-dimensional
totally real compact subgroup of AdG|p(K). Define a real bilinear form β0 on p by

β0(X, Y ) =
∫
a∈AdG|pR (K)

β(aX, aY )ω (X, Y ∈ p) ,

where ω is the Haar measure of AdG|pR(K) and each a ∈ AdG|pR(K) is extended to the
linear transformation of p in the natural manner. We shall show that β0 is an anti-Kaehlerian
inner product of (p, j). Let X ∈ pR. Since β(aX, aX) ≥ 0 for any a ∈ AdG|pR(K), we have
β0(X,X) ≥ 0. If β0(X,X) = 0, then we have β(aX, aX) = 0 for any a ∈ AdG|pR(K). In
particular, we have β(X,X) = 0, that is, X = 0. Thus β0|pR×pR is positive definite. Let Y
be another vector of pR. Since β(aX, ajY ) = 0 (a ∈ AdG|pR(K)), we have β0(X, jY ) = 0.
Thus it follows from the arbitrariness of X and Y that β0|pR×jpR = 0. On the other hand, it
is clear that β0(jZ, jW) = −β0(Z,W) (Z,W ∈ p). These facts imply that β0 is an anti-



THE HOMOGENEOUS SLICE THEOREM 13

Kaehlerian inner product of (p, j). Next we shall show that β0 is AdG|p(K)-invariant. It is
clear that β0 is AdG|pR(K)-invariant. Fix X,Y ∈ p. Define a complex-valued function f

on AdG|p(K) by f (a) = β0(aX, aY ) − √−1β0(aX, ajY ) (a ∈ AdG|p(K)). Since f ≡
β0(X, Y ) − √−1β0(X, jY ) on AdG|pR(K), f is holomorphic and AdG|pR(K) is a half-

dimensional totally real subgroup of AdG|p(K), we see that f ≡ β0(X, Y )−
√−1β0(X, jY )

on AdG|p(K), which implies that β0 is AdG|p(K)-invariant. Denote by 〈 , 〉 the G-invariant
pseudo-Riemannian metric onG/K arising from β. It is clear that (G/K, J, 〈 , 〉) is an anti-
Kaehlerian manifold. Next we shall show that (G/K, J, 〈 〉) is an anti-Kaehlerian symmetric
space. Let π : G → G/K be the natural projection. Define a map so : G/K → G/K by

so(π(g)) = π(ρ(g)) (g ∈ G). It is clear that so is well-defined and that s2
o = id. Also, it

is shown that so is an isometry of (G/K, 〈 , 〉) (see the proof of Proposition 3.4 of Chapter
IV in [H]). Furthermore, it is shown that so is holomorphic. Also, we have so∗π(e) ◦ π∗e =
π∗e ◦ ρ∗e = −π∗e on p, that is, so∗π(e) = −id, which implies that π(e) is an isolated fixed
point of so. For each g ∈ G, define a map sπ(g) : G/K → G/K by sπ(g) = g ◦ so ◦
g−1. Easily we can show that sπ(g) is an involutive holomorphic isometry of (G/K, J, 〈 , 〉)
having π(g) as an isolated fixed point. Thus (G/K, J, 〈 , 〉) is an anti-Kaehlerian symmetric
space. q.e.d.

Let (g, τ ) be an anti-Kaehlerian symmetric Lie algebra and f := Ker(τ − id). Let G be
a connected complex Lie group with LieG = g and K be a complex Lie subgroup of G with
LieK = f. We call such a pair (G,K) a pair associated with (g, τ ).

PROPOSITION 3.4. Let (g, τ ) be an anti-Kaehlerian symmetric Lie algebra, (G,K)
be a pair associated with (g, τ ) such that K is connected and (G̃, K̃) be a pair associated
with (g, τ ) such that G̃ is simply connected and that K̃ is connected. Then the following
statements (i) and (ii) hold:

(i) (G̃, K̃) is an anti-Kaehlerian symmetric pair.
(ii) Assume that K is closed. Let (J, 〈 , 〉) be a G-invariant anti-Kaehlerian structure

on G/K defined as in the proof of Proposition 3.3. Then (G/K, J, 〈 , 〉) is a locally anti-
Kaehlerian symmetric space and the universal anti-Kaehlerian covering of (G/K, J, 〈 , 〉)
is isometric to an anti-Kaehlerian symmetric space G̃/K̃ equipped with a suitable anti-
Kaehlerian structure defined as in the proof of Proposition 3.3.

PROOF. First we shall show the statement (i). Since G̃ is simply connected, there
uniquely exists an involutive (complex) automorphism ρ of G̃ with ρ∗e = τ . By a standard

method, we can show that K̃ is equal to the identity component G̃0
ρ of the group of all fixed

points of ρ because K̃ is connected. Thus (G̃, K̃) is an anti-Kaehlerian symmetric pair.
Next we shall show the statement (ii). The groups AdG(K) and AdG̃(K̃) coincide with

each other because they are connected complex Lie subgroups of the adjoint group int g and
have the same Lie algebra. Let (J, 〈 , 〉) (resp. (J̃ , 〈 , 〉˜)) be a G (resp. G̃)-invariant anti-
Kaehlerian structure on G/K (resp. G̃/K̃) as in the proof of Proposition 3.3. Let ψ be the
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homomorphism of G̃ onto G with ψ∗e = id. It is clear that K̃ is the identity component of

ψ−1(K). Hence a map ψ̄ : G̃/K̃ → G/K is well-defined by ψ̄ (̃gK̃) = ψ(̃g)K (̃g ∈ G̃). It
is shown that this map ψ̄ is a covering map (see Lemma 13.4 of Chapter I in [H]). It is easy
to show that ψ̄ is an anti-Kaehlerian covering map of (G̃/K̃, J̃ , 〈 , 〉˜) onto (G/K, J, 〈 , 〉).
Hence (G/K, J, 〈 , 〉) is a locally anti-Kaehlerian symmetric space. Since G̃/K̃ is simply
connected (see the proof of Proposition 3.6 of Chapter IV in [H]), (G̃/K̃, J̃ , 〈 , 〉˜) is the
universal anti-Kaehlerian covering of (G/K, J, 〈 , 〉). q.e.d.

Let (M, J, 〈 , 〉) be an irreducible anti-Kaehlerian symmetric space, G be the identity
component of the isometry group of (M, J, 〈 , 〉) and K be the isotropy group of G at some
point p0 ∈ M , where the irreducibility implies that M is not decomposed into the non-trivial
product of two anti-Kaehlerian symmetric spaces. Assume that (M, J, 〈 , 〉) does not have a
pseudo-Euclidean part in its de Rham decomposition. Note that an anti-Kaehlerian symmetric
space without pseudo-Euclidean part is not necessarily semi-simple (see [CP],[W1]). Also,
let (g, τ ) be the anti-Kaehlerian symmetric Lie algebra associated with the anti-Kaehlerian
symmetric pair (G,K) and p := Ker(τ + id). The space Ker(τ − id) is equal to the Lie
algebra f of K and p is identified with Tp0M (= TeK(G/K)). We call the linear isotropy
representation AdG|p : K → GL(p) an aks-representation, where p is regarded as an anti-
Kaehlerian space under the identification p = Tp0M . Let as be a maximal split abelian
subspace of p (see [R] or [OS] for the definition of a maximal split abelian subspace) and
p = p0 + ∑

α∈�+
pα be the root space decomposition with respect to as (i.e., the simultaneous

eigenspace decomposition of ad(a)2’s (a ∈ as)), where the space pα is defined by pα := {X ∈
p | ad(a)2(X) = α(a)2X for all a ∈ as} and �+ is the positive root system with respect to as
under some lexicographic ordering of a∗

s . Set a := p0 (⊃ as), j := Jp0 and 〈 , 〉0 := 〈 , 〉p0 .
It is shown that 〈 , 〉0|as×as is positive (or negative) definite, a = as⊕jas and 〈 , 〉0|as×jas =
0. Note that pα = {X ∈ p | ad(a)2(X) = αc(a)2X for all a ∈ a} for each α ∈ �+, where
αc is the complexification of α : as → R, a is regarded as the complexification ac

s of as

and αc(a)2X means Re(αc(a)2)X + Im(αc(a)2)jX. Let lα := (αc)−1(0) (α ∈ �) and D :=
a\

