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Phase Transition Results
for Three Ramsey-Like Theorems

Florian Pelupessy

Abstract We classify a sharp phase transition threshold for Friedman’s finite
adjacent Ramsey theorem. We extend the method for showing this result to
two previous classifications involving Ramsey theorem variants: the Paris–
Harrington theorem and the Kanamori–McAloon theorem. We also provide
tools to remove ad hoc arguments from the proofs of phase transition results as
much as currently possible.

Phase transitions in logic are a recent development in unprovability. The gen-
eral program, started by Andreas Weiermann, is to classify parameter functions
f WN ! N according to the provability of a parameterized theorem 'f in a theory T .
We study these transitions with the goal of gaining a better understanding of unprov-
ability. More details on this program, with an overview of related publications, can
be found at Weiermann [16].

In this paper we examine the transition results for three Ramsey theorem variants:
Friedman’s finite adjacent Ramsey theorem, the Paris–Harrington theorem, and the
Kanamori–McAloon theorem. The latter two of these have been studied previously
in Weiermann [15] and Carlucci, Lee, and Weiermann [4], but the methods used in
the present paper are a natural continuation of the method for the adjacent Ramsey
theorem. The emphasis of this method is on connecting the variants 'k of the the-
orem for constant functions k with the classification f according to the provability
of 'f . Furthermore, this proof method does not depend on whether the original
nonparameterized version of the theorem was shown using proof/recursion theory or
model-theoretic constructions.
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We will also provide some general tools to streamline the proofs of phase transi-
tion results: the upper bounds Lemmas 3.1 and 3.3, and the lower bounds sharpening
Lemmas 2.9 and 2.11. The manner in which these lemmas are stated indicates the
most important steps in the proofs of (sharpened) phase transitions. These lemmas
remove the need to repeat some ad hoc arguments for each transition result.

This paper is divided into four sections. Section 1 introduces the three Ramsey
theorem variants and the transition results. Section 2 is dedicated to independence,
and Section 3 is dedicated to provability. We conclude with some observations on
phase transitions in Section 4. In Section 2 the three Ramsey theorem variants are
each treated in a separate subsection. We advise the reader who wishes to skip one or
two of those subsections to first read the intuitive sketch of the proofs at the beginning
of Section 2.

1 Three Ramsey-Like Theorems

1.1 Adjacent Ramsey The finite adjacent Ramsey theorem is one of the most recent
independence results at the level of PA and was first presented in Friedman [6]. Inde-
pendence of the variants with fixed dimension is examined extensively in Friedman
and Pelupessy [7]. This examination uses proof-theoretic techniques. Showing in-
dependence by using model-theoretic constructions is still an open problem. As in
the case of the other Ramsey variants, we will call functions C W ¹0; : : : ; Rºd ! Nr

colorings. Notice the distinction between parameter functions, which are provided
externally and colorings, which are being quantified over inside the theorems. We
denote the i th coordinate of an r-tuple a with .a/i .
Definition 1.1 For r-tuples a; b:

a � b , .a/1 � .b/1 ^ � � � ^ .a/r � .b/r :

Definition 1.2 A coloring C W ¹0; : : : ; Rºd ! Nr is f -limited if

max C.x/ � f .max x/ C 1 for all x 2 ¹0; : : : ; Rº
d :

Theorem 1.3 (ARf ) For every d; r there exists R such that for every f -limited
coloring C W ¹0; : : : ; Rºd ! Nr , there exist x1 < � � � < xdC1 � R with

C.x1; : : : ; xd / � C.x2; : : : ; xdC1/:

Proof We show that, for every C WNd ! Nr , there exist x1 < � � � < xdC1 such
that C.x1; : : : ; xd / � C.x2; : : : ; xdC1/ (the proof for this claim is taken from [6]).
Given a C as in the claim, define DW ŒN�dC1 ! 2 as follows:

D.x1; : : : ; xdC1/ D

´
0 if C.x1; : : : ; xd / � C.x2; : : : ; xdC1/

1 otherwise:

By the infinite Ramsey theorem, there exists an infinite homogeneous set for D. By
Dickson’s lemma, the value of D on this set must be zero, which finishes the proof
of the claim. Apply a compactness argument to obtain ARf .

