Open Access
2017 Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold
Sungwook Lee
Tohoku Math. J. (2) 69(4): 621-635 (2017). DOI: 10.2748/tmj/1512183633

Abstract

The 2-parameter family of certain homogeneous Lorentzian 3-manifolds which includes Minkowski 3-space, de Sitter 3-space, and Minkowski motion group is considered. Each homogeneous Lorentzian 3-manifold in the 2-parameter family has a solvable Lie group structure with left invariant metric. A generalized integral representation formula which is the unification of representation formulas for minimal timelike surfaces in those homogeneous Lorentzian 3-manifolds is obtained. The normal Gauß map of minimal timelike surfaces in those homogeneous Lorentzian 3-manifolds and its harmonicity are discussed.

Citation

Download Citation

Sungwook Lee. "Minimal timelike surfaces in a certain homogeneous Lorentzian 3-manifold." Tohoku Math. J. (2) 69 (4) 621 - 635, 2017. https://doi.org/10.2748/tmj/1512183633

Information

Published: 2017
First available in Project Euclid: 2 December 2017

zbMATH: 1384.53054
MathSciNet: MR3732891
Digital Object Identifier: 10.2748/tmj/1512183633

Subjects:
Primary: 53A10
Secondary: 53C30 , 53C42 , 53C50

Keywords: de Sitter space , Harmonic map , homogeneous manifold , Lorentz surface , Lorentzian manifold , minimal surface , Minkowski space , solvable Lie group , spacetime , timelike surface

Rights: Copyright © 2017 Tohoku University

Vol.69 • No. 4 • 2017
Back to Top