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Abstract: The Gelfand–Kirillov dimension of Hecke–Kiselman algebras defined by
oriented graphs is studied. It is shown that the dimension is infinite if and only if the

underlying graph contains two cycles connected by an (oriented) path. Moreover, in

this case, the Hecke–Kiselman monoid contains a free noncommutative submonoid.
The dimension is finite if and only if the monoid algebra satisfies a polynomial identity.
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1. Introduction

Let Θ be an arbitrary finite simple digraph with n vertices {1, . . . , n}.
So, in other words, it is a simple graph in which two vertices can be
connected by an oriented edge (an arrow) or an unoriented edge (an
edge). In [10] the following monoid HKΘ associated with Θ has been
defined, by specifying generators and the set of defining relations:

(i) HKΘ is generated by idempotents e2
i = ei, where 1 ≤ i ≤ n;

(ii) if the vertices i, j are not connected in Θ, then eiej = ejei;

(iii) if i, j are connected by an arrow i→ j in Θ, then eiejei = ejeiej =
eiej ;

(iv) if i, j are connected by an edge in Θ, then eiejei = ejeiej .

If the graph Θ is unoriented (has no arrows), the monoid HKΘ is
isomorphic to the so-called 0-Hecke monoid H0(W ), where W is the
Coxeter group of the graph Θ, see [8]. The latter monoid plays an
important role in representation theory. In the case Θ is oriented (all
edges are arrows) and acyclic, the monoid HKΘ is finite and it is a
homomorphic image of the so-called Kiselman monoid Kn, see [10], [13].
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The monoid HKΘ has been studied in particular in [2], [3], [7], [9].
So far, the emphasis has been concentrated on three problems, which
still remain open in full generality: on the description of all graphs Θ,
for which the monoid HKΘ is finite; on the existence of faithful repre-
sentations of the monoid HKΘ in the multiplicative semigroup Mn(Z) of
matrices over the ring of integers; and whether HKΘ is always a J -trivial
monoid. The latter means that the Green J -relation on HKΘ is triv-
ial; in other words: HKΘ sHKΘ = HKΘ tHKΘ implies that s = t, for
s, t ∈ HKΘ. The last problem has been solved in the affirmative in the
case Θ is oriented, as well as in the case Θ is unoriented, and also in
certain mixed cases (see [3]). This problem is essential for the represen-
tation theory of such monoids, since representations of J -trivial monoids
admit a very satisfactory approach, see [8].

The present paper is motivated by a study of the growth of Hecke–
Kiselman monoids, or in other words of the Gelfand–Kirillov dimension
of the semigroup algebras AΘ := K[HKΘ] over a field K. The main aim
is to establish the growth alternative for AΘ in the case when Θ is an
oriented graph. In other words, we show that the growth is either poly-
nomial or exponential. Clearly, the Gelfand–Kirillov dimension of AΘ

is 0 if and only if the monoid HKΘ is finite. In the case of oriented
graphs Θ this means exactly that the graph is acyclic, see [13].

Our main result reads as follows.

Theorem 1. Assume that Θ is a finite oriented simple graph. The
following conditions are equivalent.

(1) Θ does not contain two different cycles connected by an oriented
path of length ≥ 0.

(2) AΘ is a PI-algebra.

(3) GKdim(AΘ) <∞.

(4) The monoid HKΘ does not contain a free submonoid of rank 2.

Here, if Θ = (V (Θ), E(Θ)) is an oriented graph with the set of ver-
tices V (Θ) and the set of arrows E(Θ), then we say that two induced
subgraphs Θ1 and Θ2 of Θ are:

• connected by a path of length 0, if V (Θ1) ∩ V (Θ2) 6= ∅;
• connected by a path of length 1, if V (Θ1) ∩ V (Θ2) = ∅ and there

exist w ∈ V (Θ1), v ∈ V (Θ2), and an arrow w → v, or v → w, in
the graph Θ;

• connected by a path of length k > 1, if the above two cases do
not occur and if k is the minimal integer such that there exists
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a sequence of vertices w0, . . . , wk ∈ V (Θ) such that w0 ∈ V (Θ1),
wk ∈ V (Θ2), wi /∈ V (Θ1) ∪ V (Θ2) for 0 < i < k and in Θ there
exist arrows wi → wi+1, or there exist arrows wi+1 → wi, for all
i = 0, 1, . . . , k − 1.

We note that the growth alternative result for AΘ in the case when the
graph Θ is unoriented follows from classical results on Coxeter groups
and monoids. As mentioned above, in this case HKΘ = H0(W ), where
W is the Coxeter group of the graph Θ. The growth of W and H0(W )
is actually the same, which follows from the word property theorem of
Tits [19], see also [20, Theorem 1]. More precisely, the reduced words for
the Coxeter group and Coxeter monoid are the same, and two reduced
words represent the same element of the Coxeter group if and only if
they represent the same element of the Coxeter monoid. The theorem
by de la Harpe [11] states, however, that the growth of the Coxeter
group W is either polynomial, in the case when W is finite or affine
(and W is abelian-by-finite in this case), or exponential in other cases.
Moreover, it is known that there exists a finite automaton that recog-
nizes the language of normal forms of elements of a Coxeter group [6],
hence also the language of normal forms of elements of the corresponding
monoid H0(W ). In our particular case, by a standard argument (see [22,
p. 97]) one obtains the following result.

Theorem 2. Assume that Θ is a finite unoriented simple graph. The
following conditions are equivalent.

(1) Θ is a disjoint union of Dynkin and extended Dynkin diagrams.

(2) GKdim(AΘ) <∞.

(3) The monoid HKΘ does not contain a free submonoid of rank 2.

Clearly, Theorems 1 and 2 imply certain conditions concerning the
Gelfand–Kirillov dimension of the algebra AΘ, when Θ is any mixed
digraph. However, we do not dwell on those details in this paper.

A similar growth alternative has been known in several other contexts;
in particular, it holds in the class of monomial algebras, that provide
a rich area of examples of algebras with a particular growth behavior
and have been used to answer several questions on the Gelfand–Kirillov
dimension of arbitrary algebras. Recall that for an ideal I of the free
monoid 〈X〉 on a set X one defines K0[〈X〉/I] = K[〈X〉]/K[I]. The
result obtained independently by Anick [1] and Ufnarovskii [21] can be
stated as follows (see also [15, Theorem 24.19]).
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Theorem 3. Assume that I is a finitely generated ideal of the free
monoid 〈X〉 on a finite set X. Then the following conditions are equiv-
alent.

