Translator Disclaimer
2015 Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces II
Hui Ma, Yoshihiro Ohnita
Tohoku Math. J. (2) 67(2): 195-246 (2015). DOI: 10.2748/tmj/1435237041

Abstract

In this paper we determine the Hamiltonian stability of Gauss images, i.e., the images of the Gauss maps, of homogeneous isoparametric hypersurfaces of exceptional type with $g=6$ or $4$ distinct principal curvatures in spheres. Combining it with our previous results in [12] and Part I [14], we determine the Hamiltonian stability for the Gauss images of all homogeneous isoparametric hypersurfaces. In addition, we discuss the exceptional Riemannian symmetric space $(E_6, U(1)\cdot Spin(10))$ and the corresponding Gauss image, which have their own interest from the viewpoint of symmetric space theory.

Citation

Download Citation

Hui Ma. Yoshihiro Ohnita. "Hamiltonian stability of the Gauss images of homogeneous isoparametric hypersurfaces II." Tohoku Math. J. (2) 67 (2) 195 - 246, 2015. https://doi.org/10.2748/tmj/1435237041

Information

Published: 2015
First available in Project Euclid: 25 June 2015

zbMATH: 1334.53060
MathSciNet: MR3365370
Digital Object Identifier: 10.2748/tmj/1435237041

Subjects:
Primary: 53C42
Secondary: 53C40, 53D12

Rights: Copyright © 2015 Tohoku University

JOURNAL ARTICLE
52 PAGES


SHARE
Vol.67 • No. 2 • 2015
Back to Top