A NOTE ON STABLE CLIFFORD EXTENSIONS OF MODULES

ZIQUN LU

(Received June 26, 2006, revised September 25, 2006)

Abstract

Let H be a normal subgroup of G. Let W be a G-invariant indecomposable RH-module with vertex Q. Let V be an indecomposable direct summand of the induced module W^G . Let W' and V' be the Green correspondents of W and V in $N_H(Q)$ and $N_G(Q)$ respectively. Then we prove that $\operatorname{rank}_R V/\operatorname{rank}_R W = \operatorname{rank}_R V'/\operatorname{rank}_R W'$.

Let \mathcal{O} be a complete discrete valuation ring, and let F be the residual field of \mathcal{O} of characteristic p > 0. We assume that \mathcal{O} and F are big enough. Let R be \mathcal{O} or F.

Let G be a finite group. Let H be a normal subgroup of G. Let W be a G-invariant indecomposable RH-module with vertex G. Let W' be the Green correspondent of W with respect to $(H, Q, N_H(Q))$. Then $G = HN_G(Q)$, and W' is $N_G(Q)$ -invariant. We write W^G for the induction of W to G. Set $E = \operatorname{End}_{RG}(W^G)$ and $\Lambda = \operatorname{End}_{RH}(W)$. We can write E in the form $E = \sum_{\bar{x} \in X} \bigoplus E_{\bar{x}}$ where X = G/H and $E_{\bar{x}}$ is the R-submodule of E mapping $W = W \otimes 1$ to $W \otimes x$ inside W^G , and $\operatorname{Hom}_{RH}(W, Wx) \cong E_{\bar{x}}$ (as R-module) by $[4, \operatorname{Chap.} 4$, Lemma 6.4]. Clearly $E_{\bar{x}}E_{\bar{y}} \subset E_{\bar{x}\bar{y}}$, for \bar{x} , $\bar{y} \in X$. Also we can use the stability hypothesis to choose an element $\varphi_{\bar{x}} \in E_{\bar{x}}$ mapping $W \otimes 1$ isomorphically onto $W \otimes x$; it follows that $\varphi_{\bar{x}}$ is a unit in E. Since $E_{\bar{1}}$ can be identified with Λ , we have $E_{\bar{x}} = \Lambda \varphi_{\bar{x}} = \varphi_{\bar{x}} \Lambda$. Thus $E_{\bar{x}}$ can also be identified with $\operatorname{Hom}_{RH}(W, Wx)$. We do so in this paper. Set $E' = \operatorname{End}_{RN_G(Q)}((W')^{N_G(Q)})$, and $\Lambda' = \operatorname{End}_{RN_H(Q)}(W')$. It is well-known that $J(\Lambda)E \subset J(E)$ (resp. $J(\Lambda')E' \subset J(E')$), and $E/J(\Lambda)E$ (resp. $E'/J(\Lambda')E'$) is a twisted group algebra.

In [3], the outhor proves that $E'/J(\Lambda')E'$ is isomorphic to $E/J(\Lambda)E$, which already appears without proof in Cline [2]. Here we will give an application of the above isomorphism. The following is our main result.

Theorem. Keep notation and assumptions as above. Then the Green correspondence gives a one-to-one correspondence between the set of non-isomorphic indecomposable direct summands of W^G and that of $(W')^{N_G(Q)}$, and keeps multiplicities. Let

²⁰⁰⁰ Mathematics Subject Classification. Primary 20C20; Secondary 20C05. The author was supported by NSFC (No: 10501027).

564 Z. Lu

V be an indecomposable direct summand of W^G . Let V' be the Green correspondent of V in $N_G(Q)$. Then $\operatorname{rank}_R V/\operatorname{rank}_R W = \operatorname{rank}_R V'/\operatorname{rank}_R W'$.

Proof. From the proof of the main theorem in [3], we do not know whether the isomorphism given there is compatible with the Green correspondence. Here we will first construct an isomorphism from $E'/J(\Lambda')E'$ to $E/J(\Lambda)E$, which is compatible with the Green correspondence.

Let L be a subgroup of G. For RL-modules W_1 and W_2 , there is a homomorphism

$$\operatorname{Tr}_L^G : \operatorname{Hom}_{RL}(W_1, W_2) \to \operatorname{Hom}_{RG}((W_1)^G, (W_2)^G),$$

such that the following holds: for $f \in \text{Hom}_{RL}(W_1, W_2)$ and $\sum_{x \in L \setminus G} u_x \otimes x \in (W_1)^G$,

$$\operatorname{Tr}_L^G(f)\left(\sum_{x\in L\setminus G}u_x\otimes x\right)=\sum_{x\in L\setminus G}f(u_x)\otimes x.$$

Assume that $(W')^H = W \oplus M$ for some RH-module M. Then $(W')^G = W^G \oplus M^G$. Let $\Omega = \{P \colon P < Q \cap Q^x$, fo some $x \in H - N_H(Q)\}$. Then M and M^G are Ω -projective. Let $\iota_{W^G} \colon W^G \to (W')^G$ and $\pi_{W^G} \colon (W')^G \to W^G$ be the inclusion map and the projection map, respectively. We have the following algebra homomorphism:

$$\begin{split} \beta \colon \operatorname{End}_{RN_G(Q)}((W')^{N_G(Q)}) &\to \operatorname{End}_{RG}(W^G) \\ f &\mapsto \pi_{W^G} \cdot \operatorname{Tr}_{N_G(Q)}^G(f) \cdot \iota_{W^G}. \end{split}$$