(1) GKdim(K0[〈X〉/I]) <∞.

(2) 〈X〉/I does not contain a free submonoid of rank 2.

(3) K0[〈X〉/I] is a PI-algebra.

Moreover, if these conditions are satisfied, then GKdim(K0[〈X〉/I]) is
an integer.

In certain more general classes of algebras (for example, algebras ad-
mitting a finite Gröbner basis, or in the case of automaton algebras)
similar results have been obtained by associating to the algebra, or to
the set M of its normal words, a certain graph Γ(M), and by deriving
results on the growth of the algebra in terms of the structure of the
graph Γ(M), see [22].

A more general conjecture, coming from [1], can be stated as follows:
if R is a finitely presented algebra then the growth of R is either subexpo-
nential or R contains a free noncommutative subalgebra. This problem,
as well as related questions concerning free subalgebras of division rings,
have attracted a lot of attention, see [4] for example. Most notably,
a conjecture formulated independently by Makar-Limanov and Stafford
says that a division algebra D either contains a free noncommutative
subalgebra over its center or it is a locally PI-algebra.

Another example of a growth alternative result was given by Okniński
and Salwa in the context of the semigroup version of the Tits alterna-
tive, [16]. They proved that a finitely generated subsemigroup S of the
linear group GLn(K) over a field K either contains a free subsemigroup
of rank two, or generates an almost-nilpotent subgroup. The second
condition yields that the Gelfand–Kirillov dimension of the semigroup
algebra K[S] must be an integer.

2. Definitions and the necessary background

Let A be a finitely generated algebra over a field K and let V be
an arbitrary finite dimensional subspace that generates the algebra A.
Recall that the Gelfand–Kirillov dimension of A is defined by

GKdim(A) = lim sup(logn(dV (n))),
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where dV (n) = dimK(V 0 + V 1 + · · · + V n) is the growth function asso-
ciated with V and V k = linK{v1 · · · vk | vi ∈ V, 1 ≤ i ≤ k}. In the case
S is a finitely generated monoid with a generating set Z, the growth
function of the semigroup algebra K[S] can be computed by calculat-
ing the growth function dS(n) of S, namely dS(n) = |{w ∈ S | w =
y1 · · · yk, for some yi ∈ Z, k ≤ n}|.

Let X be a finite set and let F denote the set of all words in the
alphabet X (including the empty word ε, which is identified with the
unity 1 of the free algebra K〈X〉). For every x ∈ X and w ∈ F by
degx w we mean the degree of the word w in x. By |w| we denote the
length of the word w. The support of the word w, denoted by supp(w),
stands for the set of all x ∈ X such that degx w > 0. By prefn(w),
suffn(w) we denote respectively the prefix and the suffix of the word w
of length n.

We say that the word w = x1 · · ·xr ∈ F is a subword of the word v ∈
F , where xi ∈ X, if v = v1x1 · · · vrxrvr+1, for some v1, . . . , vr+1 ∈ F .
If the length |v1x1 · · · vrxr| is minimal possible then we say that this is
the first occurrence of w in v. If v2, . . . , vr are trivial words, then we say
that w is a factor of v. By ln(w) = xn we denote the n-th element of
the set X appearing in the word w.

Assume that the set X is well ordered. Then on the set F there exists
an induced degree-lexicographic order ≤. To every element x ∈ K[F ]
one can associate its leading term x with respect to ≤. For every subset
R ⊆ K[F ] by α(R) we denote the set of all leading terms of elements
of R. If I is an ideal of the free algebra K[F ] then a word w ∈ F is called
normal (modulo I), if w is not a leading term of any element of I.

Describing the normal words of the algebra of the form K〈X〉/I is
related to finding the reduced Gröbner basis of the ideal I. The so-
called diamond lemma is often used in this context. We will follow the
approach and terminology of [5].

We will also fix notation and terminology used in the context of Hecke–
Kiselman monoids. Consider an oriented digraph Θ = (V (Θ), E(Θ)).
Equalities (i)–(iv) presented in Section 1 are simply called the edge rela-
tions. Let w be a word in the free monoid 〈V (Θ)〉 on the set V (Θ). By [w]
we denote the equivalence class of the word w with respect to HKΘ. Also,
we define two relations on the monoid 〈V (Θ)〉, coming from the graph Θ:
for w,w′ ∈ 〈V (Θ)〉 we write w ∼ w′ if [w] = [w′], and w ≈ w′ if w = xyz,
w′ = xy′z, where x, y, y′, z ∈ X and y = y′ is an edge relation in HKΘ.

An element v ∈ V (Θ) is called a source vertex, if v is the beginning
of every edge incident to v in Θ. Dually, one defines a sink vertex.
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3. Hecke–Kiselman monoids defined by a cycle

In what follows, Θ will denote an oriented graph. According to The-
orem 3 in [13] and Lemma 2.6 in [2], we know that GKdim(AΘ) = 0 if
and only if Θ is acyclic. Consequently, we start with the case when Θ is
a cycle of length 3.

Example 1. Consider the graph Θ of the form:

c

a b

Then GKdim(AΘ) = 1.

Proof: The monoid HKΘ is generated by the idempotents a, b, c subject
to the relations: aba = bab = ab, aca = cac = ca, bcb = cbc = bc. It
is not hard to see that every word of the free monoid on a, b, c can
be rewritten to an equivalent word in HKΘ that is a finite factor of
one of the following infinite words (abc)∞, (acb)∞. Thus are no more
than 6 words of length n in HKΘ, for all n. Clearly, this implies that
GKdim(AΘ) = 1.

Our next step is to consider the case of a cyclic oriented graph Θ of
an arbitrary length.

Example 2. Consider the graph Θn with n vertices a1, . . . , an, where
n ≥ 4, that is an oriented cycle:

. . .

an

a2 a3

a1 a4

Then GKdim(AΘn
) = 1.

Proof: Let F = 〈X〉 be the free monoid with the set X of free genera-
tors a1, . . . , an. We will proceed by induction on the number of vertices n.
The following observation is crucial.

Lemma 4. Suppose that the cycle Θn−1 consists of n−1 vertices b1, b2,
. . . , bn−1.Consider an epimorphism φ from the free monoid 〈b1, . . . , bn−1〉
to the submonoid 〈a2, . . . , an−1, ana1〉 of F defined in the following way:

φ(bi) =

{
ai+1, for 1 ≤ i ≤ n− 2,

ana1, for i = n− 1.
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Then φ induces a homomorphism φ : HKΘn−1
−→ HKΘn

given by the

formula φ([w]) = [φ(w)], for every w ∈ 〈b1, . . . , bn−1〉.