⋃
α∈�+

lα . Take u ∈ D and letM be the orbit through u of theK-action by the linear isotropy

representation (AdG|p)|K . Since u ∈ D, M is a principal orbit. Denote by A the shape

tensor of M . Take v ∈ T ⊥
u M(= a). Then we have TuM = ∑

α∈�+
pα and Av|pα = − αc(v)

αc(u)
id

(α ∈ �+). It is easy to show that theK-action by (AdG|p)|K is an anti-Kaehlerian polar action
having a as a section, where an anti-Kaehlerian polar action means the finite dimensional
version of an anti-Kaehlerian polar action on an infinite dimensional anti-Kaehlerian space

defined in [K2]. Furthermore, from Av|pα = − αc(v)
αc(u)

idpα and the arbitrariness of v and u,

we see that each principal orbit of the K-action is proper anti-Kaehlerian isoparametric in the
sense of [K4].
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In the 2-dimensional anti-Kaehlerian space V = (R2, J0, 〈 , 〉0), there uniquely exists a
1-dimensional totally real subspace W of V such that 〈W,J0W 〉0 = 0 and that 〈 , 〉0|W×W is
positive definite. Let w ∈ W ∪ J0W . The quotient manifold V/Zw is a flat anti-Kaehlerian
manifold whose universal anti-Kaehlerian covering is V . We call such an anti-Kaehlerian
manifold an anti-Kaehlerian cylinder. Let (G/K, J, 〈 , 〉) be a semi-simple anti-Kaehlerian
symmetric space and a be a maximal abelian subspace of p = TeK(G/K). It is easy to
show that exp a is a flat totally geodesic submanifold in G/K and that it is holomorphic and
isometric to the product of some anti-Kaehlerian cylinders. We call exp a a maximal anti-
Kaehlerian cylindrical product. Here we note that, if (M, J, 〈 , 〉) is not semi-simple, then
exp a is holomorphic and isometric to the product of some anti-Kaehlerian cylinders and an
anti-Kaehlerian space.

At the end of this section, we shall recall the notion of the anti-Kaehlerian symmetric
space associated with a Riemannian symmetric space of non-compact type which was intro-
duced in [K2]. LetG/K be a Riemannian symmetric space of non-compact type and ρ be the
Cartan involution, where G is assumed to be a connected semi-simple Lie group admitting a
faithful real representation and K can be assumed to be a maximal compact subgroup of G.
Let g := LieG, f := LieK and p := Ker(ρ∗e + id), where p is identified with TeK(G/K).
Also, let gc (resp. ρc∗e) be the complexification of g (resp. ρ∗e). Since G admits a faithful
real representation, we can define the complexification Gc (resp. Kc) of G (resp. K) and the
compact dual G∗(⊂ Gc) of G. It is shown that (Gc,Kc) is an anti-Kaehlerian symmetric
pair. Let β be the AdG(K)-invariant (positive definite) inner product of p arising the Rie-
mannian metric of G/K . Let 〈 , 〉 be the pseudo-Riemannian metric of Gc/Kc arising from
Re βc (pc × pc → R) and J be the natural almost complex structure of Gc/Kc, where pc is
identified with TeKc(Gc/Kc). Then (Gc/Kc, J, 〈 , 〉) is an anti-Kaehlerian symmetric space.
We call this anti-Kaehlerian symmetric space the anti-Kaehlerian symmetric space associated
with G/K , where we note that Gc/Kc is a semi-simple anti-Kaehlerian symmetric space.

REMARK 3.1. If β is the Killing-Cartan form of g, 2Reβc is that of gc regarded as a
real Lie algebra.

4. Anti-Kaehlerian holonomy systems

Let (V ,R,G) be a triple consisting of a Euclidean space V , a curvature-like tensor R (∈
V ∗ ⊗ V ∗ ⊗ V ∗ ⊗ V ) and a compact connected Lie subgroup G of the linear isometry group
O(V ) of V . J. Simons [Si] called (V ,R,G) a holonomy system if R(v1, v2) ∈ LieG for all
v1, v2 ∈ V . In this section, we introduce the notion of an anti-Kaehlerian holonomy system
and show some facts concerning such a system. Let (V , J, 〈 , 〉) be a (finite dimensional)
anti-Kaehlerian space and R (∈ V ∗ ⊗V ∗ ⊗V ∗ ⊗V ) be a curvature-like tensor. Let SOAK(V )
be the identity component of the group {A ∈ GL(V ) |A∗〈 , 〉 = 〈 , 〉, [A, J ] = 0} and G
be a connected complex Lie subgroup of SOAK(V ). We call the triple ((V , J, 〈 , 〉), R,G)
an anti-Kaehlerian holonomy system if the following two conditions hold:

(AH-i) J ◦ R(v1, v2) = R(Jv1, v2) = R(v1, v2) ◦ J for all v1, v2 ∈ V ,
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(AH-ii) R(v1, v2) ∈ LieG for all v1, v2 ∈ V .
Furthermore, if the following condition (S) holds, then we say that the triple is symmetric:

(S) R(gv1, gv2)gv3 = gR(v1, v2)v3 for all vi ∈ V (i = 1, 2, 3) and all g ∈ G.
Also, if G is weakly irreducible, then we say that the triple is weakly irreducible, where the
weak irreducibility of G implies that there exists no G-invariant non-degenerate subspace W
of V with W �= {0} and W �= V . Here we give examples of an anti-Kaehlerian holonomy
system.

EXAMPLE 1. Let (M, J, 〈 , 〉) be an anti-Kaehlerian manifold. Let ∇ be the Levi-
Civita connection of 〈 , 〉, R be the curvature tensor of ∇ and Φx be the restricted holonomy
group of ∇ at x (∈ M). Then the triple ((TxM, Jx, 〈 , 〉x), Rx,Φx) is an anti-Kaehlerian
holonomy system. In particular, if (M, J, 〈 , 〉) is locally symmetric (resp. irreducible), then
this anti-Kaehlerian holonomy system is symmetric (resp. weakly irreducible).

EXAMPLE 2. Let (M, J, 〈 , 〉) be a complex n-dimensional anti-Kaehlerian subman-
ifold in an anti-Kaehlerian manifold (M̃, J̃ , 〈 , 〉˜), T ⊥M be the normal bundle, A be the
shape tensor, ∇⊥ be the normal connection, R⊥ be the curvature tensor of ∇⊥ and Φ⊥

x be the

restricted holonomy group of ∇⊥ at x (∈ M). Define R̄⊥
x ∈ T ⊥

x M
∗⊗T ⊥

x M
∗⊗T ⊥

x M
∗⊗T ⊥

x M

by

R̄⊥
x (v1, v2)v3 :=

2n∑
i=1

〈ei , ei〉R⊥
x (Av1ei, Av2ei)v3 ,

where (e1, . . . , e2n) is an orthonormal base of TxM . Then the triple ((T ⊥
x M, J̃x |T ⊥

x M
,

〈 , 〉x̃ |T⊥
x M×T ⊥

x M
), R̄⊥

x ,Φ
⊥
x ) is an anti-Kaehlerian holonomy system.

We have the following fact for a weakly irreducible symmetric anti-Kaehlerian holonomy
system.

LEMMA 4.1. Let S = ((V , J, 〈 , 〉), R,G) be a weakly irreducible symmetric anti-
Kaehlerian holonomy system with R �= 0. Then the G-action on V is equivalent to an aks-
representation.