Since M^G is Ω -projective,

$$\operatorname{End}_{RG}((W')^G) = \operatorname{End}_{RG}(W^G) + \operatorname{Tr}_{\Omega}^G(\operatorname{End}_R((W')^G)).$$

It is easy to see that

$$\operatorname{End}_{RG}(W^G) \cap \operatorname{Tr}_{\Omega}^G(\operatorname{End}_R((W')^G)) = \operatorname{Tr}_{\Omega}^G(\operatorname{End}_R(W^G)).$$

By [4, Chapter 4, Lemma 5.3], the map $\operatorname{Tr}_{N_G(Q)}^G$ induces the following algebra isomorphism:

$$\operatorname{End}_{RN_G(\mathcal{Q})}((W')^{N_G(\mathcal{Q})})/\operatorname{Tr}_{\Omega}^{N_G(\mathcal{Q})}(\operatorname{End}_R((W')^{N_G(\mathcal{Q})})) \to \operatorname{End}_{RG}((W')^G)/\operatorname{Tr}_{\Omega}^G(\operatorname{End}_R((W')^G),$$

so β induces the following algebra isomorphism:

$$\beta \colon \operatorname{End}_{RN_G(Q)}((W')^{N_G(Q)})/\operatorname{Tr}_{\Omega}^{N_G(Q)}(\operatorname{End}_R((W')^{N_G(Q)})) \to \operatorname{End}_{RG}(W^G)/\operatorname{Tr}_{\Omega}^G(\operatorname{End}_R(W^G)).$$

By [4, Chapter 4, Lemma 5.1 (Dade)], the following isomorphism holds:

$$\sum_{x \in H \setminus G} \bigoplus \operatorname{Tr}_{\Omega}^{H}(\operatorname{Hom}_{R}(W, Wx)) = \operatorname{Tr}_{\Omega}^{H}(\operatorname{Hom}_{R}(W, W^{G})) \cong \operatorname{Tr}_{\Omega}^{G}(\operatorname{End}_{R}(W^{G})).$$

Let $I = \operatorname{Tr}_{\Omega}^{H}(\operatorname{End}_{R}(W))$ and $I' = \operatorname{Tr}_{\Omega}^{N_{H}(Q)}(\operatorname{End}_{R}(W'))$. It is easy to see that $\operatorname{Tr}_{\Omega}^{H}(\operatorname{Hom}_{R}(W, Wx_{i})) = \operatorname{Hom}_{RH}(W, Wx_{i}) \cdot I$. Thus by identification, $\operatorname{Tr}_{\Omega}^{G}(\operatorname{End}_{R}(W^{G}))$ is just the graded ideal EI of E generated by I. Let E'I' be the graded ideal of E' generated by I'. Then $\operatorname{Tr}_{\Omega}^G(\operatorname{End}_R(W^G)) = EI$ and $\operatorname{Tr}_{\Omega}^{N_G(Q)}(\operatorname{End}_R(W'^{N_G(Q)})) = \operatorname{EI}_{\Omega}^{G}(\operatorname{End}_R(W^G))$ E'I'. Thus β gives an isomorphism from E'/E'I' to E/EI. Since both W and W' are not Ω -projective, $I \subseteq J(\Lambda)$ and $I' \subseteq J(\Lambda')$. Note that by restriction β induces an algebra isomorphism from Λ'/I' to Λ/I . Thus β induces an isomorphism from $\Lambda'/J(\Lambda')$ to $\Lambda/J(\Lambda)$. So β sends $J(\Lambda')$ to $J(\Lambda)$. As β is an isomorphism from E'/E'I' to E/EI, we have that β is an isomorphism from $E'/J(\Lambda')E'$ to $E/J(\Lambda)E$.

The first statement of the Theorem is obvious. Thus V' is an indecomposable direct summand of $(W')^{N_G(Q)}$. Let e' be a (primitive) idempotent of E' correspondent to V'. Let e be a primitive idempotent of E such that $\beta(\bar{e}') = \bar{e}$. Set $\tilde{V} = eW^G$. Then \tilde{V} is of vertex Q, and is a direct summand of $\operatorname{Tr}_{N_G(Q)}^G(e')(W')^G = (e'(W')^{N_G(Q)})^G = (V')^G$. We must have that \tilde{V} is the Green correspondent of V'. Thus $V \cong \tilde{V}$. By Cline [1, Corollary 3.15], $V \cong W \otimes_{\Lambda} eE$ and $V' \cong W' \otimes_{\Lambda'} e'E'$. Since $eE/J(\Lambda)eE =$ $\beta(e'E'/J(\Lambda')e'E')$, we have dim_F $e'E'/J(\Lambda')e'E' = \dim_F eE/J(\Lambda)eE$. So

 $\operatorname{rank}_R V/\operatorname{rank}_R W = \dim_F eE/J(\Lambda)eE = \dim_F e'E'/J(\Lambda')e'E' = \operatorname{rank}_R V'/\operatorname{rank}_R W',$

as desired.

References

- [1] E. Cline: Stable Clifford Theory, J. Algebra 22 (1972), 350–364.
- [2] E. Cline: Some connections between Clifford theory and the theory of vertices and sources; in Representation Theory of Finite Groups and Related Topics (Proc. Sympos. Pure Math. XXI, Univ. Wisconsin, Madison, Wis., 1970), Amer. Math. Soc., Providence, R.I., 1971, 19-23.
- Z. Lu: Stable Clifford extensions of modules, J. Algebra 305 (2006), 430-432.
- [4] H. Nagao and Y. Tsushima: Representations of Finite Groups, Academic Press, New York, 1988.

Department of Mathematical Sciences Tsinghua University Beijing 100084 P.R. China

e-mail: zlu@mail.tsinghua.edu.cn