Definition 1.4 We denote the smallest R from ARf with ARd
f .r/. The theorem

ARf with fixed d is denoted with ARd
f .

Theorem 1.5 We have the following:
1. I†dC1 ° ARdC1

id ;
2. PA ° ARid.
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Proof See [7, Theorems 3.7 and 3.8].

1.2 Paris–Harrington The Paris–Harrington theorem is one of the earliest examples
of natural theorems which are independent of PA. This was first shown using model-
theoretic methods in Paris [13]; later this was shown using proof-theoretic methods
in Ketonen and Solovay [10], Loebl and Nešetřil [12], and in [7].

Definition 1.6 The set ŒX�d is the set of d -element subsets of X , Œm; R�d D Œ¹m;

: : : ; Rº�d and ŒR�d D Œ0; R�d .

Definition 1.7 Given a coloring C W Œm; R�d ! r , we call a set H homogeneous
for C or C -homogeneous if C is constant on ŒH �d .

Theorem 1.8 (PHf ) For every d; r; m there exists an R such that, for every col-
oring C W Œm; R�d ! r , there exists an H � Œm; R� of size f .min H/ for which C

limited to ŒH �d is constant.

Definition 1.9 We denote the smallest R from PHf with PHd
f .m; r/. The theo-

rem PHf with fixed d is denoted with PHd
f . We call a coloring C W Œm; R�d ! r bad

if every C -homogeneous set has size strictly less than f .min H/.

Theorem 1.10 We have the following:
1. I†dC1 ° PHdC2

id ;
2. PA ° PHid.

Proof See [7, Theorems 3.7 and 3.8].

1.3 Kanamori–McAloon The Kanamori–McAloon theorem is also known as the re-
gressive Ramsey theorem. We will examine the following variant.

Theorem 1.11 (KMf ) For every d; m; a there exists R such that, for every
C W Œa; R�d ! N with C.x/ � f .min x/, there exists H � R of size m for which for
all x; y 2 ŒH �d with min x D min y we have C.x/ D C.y/.

Definition 1.12 We denote the smallest R from KMf with KMd
f .a; m/. The

theorem KMf with fixed d is denoted with KMd
f .

Theorem 1.13 We have the following:
1. I†dC1 ° KMdC2

id ;
2. PA ° KMid.

Proof See Kanamori and McAloon [9, Theorem A, Corollary 4.5].

1.4 Phase transition results All parameter functions are assumed to be nondecreas-
ing. For every f WN ! N the inverse is

f �1.i/ D min
®
j W f .j / � i

¯
;

20.i/ D i , 2nC1.i/ D 22n.i/, log is the inverse of i 7! 2i , logn is the inverse of
i 7! 2n.i/, log� is the inverse of i 7! 2i .2/, c

p
logn is the inverse of i 7! 2n.ic/,

and i 7!
i
c

is the inverse of i 7! i � c, where x
0

D 1. We use 'd
f

to denote the
theorem 'f with fixed dimension d . The function H˛ is the ˛th function from
the Hardy hierarchy with canonical fundamental sequences. In items (5) and (6) of
the following theorems we assume that the reader is familiar with proof-theoretic
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results involving this hierarchy and provability in PA and I†d . Details on this can
be found in, for example, Buss [3], Pohlers [14], Arai [1], or in the lecture notes in
Buchholz [2].

Theorem 1.14 We have the following:

1. I†dC1 ° ARdC1
c
q

logd
for every c > 0;

2. PA ° ARlogn for every n;
3. I†1 ` ARdC1

logdC1 ;
4. I†1 ` ARlog� ;
5. PA ` ARf˛

, ˛ < "0;
6. I†dC1 ` ARdC1

f
dC1

˛

, ˛ < !dC2,

where f dC1
˛ .i/ D

H�1
˛ .i/

q
logd .i/ and f˛.i/ D logH �1

˛ .i/.i/.

