Open Access
2019 Weak-2-local isometries on uniform algebras and Lipschitz algebras
Lei Li, Antonio M. Peralta, Liguang Wang, Ya-Shu Wang
Publ. Mat. 63(1): 241-264 (2019). DOI: 10.5565/PUBLMAT6311908


We establish spherical variants of the Gleason–Kahane–Żelazko and Kowalski–Słodkowski theorems, and we apply them to prove that every weak-2-local isometry between two uniform algebras is a linear map. Among the consequences, we solve a couple of problems posed by O. Hatori, T. Miura, H. Oka, and H. Takagi in 2007.

Another application is given in the setting of weak-$2$-local isometries between Lipschitz algebras by showing that given two metric spaces $E$ and $F$ such that the set $\operatorname{Iso}((\operatorname{Lip}(E),\|\cdot\|),(\operatorname{Lip}(F),\|\cdot\|))$ is canonical, then every weak-$2$-local $\operatorname{Iso}((\operatorname{Lip}(E)$, $\|\cdot\|),(\operatorname{Lip}(F),\|\cdot\|))$-map $\Delta$ from $\operatorname{Lip}(E)$ to $\operatorname{Lip}(F)$ is a linear map, where $\|\cdot\|$ can indistinctly stand for $\|f\|_{L} := \max\{L(f), \|f\|_{\infty} \}$ or $ \|f\|_{s} := L(f) + \|f\|_{\infty}$.


Download Citation

Lei Li. Antonio M. Peralta. Liguang Wang. Ya-Shu Wang. "Weak-2-local isometries on uniform algebras and Lipschitz algebras." Publ. Mat. 63 (1) 241 - 264, 2019.


Received: 10 May 2017; Revised: 17 November 2017; Published: 2019
First available in Project Euclid: 7 December 2018

zbMATH: 07040968
MathSciNet: MR3908793
Digital Object Identifier: 10.5565/PUBLMAT6311908

Primary: 46B04 , 46B20 , ‎46E15 , 46J10
Secondary: ‎30H05 , 32A38 , ‎46J15 , 47B38 , 47B48 , 47D03

Keywords: 2-local isometries , Lipschitz functions, , spherical Gleason–Kahane–Żelazko theorem , spherical Kowalski–Słodkowski theorem , Uniform algebras , weak-2-local isometries

Rights: Copyright © 2019 Universitat Autònoma de Barcelona, Departament de Matemàtiques

Vol.63 • No. 1 • 2019
Back to Top