RESEARCH

Mohammad Sal Moslehian, Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;
Centre of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, Iran.
email: moslehian@ferdowsi.um.ac.ir and moslehian@ams.org
Ghadir Sadeghi, Department of Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran;
Banach Mathematical Research Group (BMRG), Mashhad, Iran. email: gh.sadeghi@math.um.ac.ir and ghadir54@yahoo.com

STABILITY OF TWO TYPES OF CUBIC FUNCTIONAL EQUATIONS IN NON-ARCHIMEDEAN SPACES

$$
\begin{aligned}
& \text { Abstract } \\
& \text { We prove the generalized stability of the cubic type functional equa- } \\
& \text { tion } \\
& f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x)
\end{aligned}
$$

and another functional equation
$f(a x+y)+f(x+a y)=(a+1)(a-1)^{2}[f(x)+f(y)]+a(a+1) f(x+y)$,
where a is an integer with $a \neq 0, \pm 1$ in the framework of non-Archimedean normed spaces.

1 Introduction and Preliminaries.

A classical question in the theory of functional equations is the following: "When is it true that a function which approximately satisfies a functional

[^0]equation \mathcal{E} must be close to an exact solution of \mathcal{E} ?" If there exists an affirmative answer we say that the equation \mathcal{E} is stable [3]. During the last decades several stability problems for various functional equations have been investigated by numerous mathematicians. We refer the reader to the survey articles $[3,5,11]$ and monographs $[2,6,9,12]$ and references therein.

The functional equation

$$
\begin{equation*}
f(2 x+y)+f(2 x-y)=2 f(x+y)+2 f(x-y)+12 f(x) \tag{1.1}
\end{equation*}
$$

is called a cubic type functional equation, since the function $f(x)=c x^{3}$ is a solution of this functional equation. In particular, every solution of a cubic type functional equation is said to be a cubic type mapping. The stability problem for a cubic type functional equation was proved by K.W. Jun and H.M. Kim [7] for mappings $f: X \rightarrow Y$, where X is a real normed space and Y is a Banach space.

The functional equation

$$
\begin{equation*}
f(a x+y)+f(x+a y)=(a+1)(a-1)^{2}[f(x)+f(y)]+a(a+1) f(x+y) \tag{1.2}
\end{equation*}
$$

is another cubic type functional equation. The stability problem for this functional equation for integer a with $a \neq 0, \pm 1$ and in the framework of quasiBanach spaces was proved by K.W. Jun and H.M. Kim [8].

By a non-Archimedean field we mean a field K equipped with a function (valuation) $|\cdot|$ from K into $[0, \infty)$ such that $|r|=0$ if and only if $r=0$, $|r s|=|r||s|$, and $|r+s| \leq \max \{|r|,|s|\}$ for all $r, s \in K$. Clearly $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \in \mathbb{N}$. By the trivial valuation we mean the mapping $|\cdot|$ taking everything but 0 into 1 and $|0|=0$. Let X be a vector space over a field K with a non-Archimedean non-trivial valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is called a non-Archimedean norm if it satisfies the following conditions:
(i) $\|x\|=0$ if and only if $x=0$;
(ii)

$$
\|r x\|=|r|\|x\| \quad(r \in K, x \in X)
$$

(iii) the strong triangle inequality (ultrametric); namely,

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\} \quad(x, y \in X)
$$

Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space. Due to the fact that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\|: m \leq j \leq n-1\right\} \quad(n>m)
$$

a sequence $\left\{x_{n}\right\}$ is Cauchy if and only if $\left\{x_{n+1}-x_{n}\right\}$ converges to zero in a non-Archimedean normed space. By a complete non-Archimedean normed space we mean one in which every Cauchy sequence is convergent.

In 1897, Hensel [4] discovered the p-adic numbers as a number theoretical analogue of power series in complex analysis. Fix a prime number p. For any nonzero rational number x, there exists a unique integer $n_{x} \in \mathbb{Z}$ such that $x=\frac{a}{b} p^{n_{x}}$, where a and b are integers not divisible by p. Then $|x|_{p}:=p^{-n_{x}}$ defines a non-Archimedean norm on \mathbb{Q}. The completion of \mathbb{Q} with respect to the metric $d(x, y)=|x-y|_{p}$ is denoted by \mathbb{Q}_{p}, which is called the p-adic number field.

In [1], the authors investigated stability of approximate additive mappings $f: \mathbb{Q}_{p} \rightarrow \mathbb{R}$. In $[10]$, the stability of Cauchy and quadratic functional equations were investigated in the context of non-Archimedean normed spaces. In this paper, by following some ideas from $[7,8,10]$, we establish the stability of cubic type functional equations (1.1) and (1.2) in the setting of non-Archimedean normed spaces.