PROOF. Let gR be the Lie algebra generated by the set {R(v1, v2) | v1, v2 ∈ V } (⊂
soAK(V ) := Lie(SOAK(V ))) and GR := exp gR , where exp is the exponential map of

SOAK(V ). Set L := gR ⊕ V . Define the
√−1-multiples of elements of L by

√−1v := Jv

(v ∈ V ) and
√−1R(v1, v2) := J ◦ R(v1, v2) (v1, v2 ∈ V ). Also, define [ , ] (: L × L → L)

by [A1, A2] := A1 ◦ A2 − A2 ◦ A1 (A1, A2 ∈ gR), [v1, v2] := R(v1, v2) (v1, v2 ∈ V ) and
[A, v] := A(v) (A ∈ gR, v ∈ V ). Then it follows from the symmetry of S that (L, [ , ])
is a complex Lie algebra. Define a (complex) involution ρ of (L, [ , ]) by ρ|gR = id and
ρ|V = −id. Take a totally real subspace W of V such that 〈 , 〉|W×JW = 0 and that

〈 , 〉|W×W is positive definite. Let (gR)W := {prW ◦ R(v1, v2)|W | v1, v2 ∈ V }. By imi-

tating the proof of Lemma 3.1, we can show that (gR)W is a Lie subalgebra of so(W) and
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((gR)W )
c = gR . Thus ((L, [ , ]), ρ) is an anti-Kaehlerian symmetric Lie algebra. Let (L̃, G̃)

be a pair associated with ((L, [ , ]), ρ) such that L̃ is simply connected and that G̃ is con-
nected. According to Proposition 3.4, (L̃, G̃) is an anti-Kaehlerian symmetric pair. Hence, it
follows from Proposition 3.3 that there exists an anti-Kaehlerian structure (J, 〈 , 〉) such that
(L̃/G̃, J, 〈 , 〉) is an anti-Kaehlerian symmetric space. On the other hand, we can show that
theG-action on V is equivalent to both the restricted holonomy group actionGR of L̃/G̃ at eG̃
and the linear isotropy group action AdL̃|TeG̃(L̃/G̃)(G̃) (see P359∼360 of [W1]). Since the G-

action is weakly irreducible by the assumption, L̃/G̃ is irreducible. Hence, AdL̃|TeG̃(L̃/G̃)(G̃)-
action is an aks-representation. Therefore, we obtain the statement of this lemma. q.e.d.

Now we shall define the notion of the complexification of a holonomy system. Let
S = ((V , 〈 , 〉), R,G) be a holonomy system. Then the triple Sc := ((V c,Re〈 , 〉c), Rc,Gc)

gives an anti-Kaehlerian holonomy system, where V c, 〈 , 〉c, Rc and Gc are the complexifi-
cations of V, 〈 , 〉, R and G, respectively. We call this system Sc the complexification of S.
Next we shall define the notion of a totally real holonomy subsystem of an anti-Kaehlerian
holonomy system. Let S = ((V , J, 〈 , 〉), R,G) be an anti-Kaehlerian holonomy system.
Take a totally real subspaceW of V such that 〈 , 〉|W×JW = 0 and that 〈 , 〉|W×W is positive
definite. Set RW := prW ◦ R|W×W×W . Let gW be the Lie subalgebra of so(W) spanned
by {prW ◦ A|W |A ∈ g} and GW := expSO(W)(gW). It is shown that GW is compact and
connected. Hence the triple SW := ((W, 〈 , 〉|W×W),RW ,GW) is a holonomy system. If
Gc
W = G, then we have Sc

W = S. Then we call SW a totally real holonomy subsystem of S.
Note that, if S is symmetric and R �= 0, then Gc

W = G automatically holds. In fact, the Lie
algebra g of G is then generated by {R(v1, v2) | v1, v2 ∈ V } and the Lie algebra gW of GW
includes {RW(w1, w2) |w1, w2 ∈ W }. Hence we have g ⊂ gc

W , that is, G ⊂ Gc
W . On the

other hand, it is clear that Gc
W ⊂ G. Thus we have Gc

W = G.
Now we show the following fact for a weakly irreducible anti-Kaehlerian holonomy

system.

LEMMA 4.2. Let S = ((V , J, 〈 , 〉), R,G) be a weakly irreducible anti-Kaehlerian
holonomy system. Assume that there exists a totally real holonomy subsystem of S having
non-zero scalar curvature. Then the G-action on V is equivalent to an aks-representation.

PROOF. Let S′ := ((W, 〈 , 〉|W×W),RW ,GW) be a totally real holonomy subsystem
of S having non-zero scalar curvature, which is irreducible because S is weakly irreducible.
According to the proof of Theorem 5 of [Si], we can construct a non-zero curvature-like tensor
R′ (: W × W × W → W) such that ((W, 〈 , 〉|W×W),R′,GW ) is a symmetric holonomy

system. Define ψ : G × V 3 → V by ψ(g, v1, v2, v3) = gR′c(g−1v1, g−1v2)g−1v3 −
R′c(v1, v2)v3 ((g, v1, v2, v3) ∈ G × V 3), where R′c is the complexification of R′. Since

ψ is holomorphic and ψ = 0 over a totally real submanifold GW × W 3 of G × V 3, we
have ψ ≡ 0 by the theorem of identity. Then the triple ((V , J, 〈 , 〉), R′c,G) is a weakly
irreducible symmetric anti-Kaehlerian holonomy system. Hence we obtain the statement of
this lemma by Lemma 4.1. q.e.d.
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5. Partial tubes with flat and abelian normal bundle

For a submanifold in a Riemannian symmetric space of non-positive (or non-negative)
curvature, M. Brück [B] defined a certain kind of partial tube with abelian normal bundle
including the normal holonomy tube, where the submanifold is assumed to admit the ε-tube
for a sufficiently small positive number ε. In this section, we shall define the similar partial
tube for an anti-Kaehlerian submanifold in a non-flat anti-Kaehlerian symmetric space of non-
positive (or non-negative) curvature. LetM be an anti-Kaehlerian submanifold in such an anti-
Kaehlerian symmetric space N = G/K . Let εγ := inf{|r| | r : focal radius of M along γ },
where γ is a unit speed normal geodesic of M . Denote by εM+ (resp. εM− ) inf{εγ | γ :
unit speed spacelike (resp. timelike) normal geodesic}. Assume that εM+ > 0 (resp. εM− > 0).

Denote the metric, the curvature tensor and the complex structure of N by 〈 , 〉, R̃ and J̃ , re-
spectively. Fix x0 ∈ M . Let Cx0 := {c : [0, 1] → M : a piecewise smooth path with c(0) =
x0}, Φ0

x0
be the restricted normal holonomy group of M at x0 and Lx0 be the Lie sub-

algebra of soAK(T
⊥
x0
M) generated by {P−1

c ◦ prT ⊥
c(1)M

◦ R̃c(1)(Pcv1, Pcv2) ◦ Pc | v1, v2 ∈
T ⊥
x0
M, c ∈ Cx0}, where soAK(T

⊥
x0
M) := {A ∈ gl(T ⊥

x0
M) | 〈Av1, v2〉x0 + 〈v1, Av2〉x0 =

0 (∀v1, v2 ∈ T ⊥
x0
M), [A, J̃x0 |T⊥

x0
M ] = 0}, Pc is the parallel transport along c with respect

to the normal connection ∇⊥ of M and prT ⊥
c(1)M

is the orthogonal projection onto T ⊥
c(1)M .

Also, let L̂x0 be the Lie algebra generated by Lx0 and LieΦ0
x0

. Let Lx0 := exp Lx0 and

L̂x0 := exp L̂x0 , where exp is the exponential map of GL(T ⊥
x0
M). Note that Lx0 and L̂x0 are

Lie subgroups of SOAK(T ⊥
x0
M) := {A ∈ GL(T ⊥

x0
M) | 〈Av1, Av2〉x0 = 〈v1, v2〉x0 (∀v1, v2 ∈

T ⊥
x0
M), [A, J̃x0|T ⊥

x0
M ] = 0}. Set R̃c := P−1

c ◦ prT ⊥
c(1)M

◦ R̃c(1)(Pc(·), Pc(·)) ◦ Pc for

each c ∈ Cx0 . For each c ∈ Cx0 , it is clear that Sc := (T ⊥
x0
M, R̃c, Lx0) is an anti-

Kaehlerian holonomy system. Fix c0 ∈ Cx0 and a totally real subspace W of T ⊥
x0
M such

that 〈 , 〉x0 |W×W is positive definite. Let LWx0
be the Lie subalgebra of so(W) generated by

{prW ◦R̃c(v1, v2)|W | v1, v2 ∈ V, c ∈ Cx0} and setLWx0
:= exp LWx0

, where exp is the exponen-

tial map of GL(W). The group LWx0
is compact because it is a closed subgroup of the compact

group SO(W). Hence Sc0 |W := ((W, 〈 , 〉x0 |W×W), prW ◦ R̃c0 |W×W×W ,LWx0
) is a holonomy

system. Clearly we have (LWx0
)c = Lx0 , that is, (LWx0

)c = Lx0 . It is shown that Sc0 |W is a
totally real holonomy subsystem of Sc0 . Let W = W0 ⊕ W1 ⊕ · · · ⊕ Wk be the decompo-

sition of W such that Wi (i = 0, 1, . . . , k) are LWx0
-invariant, LW0

x0 = {idW0} and that LWix0

(i = 1, . . . , k) are irreducible (non-trivial), where LWix0 := {g|Wi | g ∈ LWx0
} (i = 0, 1, . . . , k).

