Translator Disclaimer
September 2007 A note on stable Clifford extensions of modules
Ziqun Lu
Osaka J. Math. 44(3): 563-565 (September 2007).

Abstract

Let $H$ be a normal subgroup of $G$. Let $W$ be a $G$-invariant indecomposable $\mathit{RH}$-module with vertex $Q$. Let $V$ be an indecomposable direct summand of the induced module $W^{G}$. Let $W'$ and $V'$ be the Green correspondents of $W$ and $V$ in $N_{H}(Q)$ and $N_{G}(Q)$ respectively. Then we prove that $\rank_{R} V/{\rank_{R}} W=\rank_{R} V'/{\rank_{R}} W'$.

Citation

Download Citation

Ziqun Lu. "A note on stable Clifford extensions of modules." Osaka J. Math. 44 (3) 563 - 565, September 2007.

Information

Published: September 2007
First available in Project Euclid: 13 September 2007

zbMATH: 1128.20008
MathSciNet: MR2360940

Subjects:
Primary: 20C20
Secondary: 20C05

Rights: Copyright © 2007 Osaka University and Osaka City University, Departments of Mathematics

JOURNAL ARTICLE
3 PAGES


SHARE
Vol.44 • No. 3 • September 2007
Back to Top