Throughout the paper, we assume that G is an abelian (additive) group and X is a complete non-Archimedean normed space.

2 Stability of the Functional Equation (1.1).

In this section, we prove the stability of functional equation (1.1).
Theorem 2.1. Let $\varphi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|8|^{n}}=0 \quad(x, y \in G) \tag{2.1}
\end{equation*}
$$

and set

$$
\begin{equation*}
\widetilde{\varphi}(x):=\sup \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: j \in \mathbb{N}\right\} \quad(x \in G) . \tag{2.2}
\end{equation*}
$$

Suppose that $f: G \rightarrow X$ is a mapping satisfying

$$
\begin{equation*}
\|f(2 x+y)+f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x)\| \leq \varphi(x, y) \tag{2.3}
\end{equation*}
$$

for all $x, y \in G$. Then there exists a unique mapping $T: G \rightarrow X$ satisfying (1.1) such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|16|} \widetilde{\varphi}(x) \quad(x \in G) . \tag{2.4}
\end{equation*}
$$

Proof. Set $y=0$ in (2.3) to get

$$
\begin{equation*}
\|f(2 x)-8 f(x)\| \leq \frac{1}{|2|} \varphi(x, 0) \quad(x \in G) \tag{2.5}
\end{equation*}
$$

Let $x \in G$. Replacing x by $2^{n} x$ in (2.5) we obtain

$$
\begin{equation*}
\left\|\frac{f\left(2^{n+1} x\right)}{8^{n+1}}-\frac{f\left(2^{n} x\right)}{8^{n}}\right\| \leq \frac{\varphi\left(2^{n} x, 0\right)}{|2| \cdot|8|^{n+1}} \quad(x \in G) \tag{2.6}
\end{equation*}
$$

It follows from (2.6) and (2.1) that the sequence $\left\{\frac{f\left(2^{n} x\right)}{8^{n}}\right\}$ is Cauchy. Since X is complete, we conclude that $\left\{\frac{f\left(2^{n} x\right)}{8^{n}}\right\}$ is convergent. Set $T(x):=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{8^{n}}$.

Using induction one can show that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{8^{n}}-f(x)\right\| \leq \frac{1}{|16|} \max \left\{\frac{\varphi\left(2^{k} x, 0\right)}{|8|^{k}}: 0 \leq k<n\right\} \tag{2.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. By taking n to approach infinity in (2.7) and using the fact that

$$
\lim _{n \rightarrow \infty} \max \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: 0 \leq j<n\right\}=\sup \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: j \in \mathbb{N}\right\}
$$

one obtains

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|16|} \widetilde{\varphi}(x) \quad(x \in G) \tag{2.8}
\end{equation*}
$$

Replacing x and y by $2^{n} x$ and $2^{n} y$, respectively, in (2.3) we get

$$
\begin{aligned}
& \| \frac{f\left(2^{n}(2 x+y)\right)}{8^{n}}+ \frac{f\left(2^{n}(2 x-y)\right)}{8^{n}}-2 \frac{f\left(2^{n}(x+y)\right)}{8^{n}} \\
&-2 \frac{f\left(2^{n}(x-y)\right)}{8^{n}}-12 \frac{f\left(2^{n} x\right)}{8^{n}} \| \\
& \leq \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|8|^{n}} \quad(x, y \in G)
\end{aligned}
$$

Taking the limit as $n \rightarrow \infty$ and using (2.1) we obtain

$$
T(2 x+y)+T(2 x-y)=2 T(x+y)+2 T(x-y)+12 T(x) \quad(x, y \in G)
$$

If T^{\prime} is another cubic type mapping satisfying (2.4), then

$$
\begin{gathered}
\left\|T(x)-T^{\prime}(x)\right\|=\lim _{k \rightarrow \infty}|8|^{-k}\left\|T\left(2^{k} x\right)-T^{\prime}\left(2^{k} x\right)\right\| \\
\leq \lim _{k \rightarrow \infty}|8|^{-k} \max \left\{\left\|T\left(2^{k} x\right)-f\left(2^{k} x\right)\right\|,\left\|f\left(2^{k} x\right)-T^{\prime}\left(2^{k} x\right)\right\|\right\} \\
\leq \frac{1}{|16|} \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: k \leq j<n+k\right\} \\
=0 \quad(x \in G),
\end{gathered}
$$

since, by (2.1),

$$
\begin{aligned}
& \lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: k \leq j<n+k\right\} \\
& \quad=\lim _{k \rightarrow \infty} \sup \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: k \leq j<\infty\right\}=0
\end{aligned}
$$

Therefore $T=T^{\prime}$. This completes the proof of the uniqueness of T.