Let Vi := Wi ⊕ JWi(= W c
i ) (i = 0, 1, . . . , k). Note that the Lie algebra of LWix0 is equal to

{prWi ◦ R̃c(v1, v2)|Wi | v1, v2 ∈ V, c ∈ Cx0}. Let L
Vi
x0 (i = 0, 1, . . . , k) be the Lie subalgebra

of soAK(Vi) generated by {prVi ◦ R̃c(v1, v2)|Vi | v1, v2 ∈ V, c ∈ Cx0} and LVix0 := exp L
Vi
x0 ,
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where exp is the exponential map of GL(Vi). Clearly we have T ⊥
x0
M = V0 ⊕ V1 ⊕ · · · ⊕ Vk

and LVix0 = (L
Wi
x0 )

c (i = 0, 1, . . . , k). Also, it is easy to show that Vi (i = 0, 1, . . . , k) are

Lx0 -invariant, LV0
x0 = {idV0} and that LVix0 (i = 1, . . . , k) are weakly irreducible (non-trivial).

We have the following fact.

LEMMA 5.1. The action of LVix0 on Vi is equivalent to an aks-representation.

PROOF. It is easy to show that Si := (Vi, prVi ◦ R̃c0 |Vi×Vi×Vi , LVix0) is a weakly irre-

ducible anti-Kaehlerian holonomy system and that (Wi, prWi ◦ R̃c0 |Wi×Wi×Wi , LWix0 ) is an ir-
reducible totally real holonomy subsystem of Si . Since N is of non-positive (or non-negative)
curvatures, we see that the scalar curvature of prWi ◦ R̃c0 |Wi×Wi×Wi does not vanish. Hence,

it follows from Lemma 4.2 that the LVix0 -action is equivalent to an aks-representation. q.e.d.

As in Lemma 3.3 of [B], we have the following statements.

LEMMA 5.2. (i) Vi (i = 0, 1, . . . , k) are Φ0
x0

-invariant.

(ii) Φ0
x0

|Vi ⊂ L
Vi
x0 ( i = 1, . . . , k), where Φ0

x0
|Vi := {g|Vi | g ∈ Φ0

x0
}.

(iii) Let W0 = W0,0 ⊕ W0,1 ⊕ · · · ⊕ W0,l be the decomposition of W0 such that W0,j

(j = 0, 1, . . . , l) are Φ0
x0

|W0-invariant, Φ0
x0

|W0,0 = {idW0,0} and that Φ0
x0

|W0,j (j = 1, . . . , l)

are irreducible, where Φ0
x0

|W0,j := {g|W0,j | g ∈ Φ0
x0

} (j = 0, 1, . . . , l). Set V0,j := W c
0,j

(j = 1, . . . , l). Then the Φ0
x0

|V0,j -action on V0,j is equivalent to an aks-representation (j =
1, . . . , l).

PROOF. From the definition of Lx0 , it follows that Φ0
x0

is contained in the normalizer

of Lx0 in SOAK(T
⊥
x0
M). Hence Vi (i = 0, 1, . . . , k) are Φ0

x0
-invariant. The group Φ0

x0
|Vi is

contained in the normalizer N(LVix0) of LVix0 (i ≥ 1). On the other hand, according to Theorem

5 of [Si], the normalizer ofLWix0 coincides with oneself. From this fact,N(LVix0 ) = L
Vi
x0 follows.

Hence we have Φ0
x0

|Vi ⊂ L
Vi
x0 (≥ 1). We define R̄⊥

x0
∈ T ⊥

x0
M∗ ⊗ T ⊥

x0
M∗ ⊗ T ⊥

x0
M∗ ⊗ T ⊥

x0
M by

R̄⊥
x0
(v1, v2)v3 := ∑2n

i=1〈ei , ei〉R⊥
x0
(Av1ei, Av2ei)v3, where (e1, . . . , e2n) is an orthonormal

base of Tx0M . Let (R̄⊥
x0
)W0 := prW0

◦ R̄⊥
x0

|W0×W0×W0 and (Φ0
x0
)W0 be the image by the

exponential map of the Lie subalgebra of so(W0) generated by {prW0
◦P−1

c ◦R⊥
c(1)(PcX,PcY )◦

Pc|W0 |X,Y ∈ Tx0M, c ∈ Cx0}. The triple (W0, (R̄
⊥
x0
)W0, (Φ

0
x0
)W0) is a holonomy system.

Since R̃(w1, w2) = 0 for all w1, w2 ∈ W0, we have

(5.1) 〈R⊥
x0
(X, Y )w1, w2〉 = 〈[Aw2, Aw1 ]X,Y 〉 (X, Y ∈ Tx0M, w1, w2 ∈ W0)

by the Ricci equation. By using this relation, we have

(5.2) 〈(R̄⊥
x0
)W0(w1, w2)w3, w4〉 = 1

2
Tr([Aw1, Aw2] ◦ [Aw3, Aw4 ]) (w1, . . . , w4 ∈ W0) .
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By imitating the proof of Theorem 3.1 of [O] (in terms of (5.1) and (5.2)), we can show

that the triples SW0,j := (W0,j , (prW0,j
◦ R̄⊥

x0
)|W0,j×W0,j×W0,j , (Φ

0
x0
)W0 |W0,j ) (j = 1, . . . , l)

are holonomy systems having non-zero scalar curvature, where we use the fact that N is
of non-positive (or non-negative) curvature. Also, it is clear that SV0,j := (V0,j , (prV0,j

◦
R̄⊥
x0
)|V0,j×V0,j×V0,j , Φ

0
x0

|V0,j ) (j = 1, . . . , l) are weakly irreducible anti-Kaehlerian holonomy
systems having SW0,j as a totally real holonomy subsystem. Hence it follows from Lemma

4.2 that the Φ0
x0

|V0,j -action (j = 1, . . . , l) is equivalent to an aks-representation. q.e.d.

From these lemmas, we have the following fact directly.

THEOREM 5.3. There exists a decomposition T ⊥
x0
M = V0⊕V1⊕· · ·⊕Vl⊕V ′

1⊕· · ·⊕V ′
k

of T ⊥
x0
M such that Vi (i = 0, 1, . . . , l) and V ′

i (i = 1, . . . , k) are L̂x0-invariant, L̂x0 |V0 =
{idV0}, the L̂x0 |Vi -actions (i = 1, . . . , l) and the L̂x0 |V ′

i
-actions (i = 1, . . . , k) are equivalent

to aks-representations, L̂x0 |V1⊕···⊕Vl = Φ0
x0

|V1⊕···⊕Vl and that L̂x0 |V ′
1⊕···⊕V ′

k
= Lx0 |V ′

1⊕···⊕V ′
k
.