Theorem 1.15 We have the following:

1. I†dC1 ° PHdC2
logdC1

c

for every c > 0;

2. PA ° PHlogn for every n;
3. I†1 ` PHdC2

logdC2 ;
4. I†1 ` PHlog� ;
5. PA ` PHf˛

, ˛ < "0;
6. I†dC1 ` PHdC2

f
dC1

˛

, ˛ < !dC2;

where f dC1
˛ .i/ D

logdC1.i/

H �1
˛ .i/

and f˛.i/ D logH �1
˛ .i/.i/.

Theorem 1.16 We have the following:

1. I†dC1 ° KMdC2
c
q

logd
for every c > 0;

2. PA ° KMlogn for every n;
3. I†1 ` KMdC2

logdC1 ;
4. I†1 ` KMlog� ;
5. PA ` KMf˛

, ˛ < "0;
6. I†dC1 ` KMdC2

f d
˛

, ˛ < !dC2;

where f d
˛ .i/ D

H�1
˛ .i/

q
logd .i/ and f˛.i/ D logH �1

˛ .i/.i/.

The first two items and the unprovability parts of the last two items of these theorems
will be treated in Section 2. The first item of Theorem 1.14, 1.15, or 1.16 is derived
from Theorems 1.5, 1.10, and 1.13 combined with Theorems 2.3, 2.5, and 2.7, re-
spectively. The unprovability parts of items (5) and (6) are shown by combining the
first two items with Lemmas 2.9 and 2.11.

Items (3) and (4) and the provability parts of the last two items are shown in
Section 3. These are direct consequences of Lemmas 3.1 and 3.3 and upper bound
estimates from the literature.

Theorem 1.15 can already be found in [15]; Theorem 1.16 can be found in Lee
[11, Corollary 4.1.3] and [4, Theorems 1.1, 1.2].
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2 Lower Bounds

In the following three sections we show items (1) and (2) of Theorems 1.14, 1.15,
and 1.16. The underlying idea of the three proofs is to show, for the appropriate
parameter f , that 'f ! 'id by compressing the colorings C for 'id by using f to
obtain a coloring D1. This causes the problem that if one obtains for such colorings
an adjacent/homogeneous/min-homogeneous set H (by 'f ), the set ¹f .x/ W x 2 H º

may not have the right size (to demonstrate 'id) because f .x/ D f .y/ could be
satisfied for some x < y. We will solve this by combining D1 with two colorings
D2 and D3.

The coloring D2 will have the property that, for an adjacent/homogeneous/min-
homogeneous set H and for x1 < � � � < xdC1 in H , either f .xd / D f .xdC1/ or
f .x1/ < � � � < f .xdC1/.

The other coloring D3 will ensure that, in the case f .xd / D f .xdC1/, the set
H cannot be adjacent/homogeneous/min-homogeneous with the appropriate size.
To obtain suitable coloring D3, we use lower-bound estimates for 'k with constant
function k.

2.1 Adjacent Ramsey For determining the transitions, estimates on i 7! ARd
i .r/

play a central part. A variant of these functions has been examined extensively in
[6]. We use the following result.

Lemma 2.1 For every d 2 N and i; c > 0 there exists a coloring

C W
®
0; : : : ; 2d .ic/

¯dC1
! ¹0; : : : ; iº32�dCc

such that C.x/ ¤ C.y/ for all x ¤ y.

Proof Induction on d . If d D 0, enumerate ¹0; : : : ; iºc D ¹x1; : : : ; x.iC1/c º and
take C.j / D xj . For the induction step apply [6, Lemma 1.9].

We modify these colorings slightly.

