Open Access
2017 Schottky via the punctual Hilbert scheme
Martin G. Gulbrandsen, Martí Lahoz
Tohoku Math. J. (2) 69(4): 611-619 (2017). DOI: 10.2748/tmj/1512183632

Abstract

We show that a smooth projective curve of genus $g$ can be reconstructed from its polarized Jacobian $(X, \Theta)$ as a certain locus in the Hilbert scheme $\mathrm{Hilb}^d(X)$, for $d=3$ and for $d=g+2$, defined by geometric conditions in terms of the polarization $\Theta$. The result is an application of the Gunning-Welters trisecant criterion and the Castelnuovo-Schottky theorem by Pareschi-Popa and Grushevsky, and its scheme theoretic extension by the authors.

Citation

Download Citation

Martin G. Gulbrandsen. Martí Lahoz. "Schottky via the punctual Hilbert scheme." Tohoku Math. J. (2) 69 (4) 611 - 619, 2017. https://doi.org/10.2748/tmj/1512183632

Information

Published: 2017
First available in Project Euclid: 2 December 2017

zbMATH: 06850816
MathSciNet: MR3732890
Digital Object Identifier: 10.2748/tmj/1512183632

Subjects:
Primary: 14H42
Secondary: 14C05

Keywords: Hilbert scheme , Jacobian , Schottky problem , theta duality , trisecant criterion

Rights: Copyright © 2017 Tohoku University

Vol.69 • No. 4 • 2017
Back to Top