For v0 ∈ T ⊥
x0
M , define a subbundle Bv0(M) of T ⊥M by

Bv0(M) := {Pc(gv0) | g ∈ L̂x0, c ∈ Cx0}
and B̃v0(M) := exp⊥(Bv0(M)), where exp⊥ is the normal exponential map of M . For each

spacelike (resp. timelike) vector v0 with ‖v0‖ < εM+ (resp. εM− ), B̃v0(M) is an immersed

submanifold, that is, a partial tube over M whose fibre over x0 is exp⊥(L̂x0v0). This partial

tube B̃v0(M) is a notion similar to a partial tube defined for a submanifold in a Riemannian
symmetric space of non-positive (or non-negative) curvature by M. Brück [B]. Denote by
Holv0(M) the normal holonomy tube over M through v0. Clearly we have Holv0(M) ⊂
B̃v0(M). Also, we have the following facts.

THEOREM 5.4. Assume that L̂x0v0 is a principal orbit of the L̂x0-action. Then the
following statements (i)∼(iii) hold.

(i) The normal connection of B̃v0(M) is flat,

(ii) B̃v0(M) has abelian normal bundle,

(iii) Assume thatM is simply connected. The L̂x0-action and the normal parallel trans-

port map of M preserve the focal structure of M if and only if B̃v0(M) is anti-Kaehlerian

equifocal. Then M is a focal submanifold of B̃v0(M).

PROOF. These statements are shown by imitating the discussions in Sections 4.2 ∼ 4.4
of [B]. q.e.d.

6. Anti-Kaehlerian submanifolds with abelian normal bundle

Let N = G/K be a semi-simple anti-Kaehlerian symmetric space. Denote by 〈 , 〉
(resp. J ) the metric (resp. the complex structure) of N . Let E be a vector bundle along a
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smooth curve c : [0, 1] → N (i.e., E : a subbundle of c∗TN) such that each fibre Et
(t ∈ [0, 1]) is an anti-Kaehlerian and abelian subspace of Tc(t)N and that each expN(Et) (t ∈
[0, 1]) is properly embedded into N . Since N is semi-simple, expN(Et) is an anti-Kaehlerian

cylindrical product. There exists a totally real subspace ER
t of Et such that expN(E

R
t ) is a

torus (with a flat pseudo-Riemannian metric). Denote by G the full holomorphic isometry
group of N from now on. Also, denote by Kt the isotropy group of G at c(t) and denote by
(Kt)v0 the isotropy group of the linear isotropy action Kt × Tc(t)N → Tc(t)N at v0 ∈ Tc(t)N .
Then we have the following fact.

LEMMA 6.1. The set El :=
⋃
t∈[0,1]

{v0 ∈ Et | dim (Kt )v0 ≤ l} is open in E for each

l ∈ N.

PROOF. The statement of this lemma is shown by imitating the discussion in Page 81
of [PT]. q.e.d.

Set l0 := min{l |El �= ∅}. Fix t0 ∈ [0, 1] and v0 ∈ Et0 ∩ El0 . By using some J -
orthonormal frame field (̃v1, J ṽ1, . . . , ṽr , J ṽr ) of E, we define maps ψt0t : Et0 → Et (t ∈
[0, 1]) by ψt0t ((ṽi )t0) = (ṽi)t and ψt0t (J (ṽi)t0) = J (ṽi)t (i = 1, . . . , r). Let vt := ψt0t (v0).

Let I0 be the maximal sub-interval of [0, 1] containing t0 such that vt ∈ El0 for all t ∈ I0,

which is open because El0 is open in E. Take a smooth curve ĉ : I0 → G satisfying ĉ(t0) = e

(e : the identity element of G) and ĉ(t)(c(t0)) = c(t) for all t ∈ I0. Let Êt := ĉ(t)−1∗ (Et )

and h(t) := ĉ(t)−1∗ (vt ) (t ∈ I0). Take a tubular neighborhood T of the principal orbit Kt0v0

in Tc(t0)N . Let I1 be the maximal sub-interval of I0 containing t0 satisfying h(I1) ⊂ T and
define γ : I1 → Kt0v0 by h(t) ∈ Sγ (t) (t ∈ I1), where Sγ (t) is the slice ofKt0v0 through γ (t).
Let o : I1 → Kt0 be a smooth curve such that o(t0) = e and o(t)(v0) = γ (t) for all t ∈ I1.
Then we can prove the following fact by imitating the proof of Lemma 5.2 of [B].

LEMMA 6.2. The set
⋃
t∈I1

o(t)−1(Êt ) is contained in a maximal abelian anti-

Kaehlerian subspace of Tc(t0)N .

PROOF. Letw ∈ Sγ (t)∩ Êt . Fromw ∈ Sγ (t), we have (Kt0)w ⊂ (Kt0)γ (t) (see Page 81
of [PT]). This together with dim(Kt0)v0 = l0 deduces that dim(Kt0)w = dim(Kt0)γ (t), which

implies that (Kt0)w = (Kt0)γ (t). Let at := T ⊥
γ (t)(Kt0v0) (t ∈ I1), which is the maximal abelian

anti-Kaehlerian subspace of Tc(t0)N containing γ (t). Since Kt0w is parallel to Kt0v0 and

w ∈ Sγt , we have T ⊥
w Kt0w = T ⊥

γ (t)Kt0v0. Similarly we have T ⊥
h(t)Kt0h(t) = T ⊥

γ (t)Kt0v0 = at ,

where we use h(t) ∈ El0 . Hence, since at is the maximal abelian anti-Kaehlerian subspace
containing h(t), h(t) ∈ Êt and Êt is abelian, we have Êt ⊂ at , that is, o(t)−1Êt ⊂ a0. Thus
the statement of this lemma follows. q.e.d.

Furthermore we can show the following fact by imitating the proof of Lemma 5.3 of [B].
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LEMMA 6.3. The space o(t)−1(Êt ) is independent of the choice of t ∈ I1.

PROOF. According to Lemma 6.2,
⋃
t∈I1

o(t)−1(Êt ) is contained in some maximal

abelian anti-Kaehlerian subspace a0 of Tc(t0)N . Since N is semi-simple, exp a0 is an anti-

Kaehlerian cylindrical product. There exists a totally real subspace aR
0 of a0 such that exp aR

0

is a torus. Denote exp aR
0 by T k (k = 1

2 rankN). Since exp Et is an anti-Kaehlerian cylin-

drical product by the assumption, so is also exp(o(t)−1(Êt )). Hence exp(o(t)−1(Êt ) ∩ aR
0 ) is

a torus, which we denote by T rt (r = 1
2 dimEt ). Let {e1, . . . , ek} be the lattice of T k . Since

T rt is a sub-torus of T k , the lattice of T rt is expressed as {ai :=
k∑
j=1

aij (t)ej | i = 1, . . . , r}
(aij (t) ∈ Z). Furthermore, since T rt varies continuously with respect to t , the aij ’s are contin-
uous. Hence the aij ’s are constant, so T rt is independent of the choice of t . This implies that

o(t)−1(Êt ) is independent of the choice of t . q.e.d.

From this lemma, we have the following fact.

LEMMA 6.4. There exists a smooth curve w : I1 → G with w(t)∗Et0 = Et (t ∈ I1).

PROOF. Define a smooth curvew : I1 → G by w(t) := ĉ(t)◦o(t) (t ∈ I1). This curve
w is the desired curve. q.e.d.

Furthermore, we can show the following fact from this lemma.

LEMMA 6.5. There exists a smooth curve w : [0, 1] → G with w(t)∗E0 = Et (t ∈
[0, 1]).

PROOF. Let GAK2r (N) :=
⋃
x∈N

{Π |Π : 2r-dimensional anti-Kaehlerian subspace

of TxN}, which is a submanifold of the Grassmann bundle ofN consisting of 2r-dimensional
subspaces. The group G acts on GAK2r (N) naturally. Let I2 be the maximal interval such that

t0 ∈ I2 and
⋃
t∈I2

Et ⊂ G(Et0). From Lemma 6.4, it follows that I2 is open. On the other hand,

since t → Et (t ∈ [0, 1]) is a continuous curve in GAK2r (N), I2 is closed. Therefore we have
I2 = [0, 1], which implies that the above interval I1 is equal to [0, 1]. q.e.d.

Also we shall need the following lemma.