Lemma 2.2 For every d 2 N and c; i > 0 there exists a coloring

Cd;c;i W
®
0; : : : ; 2d .ic/

¯dC1
! ¹0; : : : ; iº64�dC2�c

such that C.x1; : : : ; xdC1/ — C.x2; : : : ; xdC2/ for all x1 < � � � < xdC2 � 2d .ic/.

Proof Take C 0 from Lemma 2.1, and define

C.x/ D
�
C 0.x/; i � C 0.x/

�
:

With these estimates, we can prove parts (1) and (2) of Theorem 1.14.

Theorem 2.3 There exists a primitive recursive function h such that

ARdC1
c
q

logd

�
h.d; c; r/

�
� ARdC1

id .r/:

Proof We claim that the inequality holds for h.d; c; r/ D r C 65 � .d C 1/C

2 � c C 3. Given id-limited coloring C W ¹0; : : : ; RºdC1 ! Nr , take f .x/ D
c

q
logd

and, for i; j 2 ¹1; : : : ; d C 1º, .w.i//j D 1 if i D j , zero otherwise.
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Define colorings D1W ¹0; : : : ; RºdC1 ! Nr , D2W ¹0; : : : ; RºdC1 ! NdC1, and
D3W ¹0; : : : ; RºdC1 ! N64�.dC1/C2.cC1/ as follows:

D1.x/ D C
�
f .x1/; : : : ; f .xdC1/

�
;

D2.x/ D w.i/;

where i < d C 1 is the biggest such that f .xi�1/ D f .xi / if such i exists, one
otherwise, and

D3.x/ D Cd;cC1;f .max x/.x/;

where Cd;c;i are taken from Lemma 2.2.
Combine these colorings into a single f -limited coloring

DW ¹0; : : : ; Rº
dC1

! NrCdC1C64�.dC1/C2.cC1/

by taking D D .D1; D2; D3/.
Suppose that for x1 < � � � < xdC2 � R we have D.x1; : : : ; xdC1/ � D.x2; : : : ;

xdC2/. Observe that if 1 < i ¤ j < d , then w.i/ — w.j /, so D2.x1; : : : ; xdC1/ �

D2.x2; : : : ; xdC2/ implies either f .x1/ < � � � < f .xdC2/ or f .x1/ D � � � D

f .xdC2/.
1. If f .x1/ < � � � < f .xdC2/, then, by definition of D1, we have

C
�
f .x1/; : : : ; f .xdC1/

�
� C

�
f .x2/; : : : ; f .xdC2/

�
:

2. If f .x1/ D � � � D f .xdC2/, then Cd;cC1;f .xdC1/ D Cd;cC1;f .xdC2/, so by
definition D3.x1; : : : ; xdC1/ — D3.x2; : : : ; xdC2/, which is a contradiction.

2.2 Paris–Harrington We will use lower bounds from Ramsey theory from [8, Sec-
tion 4.7, Theorem 19], which are attributed to Erdős and Hajnal.

Lemma 2.4 For every d � 2 there exists constant ad such that

PHd
i �ad

.0; r/ > 2d�2.r i�2/

for all r � 4 and i � 3.

With these estimates, we can prove parts (1) and (2) of Theorem 1.15.

Theorem 2.5 There exist primitive recursive functions h1 and h2 such that

PHdC1
logd

c

�
h1.c; d; m/; h2.c; d; m; r/

�
� PHdC1

id .m; r/

for every c; r > 0 and m sufficiently large.