Corollary 2.2. Let $|2|<1$, and let $\rho:[0, \infty) \rightarrow[0, \infty)$ be defined by

$$
\rho(t)= \begin{cases}\frac{|8|^{n}}{n+1} & t=|2|^{n} r, n \in \mathbb{N} \cup\{0\}, r>0 \\ t & \text { otherwise }\end{cases}
$$

Suppose that $\delta>0, G$ is a normed space and $f: G \rightarrow X$ fulfills the inequality

$$
\begin{aligned}
\| f(2 x+y) & +f(2 x-y)-2 f(x+y)-2 f(x-y)-12 f(x) \| \\
& \leq \delta(\rho(\|x\|)+\rho(\|y\|)) \quad(x, y \in G)
\end{aligned}
$$

Then there exists a unique mapping $T: G \rightarrow X$ satisfying (1.1) such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{1}{|16|} \delta \rho(\|x\|) \quad(x \in G) \tag{2.9}
\end{equation*}
$$

Proof. By defining $\varphi: G \times G \rightarrow[0, \infty)$ by $\varphi(x, y):=\delta(\rho(\|x\|)+\rho(\|y\|))$ we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\varphi\left(2^{n} x, 2^{n} y\right)}{|8|^{n}}=\lim _{n \rightarrow \infty} \frac{\delta}{|8|^{n}}\left(\rho\left(\left\|2^{n} x\right\|\right)+\rho\left(\left\|2^{n} y\right\|\right)\right)=0 \quad(x, y \in G) \\
\widetilde{\varphi}(x)=\sup \left\{\frac{\varphi\left(2^{j} x, 0\right)}{|8|^{j}}: j \in \mathbb{N}\right\}=\varphi(x, 0)
\end{gathered}
$$

By applying Theorem 2.1 we conclude the required result.

Remark 2.3. The hypotheses in Corollary 2.2 gives us an example for which the crucial assumption $\sum_{n=1}^{\infty} \frac{\varphi\left(2^{n} x, 0\right)}{|8|^{n}}<\infty$ in the main theorem of [7] does not hold on balls of X of the radius $r_{0}>0$. (An analogous statement is true for the situation described in Section 3). Hence our results in the setting of non-Archimedean normed spaces differs from those of $[7,8]$.

3 Stability of the Functional Equation (1.2).

In this section, we establish the stability of functional equation (1.2).
Theorem 3.1. Let a be an integer with $a \neq 0, \pm 1$, let $\psi: G \times G \rightarrow[0, \infty)$ be a function such that

$$
\lim _{n \rightarrow \infty} \frac{\psi\left(a^{n} x, a^{n} y\right)}{|a|^{3 n}}=0 \quad(x, y \in G)
$$

and set

$$
\widetilde{\psi}(x)=\sup \left\{\frac{\psi\left(a^{j} x, 0\right)}{|a|^{3 j}}: j \in \mathbb{N}\right\} \quad(x \in G)
$$

Suppose that $f: G \rightarrow X$ is a mapping satisfying

$$
\begin{gather*}
\left\|f(a x+y)+f(x+a y)-(a+1)(a-1)^{2}[f(x)+f(y)]-a(a+1) f(x+y)\right\| \\
\leq \psi(x, y) \quad(x, y \in G) \tag{3.1}
\end{gather*}
$$

Then there exists a unique mapping $Q: G \rightarrow X$ satisfying (1.2) such that

$$
\begin{equation*}
\left\|f(x)+\frac{\left(a^{2}-1\right)}{a^{2}+a+1} f(0)-Q(x)\right\| \leq \frac{1}{|a|^{3}} \widetilde{\psi}(x) \quad(x \in G) \tag{3.2}
\end{equation*}
$$

Proof. Set $y=0$ in (3.1) and divide by $|a|^{3}$ to get

$$
\begin{equation*}
\left\|\frac{f(a x)}{a^{3}}-f(x)-\frac{(a+1)(a-1)^{2}}{a^{3}} f(0)\right\| \leq \frac{1}{|a|^{3}} \psi(x, 0) \quad(x \in G) \tag{3.3}
\end{equation*}
$$

Hence

$$
\left\|F(x)-\frac{F(a x)}{a^{3}}\right\| \leq \frac{1}{|a|^{3}} \psi(x, 0) \quad(x \in G)
$$

where $F(x)=f(x)+\frac{\left(a^{2}-1\right)}{a^{2}+a+1} f(0)$. Replace x by $a^{n} x$ in (3.3) and divide by $|a|^{3 n}$ to obtain

$$
\left\|\frac{F\left(a^{n} x\right)}{a^{3 n}}-\frac{F\left(a^{n+1} x\right)}{a^{3(n+1)}}\right\| \leq \frac{1}{|a|^{3}} \frac{\psi\left(a^{n} x, 0\right)}{|a|^{3 n}} \quad(x \in G)
$$