LEMMA 6.6. Fix t0 ∈ [0, 1]. Let g : (−ε, ε) → G be a smooth curve such that

g(0) = e and that d
dt

|t=0g(t)c(t0) is orthogonal to Et0 , and X be the vector field along

exp Et0 defined by Xx := d
dt

|t=0g(t)x (x ∈ exp Et0 ). Then X is a normal vector field of
exp Et0 .
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PROOF. Denote byXTR the T (exp ER
t0
)- component ofX|exp ER

t0
. Let γ : R → exp ER

t0

be a geodesic in exp ER
t0

(and hence N). Define a map δ : (−ε, ε) × R → N by δ(t, s) =
g(t)γ (s). Since δ is a geodesic variation, the variational vector field ∂δ

∂t
|t=0 (= X ◦ γ ) is a

Jacobi field along γ . Hence XTR ◦ γ is also a Jacobi field. By using this fact, we have

d2

ds2
〈XTR ◦ γ, γ̇ 〉 = 〈∇̃γ̇ ∇̃γ̇ (XTR ◦ γ ), γ̇ 〉 = −〈R̃(XTR ◦ γ, γ̇ )γ̇ , γ̇ 〉 = 0 .

Hence we can express as 〈XTR ◦ γ, γ̇ 〉(s) = as+ b (a, b ∈ R). Since γ (R) is contained in the

compact set exp ER
t0

, we have sup ‖〈XTR ◦ γ, γ̇ 〉‖ < ∞. Therefore, we see that 〈XTR ◦ γ, γ̇ 〉
is constant. Hence we have 〈∇̃γ̇ (XTR ◦ γ ), γ̇ 〉 = 0. Since this relation holds for any geodesic

γ in exp ER
t0

, XTR is a Killing vector field on a flat torus exp ER
t0

. This fact together with

(XTR)c(t0) = 0 implies thatXTR ≡ 0. Denote byXT the T (exp Et0)-component ofX. We have

only to show XT ≡ 0. Since XT is real holomorphic (i.e., XT − √−1JXT : holomorphic)

and XTR = 0 on the totally real submanifold exp ER
t0

of exp Et0 , we see that XT = 0 along

exp ER
t0

. It follows from the theorem of identity that XT = 0 on the whole of exp Et0 . This
completes the proof. q.e.d.

LetM be an anti-Kaehlerian submanifold with abelian normal bundle inN . Assume that
expN(T

⊥
x M) is properly embedded for each x ∈ M . By using Lemma 6.6, we can show the

following fact.

LEMMA 6.7. Let x be a point of M and g : R → G be a C∞-curve such that g(0) =
e, g(t)x ∈ M (t ∈ R) and that g(t)∗T ⊥

x M = T ⊥
g(t)xM (t ∈ R). Let c(t) := g(t)x (t ∈ R).

Then g(t)∗ : T ⊥
x M → T ⊥

c(t)M is the parallel transport along c|[0,t ] with respect to the normal

connection ∇⊥ of M .

PROOF. Take an arbitrary v ∈ T ⊥
x M . Let γv be the geodesic in exp⊥(T ⊥

x M) with

γ̇v(0) = v and define a map δ : R2 → N by δ(t, s) := g(t)(γv(s)). Since δ∗( ∂∂t ) is a normal

vector field of exp(T ⊥
c(t)M) by Lemma 6.6 and exp(T ⊥

c(t)M) is totally geodesic, we have

∇̃ċg(t)∗v = ∇̃ ∂
∂t |s=0

δ∗
(
∂

∂s

)
= ∇̃ ∂

∂s |s=0
δ∗

(
∂

∂t

)

= ∇⊥t
∂
∂s

|s=0
δ∗

(
∂

∂t

)
∈ T ⊥

c(t) exp(T ⊥
c(t)M) = Tc(t)M ,

where ∇⊥t is the normal connection of exp(T ⊥
c(t)M). Hence we have ∇⊥̇

c g(t)∗v = 0. From

the arbitrariness of v, this implies that g(t)∗ : T ⊥
x M → T ⊥

c(t)
M is the parallel transport along

c|[0,t ] with respect to ∇⊥. q.e.d.

By using Lemmas 6.5 and 6.7, we can show the following fact.
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THEOREM 6.8. Let M be as above. The normal connection ofM is flat.

PROOF. Let c : I → M be a loop at x(∈ M) such that the homotopy class [c] of c is
the identity element of the fundamental group π1(M, x). From the assumption, it follows that

t → T ⊥
c(t)M satisfies the same conditions as the above t → Et . Hence it follows from Lemma

6.5 that there exists a smooth curvew : I → G withw(t)∗(T ⊥
x M) = T ⊥

c(t)M (t ∈ I ). Further-

more, it follows from Lemma 6.7 that w(1)∗ : T ⊥
x M → T ⊥

x M is the parallel transport along

c with respect to ∇⊥. The elementw(1) ofG is an isometry of the anti-Kaehlerian cylindrical
product expN(T

⊥
x M) having x as a fixed point. Furthermore, since [c] is the identity element

of π1(M, x), w(1) preserves the orientation. Hence, since the full orientation-preserving
isometry group of an anti-Kaehlerian cylindrical product is a free action, w(1) is the identity
transformation of expN(T

⊥
x M) and hence w(1)∗ (i.e., the parallel transport along c with re-

spect to ∇⊥) is the identity transformation of T ⊥
x M . From the arbitrariness of c, it follows

that the restricted normal holonomy group of M at x is trivial, that is, the normal connection
of M is flat. q.e.d.

7. Proofs of Theorems A, B and C

Let M and F be as in Theorem A. Fix x0 ∈ F and vo ∈ T ⊥
x0
F with exp⊥(vo) ∈ M .

Without loss of generality, we may assume that 0 < 〈vo, vo〉 < (ε+F )2 or 0 > 〈vo, vo〉 >
−(ε−F )2, where ε±F is as in Section 5. Let Lx0, L̂x0, Bvo(F ) and B̃vo (F ) be the quantities as in

Section 5 defined for F . Let πF : M → F be the focal map ontoF andM0
x0

be the component

containing vo of (exp⊥F |T⊥
x0
F )

−1(π−1
F (x0)), where exp⊥F is the normal exponential map of

F . Then we can show the following fact.

LEMMA 7.1. The intersection L̂x0vo ∩M0
x0

is open in L̂x0vo.

PROOF. By imitating the proof of (11) in Page 91 of [B], we can show the statement
of this lemma. q.e.d.

By using Theorem 5.3, Lemmas 6.5, 6.7 and 7.1, we prove Theorem A.

PROOF OF THEOREM A. It suffices to show that M0
x0

is an open portion of L̂x0vo. In

fact,M is then an open portion of B̃vo (F ) and each fibre of B̃vo (F ) are the image by the normal
exponential map of a principal orbit of a pseudo-orthogonal representation on the normal
space of F which is equivalent to the direct sum representation of an aks-representation and a
trivial representation by Theorem 5.3. Let c : [0, 1] → M0

x0
be a smooth curve with c(0) = vo

and v1 be an element of T ⊥
exp⊥F (vo)

M with exp⊥M (v1) = x0. Let ṽ1 be the ∇⊥-parallel vector

field along c̃ := exp⊥F ◦c with ṽ1(0) = v1, where ∇⊥ is the normal connection of M . Define

a vector bundle E along c̃ by Et := T ⊥
c̃(t )M (t ∈ [0, 1]). For simplicity, set N := G/K . Since



THE HOMOGENEOUS SLICE THEOREM 25

Et is an anti-Kaehlerian and abelian subspace of Tc̃(t)N and expN(Et) is properly embedded
by the assumption, it follows from Lemma 6.5 that there exists a smooth curvew : [0, 1] → G

with w(t)(exp⊥F (vo)) = c̃(t) and w(t)∗E0 = Et (t ∈ [0, 1]). Furthermore, it follows from
Lemma 6.7 that w(t)∗ : E0 → Et is the parallel transport along c̃|[0,t ] with respect to ∇⊥.