Proof We claim this is the case for

h1.c; d; m/ D 2d .ad � c � m/; h2.c; d; m; r/ D r � .d C 2/2
� 2.cC2/�ad :

Given C W Œm; R�dC1 ! r , take f .i/ D
logd .i/
ad �c

and colorings

Di �ad
W
�
2d�1.2.cC1/�ad �i /

�dC1
! 2.cC2/�ad ;

where Di �ad
is obtained from Lemma 2.4. Define

DW
�
2d .ad � c � m/; R

�dC1
! r � 2.cC2/�ad � .d C 2/2

as follows.
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If f .x1/ < � � � < f .xdC1/, then
D.x/ D

�
C

�
f .x1/; : : : ; f .xdC1/

�
; 0; 0; d C 1

�
:

If 1 � i � d C1 is the biggest i such that f .x1/ D � � � D f .xi / and if 1 � j < d C1

is the biggest j such that f .x1/ < � � � < f .xj / (if i > 1, then j D 1, and if j > 1,
then i D 1), then

D.x/ D .0; 0; i; j /:

Note that although the values of D are tuples, the number of possible values
is bound by r � 2.cC2/�ad � .d C 2/2; hence, D can be converted to a coloring
Œ2d .ad � c � m/; R�dC1 ! r � 2.cC2/�ad � .d C 2/2 by using a suitable encoding.
Homogeneous sets for this converted function are also homogeneous for D.

Suppose that H is homogeneous for D and of size greater than d C2. In this case,
the last two coordinates have value 1 or dC1. If not, then there exist x1 < � � � < xdC2

with i D .D.x2; : : : ; xdC2//3 D .D.x1; : : : ; xdC2//3 C 1 D i C 1, which is a
contradiction (same argument for 4th coordinate). If one of those two is 1, then the
other must be d C 1, so either f .x1/ D � � � D f .xdC1/ for all x1 < � � � < xdC1 in
H or f .x1/ < � � � < f .xdC1/ for all x1 < � � � < xdC1 in H .

By definition of D, this implies that H is homogeneous for .D/1 or Df .min H/�ad
.

In the latter case, H has size strictly less than f .min H/. Hence if H has size larger
than f .min H/, then H 0 D ¹f .h/ W h 2 H º has size larger than min H 0 and is
homogeneous for C .

2.3 Kanamori–McAloon We have the following estimates from [4, Lemma 3.14].

Lemma 2.6 For every d � 2 there exists constant ad such that

KMd
i �ad �m

�
0; ad � .m C 1/

�
> 2d�2.im/:

This implies that, for i > .ad � m/m and m > c C 2, we get

KMd
i

�
0; ad � .m C 1/

�
> 2d�2

�
.i C 1/cC1

�
:

According to this estimate, there exist colorings

Di W
�
0; 2d�2

�
.i C 1/cC1

�
�d ! ad � .m C 1/

such that for every H � Œ0; 2d�2..i C 1/cC1/� of size i there exist x; y 2 ŒH �d with
min x D min y and Di .x/ ¤ Di .y/. With these colorings we can prove parts (1)
and (2) of Theorem 1.16.

Theorem 2.7 There exist primitive recursive functions h1; h2 such that for d � 2,

KMd
c
q

logd�2

�
h1.d; m; c/; h2.d; m; c/

�
� KMd

id.0; m/:

Proof We claim this inequality holds for h1.d; m; c/ D 2d�2..ad � m/cm/,
h2.d; m; c/ D ad � .m C 1/ C 1, and m > d C c C 3. Given a coloring DW ŒR�d ! N
for the identity function, we create an intermediate coloring

QC W ŒR�d ! N � N � .d C 2/ � .d C 2/:

Roughly speaking, QC1 will be D.f .x1/; : : : ; f .xd //, QC2 is Df .x1/, and QC3 and
QC4 will ensure that for min-homogeneous sets either f .x1/ D � � � D f .xd / or

f .x1/ < � � � < f .xd / in the manner similar to what we have seen for adjacent
Ramsey and Paris–Harrington. We define f -regressive C to be one of the first two
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coordinates or zero, where the choice is dependent on and coded by the value of the
last coordinate. We emphasize again that the lower-bound estimates for KMd

i directly
influence the functions f for which this construction is useful.

