Translator Disclaimer
2019 Growth alternative for Hecke-Kiselman monoids
Arkadiusz Meçel, Jan Okniński
Publ. Mat. 63(1): 219-240 (2019). DOI: 10.5565/PUBLMAT6311907

Abstract

The Gelfand–Kirillov dimension of Hecke–Kiselman algebras defined by oriented graphs is studied. It is shown that the dimension is infinite if and only if the underlying graph contains two cycles connected by an (oriented) path. Moreover, in this case, the Hecke–Kiselman monoid contains a free noncommutative submonoid. The dimension is finite if and only if the monoid algebra satisfies a polynomial identity.

Citation

Download Citation

Arkadiusz Meçel. Jan Okniński. "Growth alternative for Hecke-Kiselman monoids." Publ. Mat. 63 (1) 219 - 240, 2019. https://doi.org/10.5565/PUBLMAT6311907

Information

Received: 5 May 2017; Revised: 8 January 2018; Published: 2019
First available in Project Euclid: 7 December 2018

zbMATH: 07040967
MathSciNet: MR3908792
Digital Object Identifier: 10.5565/PUBLMAT6311907

Subjects:
Primary: 16P90, 16S15, 16S36, 16S99, 20M05

Rights: Copyright © 2019 Universitat Autònoma de Barcelona, Departament de Matemàtiques

JOURNAL ARTICLE
22 PAGES

This article is only available to subscribers.
It is not available for individual sale.
+ SAVE TO MY LIBRARY

SHARE
Vol.63 • No. 1 • 2019
Back to Top