Hence we have w(t)∗v1 = ṽ1(t). From this fact and exp⊥M (̃v1(t)) = x0 (t ∈ [0, 1]), we have

w(t)(x0) = w(t)(exp⊥M (v1)) = exp⊥M (w(t)∗v1) = x0 ,

that is, w(t) ∈ Kx0 , whereKx0 is the isotropy group of G at x0. Also, we have

expN(c(t)) = exp⊥F (c(t)) = w(t)(exp⊥F (vo)) = expN(w(t)∗(vo))

and hence c(t) = w(t)∗(vo) ∈ Kx0vo. From the arbitrariness of c, it follows that

(7.1) M0
x0

⊂ Kx0vo .

Let H be the Lie subalgebra of soAK(T
⊥
x0
F) generated by the set {prT ⊥

x0
F ◦ R̃(v1, v2)|T ⊥

x0
F |

v1, v2 ∈ T ⊥
x0
F } and set H := expSOAK(T

⊥
x0
F)H, where expSOAK(T

⊥
x0
F) is the exponential

map of SOAK(T
⊥
x0
F). Clearly we have H ⊂ L̂x0 . Let v ∈ T ⊥

v0
Hv0 ∩ T ⊥

x0
F . Then we

have 〈R̃(v0, v)v0, v〉 = 0 because R̃(v0, v)v0 ∈ Tv0Hv0. This implies that Span{v0, v}
is an abelian subspace of T ⊥

x0
F . Hence we see that Span{v0, v} ⊂ T ⊥

v0
(Kx0v0), that is,

v ∈ T ⊥
v0
(Kx0v0). From the arbitrariness of v, we have T ⊥

v0
Hv0 ∩ T ⊥

x0
F ⊂ T ⊥

v0
(Kx0v0) and

hence Tv0(Kx0v0) ∩ T ⊥
x0
F ⊂ Tv0Hv0. On the other hand, it follows from Lemma 7.1 and

(7.1) that

Tv0Hv0 ⊂ Tv0(L̂x0v0) ⊂ Tv0M
0
x0

⊂ Tv0(Kx0v0) ∩ T ⊥
x0
F .

Therefore, we obtain Tv0(L̂x0v0) = Tv0M
0
x0

. Similarly, we obtain Tv(L̂x0v0) = TvM
0
x0

for

other v ∈ M0
x0

. Hence we see that M0
x0

is an open portion of L̂x0v0. This completes the
proof. q.e.d.

We need the following lemma to prove Theorem B.

LEMMA 7.2. Let πc : Gc → Gc/Kc be the natural projection, φc : H 0([0, 1], gc) →
Gc be the parallel transport map for Gc and Hu be the horizontal space of the submersion
πc ◦ φc at u (∈ H 0([0, 1], gc)). Then the restriction (πc ◦ φc)|Hu of πc ◦ φc to Hu can be
regarded as the exponential map ofGc/Kc at (πc ◦φc)(u) under the identification ofHu with
T(πc◦φc)(u)(G

c/Kc).

PROOF. Let γ (: R → Gc/Kc) be a geodesic inGc/Kc and γ Lu be the horizontal lift of

γ to u ∈ (πc ◦φc)−1(γ (0)). Since πc ◦φc is an anti-Kaehlerian submersion, γ Lu is a geodesic

in H 0([0, 1], gc). Since H 0([0, 1], gc) is a flat space, we have γ Lu (t) = u + t γ̇ Lu (0) (∈ Hu),
where t ∈ R. From this fact, the statement of this lemma follows. q.e.d.
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PROOF OF THEOREM B. Let M ↪→ G/K be as in the statement of Theorem B and
Mc ↪→ Gc/Kc be the (extrinsic) complexification ofM , where we note thatGc/Kc is a semi-
simple anti-Kaehlerian symmetric space of non-positive curvature. Define a distribution E0

onMc by (E0)x :=
⋂

v∈T⊥
x M

c

(
KerAc

v ∩ KerRc(·, v)v) (x ∈ Mc), where Ac is the shape tensor

of Mc and Rc is the curvature tensor of Gc/Kc. Then Mc is an open portion of a product
submanifold Mc′ × Gc

0/K
c
0 (⊂ Gc′/Kc′ × Gc

0/K
c
0 = Gc/Kc), where the decomposition

Gc′/Kc′ × Gc
0/K

c
0 is an anti-Kaehlerian product such that the distribution T (Gc

0/K
c
0) on

Mc′ ×Gc
0/K

c
0 is the extension of E0 andMc′ is an anti-Kaehlerian equifocal submanifold in

Gc′/Kc′. Denote from now on Mc′ × Gc
0/K

c
0 by Mc and T (Gc

0/K
c
0) by E0. Fix x ∈ Mc.

Since Mc is proper anti-Kaehlerian equifocal, the focal set F of Mc at x consists of infinitely
many complex hyperplanes {lλ}λ∈Λ in T ⊥

x (M
c). Take a focal normal vector field v such that

vx ∈ lλ0 for some λ0 ∈ I and that vx /∈ lλ (λ ∈ I \ {λ0}). Denote by E the focal distribution
for v. Now we shall show that each leaf of E is the image by the normal exponential map
of an open portion of a complex sphere of a normal space of the focal submanifold F :=
fv(M

c), where fv is the focal map for v. Let L be a leaf of E. Denote by Ẽ the focal
distribution on (πc ◦ φc)−1(Mc) corresponding to E. Set F̃ := (πc ◦ φc)−1(F ), which is a
focal submanifold corresponding to Ẽ. It is clear that L is the image of some leaf L̃ of Ẽ by
πc ◦ φc. According to Theorem 2 of [K2], L̃ is an open portion of a complex sphere in the
normal space T ⊥

u0
F̃ of F̃ at some u0 ∈ F̃ . According to Lemma 7.2, (πc ◦φc)|T ⊥

u0
F̃ is regarded

as the normal exponential map exp⊥
(πc◦φc)(u0)

of F at (πc ◦ φc)(u0) under the identification

of T ⊥
u0
F̃ (⊂ Tu0H

0([0, 1], gc) = H 0([0, 1], gc)) with T ⊥
(πc◦φc)(u0)

F . Therefore, we see that L

is the image of an open portion of a complex sphere in T ⊥
(πc◦φc)(u0)

F by exp⊥
(πc◦φc)(u0)

. Let

E := {Ei}i∈I be the family of all focal distributions on Mc whose leaves are the images by
the normal exponential map of open portions of complex spheres of the normal spaces of
focal submanifolds. Then it follows from the above fact that E0 ⊕ ∑

i∈I Ei = TMc. Also,
it is clear that I is finite. Let E = {E1, . . . , Ek}. Take a focal normal vector field v1 with

Ker fv1∗ = E1 and that F1 := fv1(M
c). Take w1 ∈ T ⊥F1 with exp⊥F1 (w1) ∈ Mc, where

exp⊥F1 is the normal exponential map of F1. According to the proof of Theorem A, the
partial tube B̃w1(F1) includes Mc as an open portion. It is clear that B̃w1(F1) is proper anti-

Kaehlerian equifocal. Let {Ẽ1, . . . , Ẽk} be the family of all focal distributions of B̃w1(F1)

with Ẽi |Mc = Ei (i = 1, . . . , k). Take a focal normal vector field v2 of B̃w1(F1) with

Ker fv2∗ = Ẽ2 and set F2 := fv2(B̃w1(F1)). Take w2 ∈ T ⊥F2 with exp⊥F2 (w2) ∈ B̃w1(F1),

where exp⊥F2 is the normal exponential map of F2. According to the proof of Theorem A,
the partial tube B̃w2(F2) includes B̃w1(F1) as an open portion. It is clear that B̃w2(F2) is
proper anti-Kaehlerian equifocal. By repeating (k− 2)-times the same process, we obtain the
complete extension M̂c of Mc. From this construction of M̂c and Theorem A, the statements
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(i) and (ii) of Theorem B follow. q.e.d.

Next we prove Theorem C.