Proof: We only need to prove that φ is well defined. It is sufficient,
therefore, to check that for every edge relation w1 = w2 that is defined
by Θn−1 on the free monoid 〈b1, . . . , bn−1〉 we have φ(w1) ∼ φ(w2), where
∼ is the relation defined on F by Θn. This is trivial, if bn−1 /∈ supp(w1).
We verify the remaining cases below:

• φ(b2n−1) = ana1ana1 ∼ ana1a1 ∼ ana1 = φ(bn−1);

• for i ≤ n − 1 and i /∈ {1, n− 2}, we have φ(bn−1bi) = ana1ai+1 ∼
anai+1a1 ∼ ai+1ana1 = φ(bibn−1);

• φ(bn−2bn−1bn−2) =an−1ana1an−1∼ an−1anan−1a1 ∼ an−1ana1 =
φ(bn−2bn−1);

• φ(bn−1bn−2bn−1)=ana1an−1ana1∼anan−1a1ana1∼anan−1ana1∼
an−1ana1 = φ(bn−2bn−1);

• φ(bn−1b1bn−1) = ana1a2ana1∼ ana1ana2a1∼ ana1a2a1∼ ana1a2 =
φ(bn−1b1);

• φ(b1bn−1b1) = a2ana1a2 ∼ ana2a1a2 ∼ ana1a2 = φ(bn−1b1).

We proceed with the proof. The following order

(3.1) an < a1 < · · · < an−1

on the set of generators induces a degree-lexicographic order ≤ on F . A
word w ∈ F is called reduced if for every w′ ∼ w we have w ≤ w′. Other-
wise, we say that w is a reducible word. Of course, for every word w ∈ F
there exists exactly one reduced word w′ ∈ F such that w ∼ w′, which
we call the reduced form of w.

Let Θ′n be the induced subgraph of Θn consisting of the vertices
a1, . . . , an−1, and let F ′ be the set of all reduced forms of the elements
of the monoid HKΘ′n

in the free monoid 〈a1, . . . , an−1〉. This set is finite
as Θ′n is acyclic.

Notice that every reduced word w in F belongs to the following set:

F ′ ∪ F ′anF ′ ∪
∞⋃
r=1

F ′anw1anw2an · · ·wranF
′,

where wj ∈ F ′, for 1 ≤ j ≤ r. We will prove the following five claims
regarding the case when a reduced word w is of the form

(3.2) s · anw1 · · · anwran · t,
where wj 6= 1 and s, t ∈ F ′.
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(1) Every wj must be in one of the following three forms:
(a) wj = e := an−1an−2 · · · a1,

(b) wj = f := an−2an−3 · · · a1an−1,

(c) wj = akak−1 · · · a1yan−1, where k<n−2 and y∈〈a2, . . . , an−2〉.
(2) If wj = e, for some j, then w1 = w2 = · · · = wr.
(3) If wj = f , for some j, then wj = wj+1 = · · · = wr.
(4) If wj , wj+1 are of the form (c) from (1), then wj+1 = a1yan−1, for

some y ∈ 〈a2, . . . , an−2〉.
(5) If wj = f , for some j, and r ≥ 2, then w2 = f .

If we prove these statements above we will see that the growth func-
tion d(k) of HKΘn , that counts, for the given k, the number of reduced
words of length less than, or equal to k in F , is linear. If fact, it can be
presented as d1(k) + d2(k), where:

• d1(k) is the number of reduced words of length ≤ k from the set

F ′ ∪ F ′an〈ean〉F ′ ∪ (F ′an ∪ F ′anF ′an)〈fan〉F ′,

where 〈ean〉 and 〈fan〉 are the free submonoids of F generated
by ean, fan, respectively;

• d2(k) is the number of reduced words w of length ≤ k of the
form (3.2), where r ≥ 1 and wj are, for j ≥ 2, of the form a1yjan−1,
where yj ∈ 〈a2, . . . , an−2〉.

Both d1(k) and d2(k) are linear. Since F ′ is a finite set, this is clear in
the case of d1(k). To see that d2(k) is linear observe that the factor w′ =
anw2an · · · anwr of the reduced word w belongs to 〈a2, . . . , an−1, ana1〉.
Thus, from Lemma 4 we get that there exists a reduced word v of
length ≤ k in 〈b1, . . . , bn−2〉 such that φ([v]) = [w′]. Since w1 ∈ F ′

we can see that d2(k) is bounded by the value |F ′|3 · d′(k), where d′ is
the growth function of HKΘn−1

. The induction hypothesis yields that
d′(k) is linear, so d2(k) must be linear as well. This yields that d(k) is
linear and GKdim(AΘn

) = 1.
The proofs of (1)–(5) rely on the following easy observations.

Remark 5. Let v, w be elements of F such that ai−1 /∈supp(v) and ai+1 /∈
supp(w), for any i ∈ {1, . . . , n} (here we write a0 = an and an+1 = a1).
The following relations hold:

aivai ∼ aiv, aiwai ∼ wai.

In particular, an element of F that contains a factor of the form aivai
or aiwai is not reduced.
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This remark follows easily from the defining relations for the (particu-
lar) monoid HKΘn

, see also [9, Lemma 3.4]. The next one is completely
obvious.

Remark 6. A word w ∈ F with a factor aiaj , where aiaj ∼ ajai and
ai > aj (with respect to (3.1)) is not reduced.

We begin with the proof of (1). Consider a reduced word anwan,
where an /∈ supp(w). First, notice that dega1

w = 1 and degan−1
w = 1.

Indeed, if a1 /∈ supp(w), then the word anwan is not reduced, according
to Remark 5. The same argument asserts that if w contains a factor of
the form a1w

′a1, where supp(w′) ⊆ X \ {a1, an}, then again it cannot
be reduced. Similarly, one shows that degan−1

w = 1. Secondly, from

Remark 6 it follows immediately that suff1(w) ∈ {a1, an−1} (otherwise,
this element commutes with an). Since |w| > 0, we consider two cases.

Case 1: Let suff1(w) = a1. We prove that w = e. We proceed in two
steps. First, we prove inductively that w = ve = van−1 · · · a1, for some
v ∈ F ′, and next we show that v = 1.

