We classify a sharp phase transition threshold for Friedman’s finite adjacent Ramsey theorem. We extend the method for showing this result to two previous classifications involving Ramsey theorem variants: the Paris–Harrington theorem and the Kanamori–McAloon theorem. We also provide tools to remove ad hoc arguments from the proofs of phase transition results as much as currently possible.

## References

[1] Arai, T., “Introduction to proof theory,” lecture notes, http://kurt.scitec.kobe-u.ac.jp/~arai/.[1] Arai, T., “Introduction to proof theory,” lecture notes, http://kurt.scitec.kobe-u.ac.jp/~arai/.

[2] Buchholz, W., “Beweistheorie,” lecture notes, http://www.mathematik.uni-muenchen.de/~buchholz/.[2] Buchholz, W., “Beweistheorie,” lecture notes, http://www.mathematik.uni-muenchen.de/~buchholz/.

[3] Buss, S. R., ed.,

*Handbook of Proof Theory*, vol. 137 of*Studies in Logic and the Foundations of Mathematics*, North-Holland, Amsterdam, 1998. MR1640324[3] Buss, S. R., ed.,*Handbook of Proof Theory*, vol. 137 of*Studies in Logic and the Foundations of Mathematics*, North-Holland, Amsterdam, 1998. MR1640324[4] Carlucci, L., G. Lee, and A. Weiermann, “Sharp thresholds for hypergraph regressive Ramsey numbers,”

*Journal of Combinatorial Theory Series A*, vol. 118 (2011), pp. 558–85. MR2739504 10.1016/j.jcta.2010.08.004[4] Carlucci, L., G. Lee, and A. Weiermann, “Sharp thresholds for hypergraph regressive Ramsey numbers,”*Journal of Combinatorial Theory Series A*, vol. 118 (2011), pp. 558–85. MR2739504 10.1016/j.jcta.2010.08.004[5] Erdős, P., and R. Rado, “Combinatorial theorems on classifications of subsets of a given set,”

*Proceedings of the London Mathematical Society (3)*, vol. 2 (1952), pp. 417–39. MR65615[5] Erdős, P., and R. Rado, “Combinatorial theorems on classifications of subsets of a given set,”*Proceedings of the London Mathematical Society (3)*, vol. 2 (1952), pp. 417–39. MR65615[6] Friedman, H. M., “Adjacent Ramsey theory,” preprint, https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts.[6] Friedman, H. M., “Adjacent Ramsey theory,” preprint, https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts.

[7] Friedman, H. M., and F. Pelupessy, “Independence of Ramsey theorem variants using $\varepsilon_{0}$,” preprint, http://cage.ugent.be/~pelupessy/ARPH.pdf. MR3430859 10.1090/proc12759[7] Friedman, H. M., and F. Pelupessy, “Independence of Ramsey theorem variants using $\varepsilon_{0}$,” preprint, http://cage.ugent.be/~pelupessy/ARPH.pdf. MR3430859 10.1090/proc12759

[9] Kanamori, A., and K. McAloon, “On Gödel incompleteness and finite combinatorics,”

*Annals of Pure and Applied Logic*, vol. 33 (1987), pp. 23–41. MR870685 10.1016/0168-0072(87)90074-1[9] Kanamori, A., and K. McAloon, “On Gödel incompleteness and finite combinatorics,”*Annals of Pure and Applied Logic*, vol. 33 (1987), pp. 23–41. MR870685 10.1016/0168-0072(87)90074-1[10] Ketonen, J., and R. Solovay, “Rapidly growing Ramsey functions,”

*Annals of Mathematics (2)*, vol. 113 (1981), pp. 267–314. MR607894 10.2307/2006985[10] Ketonen, J., and R. Solovay, “Rapidly growing Ramsey functions,”*Annals of Mathematics (2)*, vol. 113 (1981), pp. 267–314. MR607894 10.2307/2006985[12] Loebl, M., and J. Nešetřil, “An unprovable Ramsey-type theorem,”

*Proceedings of the American Mathematical Society*, vol. 116 (1992), pp. 819–24. MR1095225 10.1090/S0002-9939-1992-1095225-4[12] Loebl, M., and J. Nešetřil, “An unprovable Ramsey-type theorem,”*Proceedings of the American Mathematical Society*, vol. 116 (1992), pp. 819–24. MR1095225 10.1090/S0002-9939-1992-1095225-4[13] Paris, J., and L. Harrington, “A mathematical incompleteness in Peano arithmetic,” pp. 1133–42 in

*Handbook for Mathematical Logic*, edited by J. Barwise, vol. 90 of*Studies in Logic and the Foundations of Mathematics*, North-Holland, Amsterdam, 1977. MR457132[13] Paris, J., and L. Harrington, “A mathematical incompleteness in Peano arithmetic,” pp. 1133–42 in*Handbook for Mathematical Logic*, edited by J. Barwise, vol. 90 of*Studies in Logic and the Foundations of Mathematics*, North-Holland, Amsterdam, 1977. MR457132[15] Weiermann, A., “A classification of rapidly growing Ramsey functions,”

*Proceedings of the American Mathematical Society*, vol. 132 (2004), pp. 553–61. MR2022381 10.1090/S0002-9939-03-07086-2[15] Weiermann, A., “A classification of rapidly growing Ramsey functions,”*Proceedings of the American Mathematical Society*, vol. 132 (2004), pp. 553–61. MR2022381 10.1090/S0002-9939-03-07086-2[16] Weiermann, A., “Webpage on phase transitions,” preprint, http://cage.ugent.be/~weierman//phase.html.[16] Weiermann, A., “Webpage on phase transitions,” preprint, http://cage.ugent.be/~weierman//phase.html.