PROOF OF THEOREM C. Let {E0, E1, . . . , Ek} be as in the statement (ii) of Theo-
rem B. Fix x = gK ∈ M . Since M is curvature-adapted, each (Ei)x (i = 1, . . . , k)

is expressed as (Ei)x =
⊕

(λ,µ)∈S
(Ker(Av − λ id) ∩ Ker(R(·, v)v − µ id))c for some unit nor-

mal vector v of M at x, where A is the shape tensor of M and R is the curvature tensor
of G/K , S is a subset of (SpecAv × SpecR(·, v)v) \ {(0, 0)}. Hence we have (Ei)x ∩
TxM =

⊕
(λ,µ)∈S

(Ker(Av − λ id) ∩ Ker(R(·, v)v − µ id)). Also, we have (E0)x ∩ TxM =
⋂

v∈T⊥
x M

(KerAv ∩ KerR(·, v)v). From these relations, the statement of Theorem C follows.

q.e.d.

8. Examples

Let M be a principal orbit of a Hermann type action H × G/K → G/K and θ be
the Cartan involution of G with (Fix θ)0 ⊂ K ⊂ Fix θ and σ be an involution of G with
(Fix σ)0 ⊂ H ⊂ Fix σ . Without loss of generality, we may assume that σ ◦ θ = θ ◦ σ . It
can be shown that M is proper complex equifocal and curvature-adapted (see [K3]). Denote
by A the shape tensor ofM . ThenH(eK) is a totally geodesic orbit (which is a singular orbit
except for one case) of the H -action and M is regarded as a partial tube over H(eK). Let
L := Fix(σ ◦ θ). The submanifold exp⊥(T ⊥

eK(H(eK))) is totally geodesic and it is isometric

to the symmetric space L/H ∩K , where exp⊥ is the normal exponential map of H(eK). Let
g, f and h be the Lie algebras of G, K and H . Denote by the same symbols the involutions
of g associated with θ and σ . Set p := Ker(θ + id) (⊂ g) and q := Ker(σ + id) (⊂ g). Take
x := exp⊥(ξ) = expG(ξ)K ∈ M ∩ exp⊥(T ⊥

eK(H(eK))), where ξ ∈ p = Ker(θ + id) (⊂ g).
For simplicity, set g := expG(ξ). Let Σ be the section of M through x, which pass through
eK . Let b := TeKΣ , a be a maximal abelian subspace of p := TeK(G/K) containing b, �
be the root system with respect to a and p = a + ∑

α∈�+
pα be the root space decomposition

with respect to a. Set p′ := p ∩ q(= T ⊥
eK(H(eK))). The orthogonal complement p′⊥ of

p′ in p is equal to p ∩ h. Set � = {α|b | α ∈ � s.t. α|b �= 0}, which is a root system by

Theorem B of [K6]. Let �+ be a positive root system of � with respect to some lexicographic

ordering, pβ := ∑
α∈�+ s.t. α|b=±β pα for β ∈ �+, �H

+ := {β ∈ �+ | p′⊥ ∩ pβ �= {0}} and

�V

+ := {β ∈ �+ | p′ ∩ pβ �= {0}}. Since both p′ and p′⊥ are Lie triple systems of p and b is

contained in p′, we have p′⊥ = zp′⊥(b)+ ∑
β∈�H+

(p′⊥∩pβ) and p′ = b+ ∑
β∈�V+

(p′∩pβ). Note that
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�V := �V

+∪(−�V

+) is the root system of the symmetric spaceL/H∩K . Take η ∈ T ⊥
x M . For

eachX ∈ p′⊥∩pβ (β ∈ �H

+ ), we haveAηX̃ξ = −β(η̄) tanhβ(ξ)X̃ξ (see the proof of Theorem

B of [K3]), where X̃ξ is the horizontal lift of X to ξ (see Section 3 of [K3] for this definition)

and η̄ is the element of b with exp⊥∗ξ (η̄) = η (where η̄ is regarded as an element of Tξp′

under the natural identification of p′ with Tξp′. Also, for each Y ∈ Tx(M ∩ exp⊥(p′)) ∩ g∗pβ
(β ∈ �V

+), we have AηY = − β(η̄)
tanhβ(ξ)Y (see the proof of Theorem B of [K3]). By using these

relations, for the focal set F of M̂c at x, we have

g−1∗ F =
( ⋃
β∈�V+

⋃
j∈Z

(
− ξ + (βc)−1(jπ

√−1)

))

∪
( ⋃
β∈�H+

⋃
j∈Z

(
− ξ + (βc)−1

((
j + 1

2

)
π

√−1

)))
,

(8.1)

where βc is the complexification of β. Let FDcs := {Ei | i = 1, . . . , k} be the family of
all focal distributions of M̂c whose leaves are the images by the normal exponential map
of complex spheres in the normal spaces of focal submanifolds and FDcsx := {(Ei)x | i =
1, . . . , k}. For each β ∈ �, we set

EVβ,x := g∗(pβ ∩ p′)c (β ∈ �V

+) and EHβ,x := g∗(pβ ∩ p′⊥)c (β ∈ �H

+ ) .

Then we have

(8.2) zp′⊥(b)⊕
( ⊕
β∈�V+

EVβ,x

)
⊕

( ⊕
β∈�H+

EHβ,x

)
= TxM̂c.

Also, for each subspace E of TxM̂c, we set FN(E) := {v ∈ T ⊥
x M̂

c | Ker(fṽ)∗x = E},
where ṽ is the parallel normal vector field of M̂c with ṽx = v and fṽ is the focal map for

ṽ. For β ∈ �V

+ with 2β, 1
2β /∈ �+, EVβ,x is a member of FDcsx and, for β ′ ∈ �H

+ with

2β ′, 1
2β

′ /∈ �+, EH
β ′,x is a member of FDcsx . In fact, EVβ,x (resp.EH

β ′,x ) is the focal distribution

for a focal normal vector field v with vx ∈ (−ξ + (βc)−1(0)) \ (g−1∗ F \ (−ξ + (βc)−1(0)))

(resp. vx ∈ (−ξ + (β ′c)−1(π2

√−1)) \ (g−1∗ F \ (−ξ + (β ′c)−1(π2

√−1)))). Hence, according

to Theorem 2 in [K2], we have EVβ,x, E
H
β ′,x ∈ FDcsx . However, for β ∈ �V

+ with 2β ∈ �+ or
1
2β ∈ �+, EVβ,x is not necessarily a member of FDcsx but there exists E ∈ FDcsx with E ⊃
EVβ,x . For example, if β ∈ �V

+, 1
2β ∈ �H

+ ∩�V

+ and 2β /∈ �+, then we haveEVβ,x /∈ FDcsx but

EVβ,x⊕EH1
2β,x

∈ FDcsx and EVβ,x⊕EV1
2β,x

∈ FDcsx . In fact, EVβ,x⊕EH1
2β,x

(resp.EVβ,x⊕EV1
2β,x

)

is the focal distribution for a focal normal vector field v with vx ∈ (−ξ + (βc)−1(π
√−1)) \
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(g−1∗ F \ (−ξ + (βc)−1(π
√−1))) (resp. vx ∈ (−ξ+ (βc)−1(0))\ (g−1∗ F \ (−ξ+ (βc)−1(0))))

but there exists no focal normal vector field having EVβ,x as a focal distribution. Similarly,

for β ′ ∈ �H

+ with 2β ′ ∈ �+ or 1
2β

′ ∈ �+, EHβ,x is not necessarily a member of FDcsx but

there exists E′ ∈ FDcsx with E′ ⊃ EH
β ′,x . Thus, if � (which is the root system) is reduced,

then we have T M̂c =
k⊕
i=0

Ei (orthogonal direct sum), where E0 is defined by (E0)x :=
⋂

v∈T⊥
x M̂

c

(
KerAc

v ∩ KerRc(·, v)v) (x ∈ M̂c) and {E1, . . . , Ek} = FDcsx . However, if � is not

reduced, then we have T M̂c =
k∑
i=0

Ei but the right-hand side is not necessarily an orthogonal

direct sum. Assume that � is reduced. For each i ∈ {1, . . . , k}, we have (Ei)x = EVβ,x orEHβ,x
for some β ∈ �. It is easy to show that the leaves of ER

i := Ei |M ∩ TM are diffeomorphic to

a sphere (resp. an affine space) in the case of (Ei)x = EVβ,x (resp. EHβ,x).
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