We begin with the induction. Let w = w′a1, for some w′ ∈ F ′.
Since |w| ≥ 2, it follows that w′ 6= 1. Again, from Remark 6 it follows
that suff1(w′) cannot be an element of X that commutes with a1 and
clearly suff1(w′) /∈ {a1, an}. Consequently, anwan = anw

′′a2a1an, for
some w′′ ∈ F ′ and the first step of induction follows. Assume now that
w = w′′akak−1 · · · a1 for some 1 < k < n − 1. Of course, w′′ 6= 1, as
otherwise an−1 /∈ supp(anwan), a contradiction. We want to show that
suff1(w′′) = ak+1. As before, using Remark 6, we see that suff1(w′′) 6=
aq, where q > k + 1. Also, it is clear that suff1(w′′) /∈ {ak−1, ak}. If
suff1(w′′) = al, for l < k − 1, then the word anwan has a factor alzal,
where al−1 /∈ supp(z), so it is not reduced by Remark 5. This shows
that q = k + 1, completing the induction step. We have shown that
w = ve, for some v ∈ F ′. However, if we had v 6= 1 and suff1(v) = ai,
for 1 ≤ i ≤ n− 3 (otherwise v would contain a reducible factor) then w
would contain a factor aiz

′ai with ai−1 /∈ supp(z′), which would make
it reducible. Therefore v = 1, and it follows that w = e.

Case 2: Let suff1(w) = an−1. Since dega1
w = degan−1

w = 1, there

exist x, y∈F ′ such that anwan =anxa1yan−1an and supp(x), supp(y) ⊆
X \ {a1, an−1, an}. Applying arguments similar to those used in the
previous case, we see that xa1 is of one of the forms: akak−1 · · · a2a1,
where 1 ≤ k ≤ n − 2. If k = n − 2 then clearly w = f as the element
an−2 · · · a2a1as is reducible, for all s < n − 1, again by Remark 5. If
1 ≤ k < n−2, then the element w is exactly of the form (c) listed in (1).
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Statement (1) is verified. We proceed to prove (2). Take a reduced
word w of the form (3.2). If r = 1 there is nothing to prove. Assume
that r ≥ 2. If k 6= n − 1 then the word eanak contains a factor of the
form ak · · · a1anak which does not contain ak+1. Thus, none of these
words may be reduced, due to Remark 5. Similarly, no words of the
form akane, where k 6= 1 may be reduced. In view of (1), this proves
the assertion of (2). Similarly, one shows that if fanak is reduced then
k = n− 2. Therefore, if wj = f , for some j, then wj+1 = · · · = wr = f ,
so that (3) holds.

The statement of (4) is also easy to check. Each reduced word of the
form anwjanwj+1an, as defined in this case, contains a factor an−1anak,
for k < n− 2. But unless k = 1, we have an−1anak ∼ akan−1an. More-
over akan−1an < an−1anak in the deg-lex order on F , defined by (3.1).
Since anwjanwj+1an is reduced, such case cannot occur and wj+1 must
be of the form a1yan−1, where y ∈ 〈a2, . . . , an−2〉, as claimed.

Assume that wj = f , for some j, and choose minimal such j. Suppose
j ≥ 3. It follows from (1)–(3) that each of w1, . . . , wj−1 is of the form (c).
Hence, by (4) we must have wi = a1yian−1, for i = 2, . . . , j − 1, where
yi ∈ 〈a2, . . . , an−2〉. Suppose yj−1 = xas, for some s and some x ∈ F .
Then the factor asan−1anan−2 · · · as of anwj−1anwjan does not con-
tain as−1, a contradiction (because it must be reduced). It follows that
yj−1 is the empty word and wj−1 = a1an−1. Since wj−2 must be of the
form (c), we see that an−1ana1an−1 is a factor of wj−2anwj−1. Since
this is not a reduced word, we get a contradiction. It follows that j ≤ 2.
Hence (5) is proved.

4. Free submonoids of HKΘ

In this section we present a family of examples of graphs Θ, for which
the monoid HKΘ contains a free submonoid of rank 2. We begin with
the case of two cycles of length three connected by a path of length 0.

Example 3. Let Θ be a graph with vertices a, b, c, d and Ψ be a graph
with vertices a, b, c, e, f of the following form:

c e

b a f

d b

a c

Then the submonoid 〈[acb],[adb]〉 of HKΘ and the submonoid 〈[acb],[afe]〉
of HKΨ are both free of rank 2.
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Proof: It is clear that no word of the submonoid 〈acb, adb〉 of the free
monoid F = 〈a, b, c, d〉 can be rewritten in F in any way using the edge
relations defining the monoid HKΘ except by the idempotent relations
of type x = xx, for x ∈ {a, b, c, d}. The same argument holds for the
submonoid 〈acb, afe〉 of the free monoid F ′ = 〈a, b, c, e, f〉.

We will now consider the case of two disjoint cycles connected by a
path of a nonzero length. The following definition will be useful.

Definition 7. Let Θ be a simple oriented digraph and let F = 〈V (Θ)〉 a
free monoid generated by the set of vertices of Θ. Suppose that a cycle Θ′

of length n of the form x1 → x2 → · · · → xn → x1 is a subgraph of Θ.
We will say that the word w ∈ F is Θ′-free if the maximal subword v of w
with supp(v) ⊆ V (Θ′) is a factor of the infinite word (xnxn−1 · · ·x1)∞.

Example 4. Let Θ be a graph of the form:

c e

b a d f

Then the submonoid 〈[acb], [fed]〉 of HKΘ is free.

Proof: Let F = 〈X〉 be the free monoid on the set X = {a, b, c, d, e, f}
and let H = 〈acb, fed〉 be a submonoid of F . We define a subset W of F
as follows: an element w belongs to W if and only if the following three
conditions are satisfied:

(1) supp(w) = X;

(2) the first appearance of a in w is earlier then the ones of b and c,
and the first appearance of f in w is earlier then the ones of d
and e;

(3) every word in W is both {a, b, c}-free and {d, e, f}-free.

The outline of the proof is as follows. First, we prove that W is closed
under equivalence classes of F under the relation ∼ defined for Θ in Sec-
tion 2. Then, to each element v ∈ W we assign an infinite sequence Nv

of nonnegative integers (i1, j1, i2, j2, . . . ) such that Nv = Nv′ if v ∼ v′.
It is clear that H is a subset of W and it will be straightforward to verify
that Nw 6= Nw′ , for any two different members w, w′ of H. From this
we will easily deduce that 〈[acb], [fed]〉 is a free submonoid of rank 2
in HKΘ.