Hence the sequence $\left\{\frac{F\left(a^{n} x\right)}{a^{3 n}}\right\}$ is Cauchy. We can therefore define a mapping $Q: G \rightarrow X$ by

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{F\left(a^{n} x\right)}{a^{3 n}}=\lim _{n \rightarrow \infty} \frac{f\left(a^{n} x\right)}{a^{3 n}} \quad(x \in G)
$$

Using the same method as in the proof of Theorem 2.1 we conclude that $Q(x)$ is the unique cubic type mapping satisfying (3.2).

Corollary 3.2. Let $a>1$ be a constant natural number and let $\tau:[0, \infty) \rightarrow$ $[0, \infty)$ be a function satisfying

$$
\begin{gathered}
\tau(|a| t) \leq \tau(|a|) \tau(t) \quad(t \geq 0) \\
\tau(|a|)<|a|^{3} \\
\tau(0)=0
\end{gathered}
$$

Suppose that δ is a nonnegative real number, G is a normed space and $f: G \rightarrow$ X fulfills the inequality

$$
\begin{gathered}
\left\|f(a x+y)-f(x+a y)-(a+1)(a-1)^{2}[f(x)+f(y)]-a(a+1) f(x+y)\right\| \\
\leq \delta(\tau(\|x\|)+\tau(\|y\|)) \quad(x, y \in G)
\end{gathered}
$$

Then there exists a unique mapping $Q: G \rightarrow X$ satisfying (1.2) such that

$$
\|f(x)-Q(x)\| \leq \frac{1}{|a|^{3}} \delta \tau(\|x\|) \quad(x \in G)
$$

Proof. Defining $\psi: G \times G \rightarrow[0, \infty)$ by $\psi(x, y):=\delta(\tau(\|x\|)+\tau(\|y\|))$ we have

$$
\begin{gathered}
\lim _{n \rightarrow \infty} \frac{\psi\left(a^{n} x, a^{n} y\right)}{|a|^{3 n}} \leq \lim _{n \rightarrow \infty}\left(\frac{\tau(|a|)}{|a|^{3}}\right)^{n} \psi(x, y)=0 \quad(x, y \in G) \\
\widetilde{\psi}(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{\psi\left(a^{j} x, 0\right)}{|a|^{3 j}}: 0 \leq j<n\right\}=\psi(x, 0)
\end{gathered}
$$

Clearly $f(0)=0$. Applying Theorem 3.1 we conclude the required result.

Remark 3.3. The classical example of the function τ is the mapping $\tau(t)=$ $t^{p}, t \in[0, \infty)$, where $p>3$ and $|a| \neq 1$.

Remark 3.4. We can formulate similar statements to Theorem 2.1 and Theorem 3.1 in which we deal with the Hyers type sequences $\left\{8^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ and $\left\{a^{3 n} f\left(\frac{x}{a^{n}}\right)\right\}$ respectively, under suitable conditions on the functions φ and ψ.

Acknowledgement The authors would like to thank the referees for their valuable comments.

References

[1] L.M. Arriola and W.A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange, 31 (2005/06), 125-132.
[2] S. Czerwik, Stability of Functional Equations of Ulam-Hyers-Rassias Type, Hadronic Press, Palm Harbor, 2003.
[3] G.L. Forti, Hyers-Ulam stability of functional equations in several variables Aequationes Math, 50(1/2) (1995), 143-190.
[4] K. Hensel, Über eine neue Begründung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math.-Verein, 6 (1897), 83-88.
[5] D.H. Hyers and T.M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992), 125-153.
[6] D.H. Hyers, G. Isac and T.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, 1998.
[7] K.W. Jun and H.M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867-878.
[8] K.W. Jun and H.M. Kim, On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces, J. Math. Anal. Appl, 332 (2007), 13351350.
[9] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press lnc., Palm Harbor, 2001.
[10] M.S. Moslehian and T.M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Disc. Math., 1 (2007), 325-334.
[11] T.M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62(1) (2000), 23-130.
[12] T.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston and London, 2003.
[13] A.M. Robert, A Course in p-adic Analysis, Springer-Verlag, New York, 2000.

[^0]: Key Words: generalized Hyers-Ulam stability, cubic functional equation, non-Archimedean space, p-adic field

 Mathematical Reviews subject classification: Primary: 39B22; Secondary: 39B82, 46 S10.
 Received by the editors July 17, 2007
 Communicated by: Udayan B. Darji

