Abstract
We prove the generalized stability of the cubic type functional equation $$f(2x+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x)$$ and another functional equation $$f(ax+y)+f(x+ay)=(a+1)(a-1)^{2}[f(x)+f(y)] +a(a+1)f(x+y),$$ where $a$ is an integer with $a \neq 0, \pm 1$ in the framework of non-Archimedean normed spaces.
Citation
Mohammad Sal Moslehian. Ghadir Sadeghi. "Stability of Two Types of Cubic Functional Equations in Non-Archimedean Spaces." Real Anal. Exchange 33 (2) 375 - 384, 2007/2008.
Information