Take any w ∈ W and w′ ∈ F such that w′ ∼ w. We claim that
w′ ∈W . Clearly, it is enough to confirm this in the case when w and w′
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satisfy w ≈ w′, as the relation ∼ is the transitive closure of ≈ defined in
Section 2. Thus, we may assume that w = u1tu2 and w′ = u1t

′u2, for
some u1, u2 ∈ F and an edge relation t = t′ in HKΘ. Since w ∈ F , we
only need to consider the following cases:

(a) {t, t′} ∈ {x, xx}, x ∈ X;

(b) {t, t′} ∈ {xy, yx}, where xy ≈ yx, and x, y ∈ X;

(c) {t, t′} ⊆ {da, ada, dad}.

Indeed, the case {t, t′} ⊆ {xy, xyx, yxy}, where xy 6= da is excluded
according to condition (3) in the definition of W . Now it is basically
clear that w′ satisfies conditions (1)–(3) and thus it belongs to W .

We will now introduce a preparatory notation in order to associate a
sequence Nw to every w ∈ W , as mentioned in the outline of the proof.
From (1)–(3) it follows that w can be represented in two forms. First

(4.1) w = u1a1u2c1u3b1u4a2u5c2u6b2 · · · ,

where ai1 , bi2 , ci3 , ui4 are trivial for sufficiently large i1, i2, i3, i4 and
ui ∈ 〈d, e, f〉, ai ∈ 〈a, d, e, f〉, bi ∈ 〈b, d, e, f〉, ci ∈ 〈c, d, e, f〉. Moreover,
the first and last letter of every ai, bi, ci is equal to a, b, c, respectively.

The second form of w is as follows:

(4.2) w = v1f1v2e1v3d1v4f2v5e2v6d2 · · · ,

where again dj1 , ej2 , fj3 , vj4 are trivial for sufficiently large j1, j2, j3, j4
and vj ∈ 〈a, b, c〉, dj ∈ 〈a, b, c, d〉, ej ∈ 〈a, b, c, e〉, fj ∈ 〈a, b, c, f〉. More-
over, the first and last letter of dj , ej , fj is equal to d, e, f , respectively.
It is clear that if any member of F (not necessarily from W ) is of the
form (4.1) or (4.2) then this form is uniquely determined.

We also need certain numerical invariants of elements ofW to proceed.
For each factor v of w ∈ F we define positive integers sw(v), tw(v). The
first one is the position of the first letter of v in w, in other words:
lsw(v)(w) = l1(v), according to the notation adopted in Section 2. The
number tw(v) denotes the position of the last letter of v in w, which
means that ltw(v)(w) = l|v|(v).

The sequence Nw is defined by the recurrence in which the consecutive
elements i1, j1, i2, j2, . . . are defined. If at any step one of the numbers il
or jl turns out to be zero, for l > 1, then the recurrence terminates and
all succeeding elements of Nw are, by definition, equal to zero.
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The first step depends on which of the two numbers sw(d1) and tw(a1)
is greater.

Case 1: Let sw(d1) < tw(a1). Then we put i1 = 0 and j1 = r, where
r > 0 is the largest integer such that sw(dr) < tw(a1).

Case 2: Let sw(d1) > tw(a1). Let k > 0 be the largest integer such that
tw(ak) < sw(d1). Then:

• If the word (acb)k is not a subword of w, then we put i1 = k − 1,
and we define j1 as the maximal s such that (fed)s is a subword
of w. Moreover, we put i2 = 0, which (according to the above
rules) terminates the entire recurrence.
• If the word (acb)k is a subword of w, then we put i1 = k. Moreover,

we also define j1. If ai1+1 is not trivial, then j1 = r, where r is the
largest number such that sw(dr) < tw(ai1+1). In the opposite case
j1 is defined as a maximal m such that (fed)m is a subword of w.

Note that conditions (1)–(3) of the definition of W assert that j1 > 0,
no matter the case considered. Thus, if the recurrence has not already
terminated, we define the steps for l > 0 in the following manner.

The defining step for il+1 (this assumes that in the previous step we

have established jl > 0). If djl+1 is trivial, then il+1 = r −
∑l

m=1 im,
where r is the greatest integer such that (acb)r is a subword of w.
If djl+1 6= 1, then let k be the maximal integer such that tw(ak) <
sw(djl+1). Then if (acb)k is not a subword of w, we put il+1 = k −∑l

m=1 im − 1 and jl+1 = 0. If, however, (acb)k is a subword w, then we

put il+1 = k −
∑l

m=1 im > 0.
The defining step for jl+1 (assuming that il+1 6= 0). If ail+1+1 is not

trivial, then jl+1 is defined as r−
∑l

m=1 jm, where r is the greatest integer
such that sw(dr) < tw(ail+1+1). In the opposite case, jl+1 is defined as

p −
∑l

m=1 jm, where p is the maximal integer such that (fed)p is a
subword of w.

We will now show that the condition w ≈ w′ ∈ W implies that the
sequences Nw = (i1, j1, . . . ) and Nw′ = (i′1, j

′
1, . . . ) are equal. In other

words, we assume that w = utv and w′ = ut′v, where v, w ∈ F and t,
t′ are as in one of the cases (a), (b), (c) listed above. Write w′ in the
forms (4.1) and (4.2):

w′ = u′1a
′
1u
′
2c
′
1u
′
3b
′
1u
′
4a
′
2u
′
5 · · · ,(4.3)

w′ = v′1f
′
1v
′
2e
′
1v
′
3d
′
1v
′
4f
′
2v
′
5 · · · ,(4.4)
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with the appropriate conditions on a′i, b
′
i, c
′
i, d
′
i, e
′
i, f

′
i , u

′
i, v
′
i. We will

confirm three observations:

(i) If in the form (4.1) of w we have ai 6= 1 (bi 6= 1, ci 6= 1 respectively),
then a′i 6= 1 (b′i 6= 1, c′i 6= 1 respectively) in (4.3).

(ii) If in the form (4.2) of w have di 6= 1 (ei 6= 1, fi 6= 1 respectively),
then d′i 6= 1 (e′i 6= 1, fi 6= 1 respectively) in (4.4).

(iii) sw(di) < tw(aj)⇔ sw′(d
′
i) < tw′(a

′
j), for all i, j.

It clearly follows from (i)–(iii) that the entire recurrence construction
of Nw can be applied to w′ leading to Nw = Nw′ , as desired.

Consider the set L(w) of all nontrivial factors {ai, bi, ci, ui} of (4.1),
for i = 1, 2, . . . To simplify notation we assume that if z is the n-th
element of L(w) (by reading w from the left), then z′ is the n-th element
of the corresponding set of factors L(w′) of (4.3). By the symmetry
of (i)–(iii) we may assume that t < t′ in the deg-lex order on F .

