Open Access
2007/2008 Stability of Two Types of Cubic Functional Equations in Non-Archimedean Spaces
Mohammad Sal Moslehian, Ghadir Sadeghi
Real Anal. Exchange 33(2): 375-384 (2007/2008).

Abstract

We prove the generalized stability of the cubic type functional equation $$f(2x+y)+f(2x-y)=2f(x+y)+2f(x-y)+12f(x)$$ and another functional equation $$f(ax+y)+f(x+ay)=(a+1)(a-1)^{2}[f(x)+f(y)] +a(a+1)f(x+y),$$ where $a$ is an integer with $a \neq 0, \pm 1$ in the framework of non-Archimedean normed spaces.

Citation

Download Citation

Mohammad Sal Moslehian. Ghadir Sadeghi. "Stability of Two Types of Cubic Functional Equations in Non-Archimedean Spaces." Real Anal. Exchange 33 (2) 375 - 384, 2007/2008.

Information

Published: 2007/2008
First available in Project Euclid: 18 December 2008

zbMATH: 1254.39015
MathSciNet: MR2458254

Subjects:
Primary: 39B22
Secondary: 39B82 , ‎46S10

Keywords: $p$-adic field , cubic functional equation , generalized Hyers-Ulam stability , non-Archimedean space

Rights: Copyright © 2007 Michigan State University Press

Vol.33 • No. 2 • 2007/2008
Back to Top