Assume that {t, t′} is as in (a), namely t = x, for x ∈ X. Since t is
in the support of some z ∈ L(w), then t′ = xx is a factor of z′ ∈ L(w′).
Moreover y = y′, for all z 6= y ∈ L(w). Thus (i) follows. By the dual
argument applied to the factor set of (4.2) we verify (ii). And clearly,
(iii) is satisfied. Indeed, if sw(di), tw(aj) are less than or equal to sw(t),
then their order cannot change when we pass to w′. In the opposite case
both numbers increase by one, while we pass to w′.

If {t, t′} is as in (b), we have t = xy, where x ∈ {a, b, c} and y ∈
{d, e, f}, excluding the case xy = ad. To verify (i) we need to consider
two possibilities. First: t is a factor, but not a suffix of xi, for some i.
Second: there exist i, k such that x is a suffix of xi ∈ L(w) and y is a
prefix of uk. In both cases t′ = yx is a factor of x′i ∈ L(w′), while it is
possible that u′k is trivial. However, all elements of L(w) except xi and
possibly uk, remain unchanged when we pass to w′. So (i) must hold.
By a dual argument one can verify (ii). Again, (iii) easily follows. If
x, y /∈ {a, d} then the numbers sw(di), tw(aj) remain unchanged while
passing to w′. And if either x ∈ {a, d}, or y ∈ {a, d}, only one of these
numbers can change by 1, since xy 6= ad.

In case (c), when t = da or ada we will only prove (i) and (iii).
Again, (ii) follows from dual arguments. We can see that t must be
a factor of some factor ukaiuk+1 of w, that appears in (4.1). Since
uk, uk+1 ∈ 〈d, e, f〉 we have two possible cases:

• ukai = (u d)(a︸︷︷︸
t

v), for some u, v ∈ F .

• t is a factor of ai.



Growth Alternative for Hecke–Kiselman Monoids 233

Consider the first case. Here, we have t = da, uk = ud, ai = av, for
some u, v ∈ F and the following three configurations are possible:

• u′ka′i = (u)(ada︸︷︷︸
t′

v) and x′ = x, for x ∈ L(w), where x 6= ai, uk.

• u′ka′i = (u d)(ad︸ ︷︷ ︸
t′

v) and x′ = x, for x ∈ L(w), where x 6= ai, uk

(when v 6= 1).
• u′ka′iu′k+1 = (u d)(a)(d︸ ︷︷ ︸

t′

uk+1) and x′ = x, for x ∈ L(w), where

x 6= ai, uk, uk+1 (when v = 1).

In the second case, when t is a factor of ai we have yet another five
possible configurations:

• If ai = utv, where u, v ∈ F and u, v 6= 1, then a′i = ut′v and x′ = x,
for x ∈ L(w), x 6= ai.
• If ai = tv, where v ∈ F , v 6= 1, then t must be equal to ada and

we have u′ka
′
i = (uk d)(ad︸ ︷︷ ︸

t′

v) and x′ = x, for x ∈ L(w), x 6= ai, uk.

• If ai = ut, where u ∈ F , u 6= 1, then we either have:
– a′i = u ada︸︷︷︸

t′

and x′ = x for x ∈ L(w), x 6= ai, or

– a′iu
′
k+1 = (u da)(d︸ ︷︷ ︸

t′

uk) and x′ = x, for x ∈ L(w), x 6= ai, uk+1.

• If ai = t, then t = ada and we have u′ka
′
iu
′
k+1 = (uk d)(a)(d︸ ︷︷ ︸

t′

uk+1),

and x′ = x, for x ∈ L(w), x 6= ai, uk, uk+1.

This gives a total of eight configurations (in both cases) and it is clear
that (i) holds in each of them. Let us verify (iii). From the definition
of W it follows that the elements a in the factors t and t′ of w, w′ appear
in the same respective factors ai and a′i of (4.1) and (4.3). The same
holds for elements d in the factors of (4.2), (4.4). Consequently, for all
pairs (n,m) from the set N := {(sw(dp), tw(aq)), p, q = 1, 2, . . . } such
that n,m < min{tw(ai), sw(dj)} and n,m > max{tw(ai), sw(dj)} the
inequality between of n and m does not change while we pass to w′.
Going though the configurations listed above we can easily verify (iii)
for the remaining pairs of N .

As a result, we have shown that for two elements w ≈ w′ from W we
have Nw = Nw′ . Thus the equality between these sequences occur also
in the case when w ∼ w′. Now we apply this fact to see that 〈[acb], [fed]〉
is a free submonoid of HKΘ.
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Let w = (acb)m1(fed)n1(acb)m2(fed)n2 · · · belong to the monoid H
for some nonnegative integers w = (m1, n1,m2, n2, . . . ). Here we assume
that either we have m1 > 0, n1 > 0, or m1 = 0, n1,m2 > 0 and that
apart from these first few elements, the succeeding members of w are
positive, up to some point, after which all of them become zeros. By
carefully applying the definition of Nw, it is easy to that Nw = w.
Moreover, it is clear that if w,w′ ∈ 〈acb, fed〉 and w ∼ w′, then w̃ =

(acb)(fed)w ∼ (acb)(fed)w′ = w̃′ and w̃, w̃′ ∈ W . Hence Nw̃ = N
w̃′

,
which easily implies that Nw = Nw′ . Hence, the images of all elements
of the monoid 〈acb, fed〉 under the natural homomorphism F −→ HKΘ

are pairwise distinct. The assertion of Example 4 follows.

We continue with a generalization that is crucial for the proof of
Theorem 1.

Example 5. Consider Θn,k,m to be a graph with n+k+m vertices that
consists of: a cycle Φn of length n ≥ 3 of the form a1 → a2 → · · · →
an → a1, a cycle Ψm of length m ≥ 3 of the form b1 → b2 → · · · →
bm−1 → bm → b1, and a path of length k + 1 from b1 to a1, for k ≥ 0.
For k = 0 this means that we have b1 → a1, and for k > 0 the path is of
the form b1 → z1 → · · · → zk → a1 as in the picture below:

. . .

. . . . . .

a3 an

a2 a1 zk z1 b1 bm

b2 bm−1

Then the submonoid 〈[a1an· · · a2],[bmbm−1· · ·b1z1· · ·zk]〉 of the monoid
HKΘn,k,m is free.

Proof: We will first consider the case when Θ3,k,3 := Θk is a graph of
6 + k vertices and consists of two cycles {a, b, c}, {d, e, f} joined by a
path of length k + 1, for k ≥ 0, as shown in the picture (for k > 0):

. . .

c

b a zk z1 d f

e

Let us see that HKΘk
has a free submonoid of rank 2 generated by [acb]

and [fedz1 · · · zk].
For each k ≥ 0 consider the set Xk = {a, b, c, d, e, f, z1, . . . , zk} (when

k = 0 this is just {a, b, c, d, e, f}). Let Fk = 〈Xk〉 be a free monoid on the
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set Xk. By ∼k, ≈k we denote two relations on Fk defined in Section 2
for Θk. We proceed by induction on k. The first step has already been
verified in Example 4. Let us then assume that the assertion holds for Θk,
where k ≥ 0.

Consider the subset Wk+1 of Fk+1 that consists of all words that are
both {a, b, c}-free and {d, e, f}-free. As in the previous example it is not
difficult to show that Wk+1 is closed under equivalence classes of ∼k+1

in Fk+1. If w = rst and v = rs′t, for w ∈ Wk+1, v ∈ Fk+1, and s = s′

is an edge relation in HKΘk+1
then the order of appearance of elements

from sets {a, b, c} and {d, e, f} cannot change while we pass from w to v.
The possible edge relations are listed below:

(a) {s, s′} = {x, xx}, where x ∈ Xk+1.

(b) {s, s′} = {xy, yx | x ∈ {a, b, c, z1, . . . , zk}, y ∈ {d, e, f, z1, . . . , zk}}
except for the cases when x = y and when we have an arrow x→ y
in Θk+1.

(c) {s, s′} = {xzk+1, zk+1x | x ∈ Xk+1 \ {a, zk}}.
(d) {s, s′} ⊆ {xy, xyx, yxy | x = zi, y = zi+1 for 1 ≤ i ≤ k − 1} and
{s, s′} ⊆ {dz1, dz1d, z1dz1}.

(e) {s, s′} ⊆ {zkzk+1, zkzk+1zk, zk+1zkzk+1}.
(f) {s, s′} ⊆ {zk+1a, zk+1azk+1, azk+1a}.
Let ←−w ∈ Fk+1 arise from the word w ∈ Fk+1 by applying all possible

commutation edge relations (that is, of types (b), (c) above) of HKΘk+1

in order to move all elements a, b, c as far to the left as possible. This is
obviously well defined. We also define an element←−w zk+1

in Fk, for every
w ∈ Fk+1, as the maximal subword v of ←−w such that degzk+1

v = 0.

To simplify notation put z := zk+1. Consider a map φk+1 : [Wk+1] −→
HKΘn

, that associates to the class [w] of an element w ∈Wk+1 the class
of the element ←−w z. We will show that φk+1 is a function. This clearly
amounts to showing that

(4.5) w ≈k+1 v ⇒←−w z ∼k
←−v z.

Consider the cases (a)–(f) listed above. The implication in (4.5) is
obvious in cases (b) and (d), as we have ←−w = ←−v and thus ←−w z = ←−v z.
Also in case (c) it is clear that ←−w z = ←−v z. The remaining cases require
more detailed explanation.

In case (a) we have w = rxt and v = rxxt, for some x ∈ Xk+1. When
x = z it is clear that←−w z =←−v z. If x 6= z then←−w = r′xt′ and←−v = r′xxt′,
for some r′, t′ ∈ Fk+1. Thus ←−w z ≈k

←−v z.
In case (e) the following three subcases arise:



236 A. Mȩcel, J. Okniński

• Let w = rzkzt, v = rzzkzt. Then clearly←−w ≈k+1
←−v with the edge

relation zkz = zzkz, hence ←−w z =←−v z.
• Let w=rzkzt, v = rzkzzkt. Then←−w =r′zkza

nt′, ←−v = r′zkza
nzkt

′,
for some n ≥ 0 and r′, t′ ∈ Fk+1. Since we have zka

n ∼k zka
nzk

then ←−w z ∼k
←−v z.

• Finally, if w = rzzkzt and v = rzkzzkt, then we proceed analo-
gously as in the previous subcase.

In case (f) we also consider three subcases:

• Let w = rzat, v = rzazt. Then←−w =←−r zaant′ and←−v =←−r zaanzt′,
with

←−
t = ant′, for some t′ ∈ Fk+1 and n ≥ 0. Hence ←−w z ∼k

←−v z.

• Let w=rzat, v=razat. Then←−w z =←−r za
←−
t z and←−v z = (←−ra)za

←−
t z.

Notice that (←−ra)z = paq and ←−r = pq, for some p ∈ Fk+1, q ∈
〈d, e, f, z1, . . . , zk〉. If degzk

q = 0, then aq ∼k qa and thus ←−w z ∼k
←−v z. If, however, degzk

q > 0 then let q = t1z
i1
k t2z

i2
k · · · z

il
k tl+1, for

some positive integers ij , l, and ti ∈ 〈d, e, f, z1, . . . , zk−1〉. We only
need to show that aqa ∼k qa. This is clear, since for i>0 and for
any x∈ 〈d, e, f, z1, . . . , zk−1〉 we have zikxa ∼k zkax ∼k azkax ∼k

azkxa ∼k az
i
kxa. Thus ←−w z ∼k

←−v z.
• Finally, if w = rzazt, v = razat we proceed analogously as in the

previous subcase.

We have proved (4.5). Thus the assignment w 7→ ←−w z determines a
function φk+1 from the subset [Wk+1] of all classes of words in Wk+1 with
respect to HKΘk+1

to the monoid HKΘk
. Clearly, the class of any element

of 〈acb, fedz1 · · · zkzk+1〉 in HKΘk+1
is mapped to a unique class of an

element of the submonoid 〈acb, fedz1 · · · zk〉, which is free in HKΘk
by the

induction hypothesis. Thus, also the submonoid 〈[acb], [fedz1 · · · zkzk+1]〉
of HKΘk+1

must be free.
We are now ready to prove the general statement of this example. As-

sume that the assertion is satisfied for some Θn,k,m, with n,m ≥ 3, k ≥ 1.
Let F = 〈V (Θn,k,m)〉 and F ′ = 〈V (Θn+1,k,m)〉 be free monoids. Con-
sider the set W of all words in F ′ that are both Φn+1-free and Ψm-free.
As in the case of graphs Θk one can easily argue that W is closed with
respect to equivalence classes of ∼n+1,k,m. The remaining argument is
similar to the one used in the special case n = m = 3. This time we only
need to assign to every word w ∈ W a maximal subword v such that
degan+1

w = 0. This yields a function from the subset of the monoid
HKΘn+1,k,m

to the monoid HKΘn,k,m
such that the classes of elements

of the monoid 〈a1an+1an · · · a2, bmbm−1 · · · b1z1 · · · zk〉 are mapped to
unique classes of the monoid 〈a1an · · · a2, bmbm−1 · · · b1z1 · · · zk〉, which
is free by the induction hypothesis. The assertion for Θn+1,k,m follows.
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By symmetric arguments we can verify the freeness property of the ap-
propriate submonoid of HKΘn,k,m+1

. Since we already know that the
assertion follows for all graphs Θ3,k+1,3, with k ≥ 0, the general asser-
tion follows.

Here is a remark. One might try to use an approach based on the
diamond lemma in order to find the normal form of all elements of HKΘ.
However, this typically leads to infinite Gröbner bases. For instance, in
Example 4 it is possible to introduce the following system S of reductions
in K〈a, b, c, d, e, f〉 with respect to the natural deg-lex order (see [5] for
terminology and the necessary background):

(1) (aa, a), (2) (bb, b), (3) (cc, c), (4) (dd, d),

(5) (ee, e), (6) (ff, f), (7) (aba, ab), (8) (bab, ab),

(9) (aca, ca), (10) (cac, ca), (11) (bcb, bc), (12) (cbc, bc),

(13) (dad, da), (14) (ada, da), (15) (ded, de), (16) (ede, de),

(17) (dfd, fd), (18) (fdf, fd), (19) (efe, ef), (20) (fef, ef),

(21) (ea, ae), (22) (fa, af), (23) (db, bd), (24) (eb, be),

(25) (fb, bf), (26) (dc, cd), (27) (ec, ce), (28) (fc, cf),

(29) (bwdab, wdab), (30) (cwdac, cwda),

for w ∈ {1, f, ef} · 〈def〉 ∪ {1, e, fe} · 〈dfe〉,
(31) (edawe, dawe), (32) (fdawf, fdaw),

for w ∈ 〈cba〉 · {1, c, cb} ∪ 〈bca〉 · {1, b, bc},
(33) (awda,wda),

for w ∈ {1, c} · {1, f, ef} · 〈def〉 ∪ {1, c} · {1, e, fe} · 〈dfe〉,
(34) (dawd, daw),

for w ∈ 〈bca〉 · {1, b, bc} · {1, e} ∪ 〈cba〉 · {1, c, cb} · {1, e}.
Then one can show, though through a quite involved and detailed case-
by-case investigation, that all ambiguities that arise from the system S
(more than 150) are in fact resolvable. This of course implies that dif-
ferent elements of the monoid 〈acb, fed〉 belong to different equivalence
classes of ∼. This approach, however, seems inapplicable to the general
case of graphs Θn,k,m, considered in Example 5.

5. The proof of Theorem 1

With all previous examples studied, we are ready to prove the main
result of this paper.

Proof of Theorem 1: Let F = 〈V (Θ)〉. The implication (1) ⇒ (2) is
proved by induction on r := |V (Θ)|. If |V (Θ)| ≤ 2 then Θ is acyclic
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and obviously the monoid HKΘ is finite, hence AΘ is a PI-algebra. We
proceed to the inductive step. If Θ1 is a connected component of Θ and
Θ2 = Θ \Θ1 6= ∅, then HKΘ is a direct product of HKΘ1

and HKΘ2
, so

that AΘ = AΘ1 ⊗AΘ2 . Therefore, AΘ is a PI-algebra by Theorem 6.1.1
in [17], because so are the algebras AΘi , i = 1, 2, by the induction
hypothesis. Thus, we may assume that Θ is a connected graph.

Suppose that Θ has a source vertex. Denote it by a. We know that
awa = aw, for each w ∈ HKΘ, see Remark 5. Let Θ′ arise from Θ by
removing the vertex a and all arrows that originate from a. We can
assume that AΘ′ ⊆ AΘ and therefore:

AΘ = AΘ′ +AΘ′aAΘ′ = AΘ′ + a(AΘ′aAΘ′)︸ ︷︷ ︸
aAΘ′

+(1− a)AΘ′aAΘ′ .

The summand I := (1−a)AΘ′aAΘ′ is clearly an ideal in AΘ and I2 = 0.
Let x be the image of x ∈ AΘ under the natural map AΘ −→ AΘ/I.
Then AΘ = AΘ′ + aAΘ′ , which is a finitely generated right AΘ′ -module.
By the inductive hypothesis we may assume that AΘ′ (in fact isomorphic
to AΘ′) is a PI-algebra, so from [14, Corollary 13.4.9], it follows that AΘ

is PI as well. This, of course, implies that AΘ is PI. The same argument
works in the case when a is a sink vertex.

Therefore, we may assume that Θ neither contains sink nor source ver-
tices. Then, by condition (1), it must be a cycle. Thus, by Example 2 we
have that AΘ is a PI-algebra, see [18], which yields the first implication.

The implication (2) ⇒ (3) is well known, see [12, Corollary 10.7].
The implication (3) ⇒ (4) is clear. So, we are left with proving (4) ⇒
(1). Assume, contradictory to (1), that the graph Θ contains two cycles
that are connected by an oriented path. Namely, we have two different
sets of vertices A = {a1, . . . , an} and B = {b1, . . . , bm} of Θ such that
the induced subgraphs Θ1, Θ2 of Θ with the respective vertex sets A,
B are cycles of the form a1 → a2 → · · · → an → a1 and b1 → b2 →
· · · → bm → b1. If A∩B 6= ∅, then assume that this intersection contains
an element c. We can assume that c = a1 = b1 (perhaps we need to
renumber ai, bj). By the same arguments as in Example 3 we argue
that all elements of the submonoid of F generated by a = anan−1 · · · a1

and b = bmbm−1 · · · b1 are essentially non-rewritable in HKΘ, except for
the edge relations of the form x = xx. Thus 〈[a], [b]〉 is a free submonoid
in HKΘ, which contradicts (3). If we are in the case when A ∩ B = ∅,
we know that Θ contains a subgraph of the form Θn,k,m introduced in
Example 5, and thus it is clear that the free submonoid of HKΘn,k,m

is a submonoid of HKΘ. This again contradicts (4) and the proof is
complete.
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We conjecture that GKdim(AΘ) always is an integer if it is finite.
More generally, one might ask whether AΘ is an automaton algebra in
the sense of Ufnarovskii [22] for any Hecke–Kiselman monoid HKΘ and
whether Theorem 1 can be generalized to the entire class of such monoids.
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