We take f D
cC1

q
logd�2 and

QC .x/ D
�
D

�
f .x1/; : : : ; f .xd /

�
; Df .x1/.x/; i; j

�
;

where i is the biggest such that f .x1/ D � � � D f .xi / and j is the biggest such that
f .x1/ < � � � < f .xj / (if i > 1, then j D 1, and if j > 1, then i D 1). Note that QC1

is not everywhere defined; take it to be zero if it is undefined (same for QC2).
If H of size at least d C 2 is min-homogeneous for QC3, then the value of this

coordinate is 1 or d C 1. Suppose not. Let x1 < � � � < xdC1 be the first d C 1

elements of H ; then

i D QC3.x1; x3; : : : ; xdC1/ D QC3.x1; x2; : : : ; xd / C 1 D i C 1;

which is a contradiction.
If H is min-homogeneous for QC4, then it must, by a similar argument, have values

1, 2, or d C 1. Let x1 < � � � < xdC1 be the first d C 1 elements of H , and suppose
that QC4.x1; : : : ; xd / D 2. Then f .x2/ D f .x3/; hence, QC4.x2; x3; : : : ; xd / D 1. In
other words, in this case QC4 has value 1 on H 0 D H � min H .

Hence either f .x/ < f .y/ for all x < y 2 H 0 or f .x/ D f .y/ for all
x < y 2 H 0. So H 0 is min-homogeneous for D in the first case or min-homogeneous
for Dmin H 0 in the latter case.

Encode the last two coordinates into a single coloring EW ŒR�d ! .d C 1/2 such
that the first of those two cases is encoded in value 0, the latter in 1. We take

C.x/ D

8̂<̂
:

.d C 1/2 C 2 � QC1.x/ C 1 if E.x/ D 0

.d C 1/2 C 2 � QC2.x/ C 2 if E.x/ D 1

E.x/ otherwise:

Suppose that H of size greater than d C 2 is min-homogeneous for C ; it then must
have value greater than .d C1/2 C1. Hence H 0 D H �min H is min-homogeneous
for either D or Df .min H 0/. In the latter case, it has size strictly less than ad � .mC1/.
Hence if we have a min-homogeneous set for C of size ad � .m C 1/ C 1, we obtain
a min-homogeneous set for D of size m.

This coloring is c

q
logd�2-regressive because

.d C 1/2
C 2 C 2 �

cC1

q
logd�2.x1/ <

c

q
logd�2.x1/

is ensured by limiting the domain of C to numbers larger than 2d�2..ad �m/cm/.

2.4 Sharpening In this section we prove the unprovability parts of (5) and (6) of The-
orems 1.14, 1.15, and 1.16. For applying the sharpening lemmas it is of use to note
that if we combine Section 2 with lower-bounds estimates from [7, Theorems 4–6]
and model constructions from [9, Theorem 4.4], we have the following.

Theorem 2.8 Fix d . There exist primitive recursive functions h1; h2; h3; h4; h5

such that:
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1. M1;l�1
c

.n; c; x/ � H!dC1.n/.x/ for

M1;f .n; c; x/ D ARdC1
f

�
h1.n; c; x/

�
and lc.i/ D 2d .ic/I

2. M2;l�1
c

.n; c; x/ � H!dC1.n/.x/ for

M2;f .n; c; x/ D PHdC2
f

�
h2.d; n; c; x/; h3.d; n; c; x/

�
and

lc.i/ D 2dC1

�
i � .c/

�
I

3. in every nonstandard model N of I†1 with n 2 N and nonstandard c; x 2 N

there exists a model of I†d below M3;l�1
c

.n; c; x/ for

M3;f .n; c; x/ D KMdC2
f

�
h4.d; n; c; x/; h5.d; n; c; x/

�
and

lc.i/ D 2d .ic/:

Lemma 2.9 (Proof-theoretic lower-bounds sharpening) Suppose that T is a the-
ory that includes I†1, that Mf is computable for every computable f , and that we
have the following.

1. .i; c/ ! lc.i/ is nondecreasing and provably total in T .
2. f .i/ � g.i/ for all i � Mg.n; c; x/ implies Mf .n; c; x/ � Mg.n; c; x/.
3. Every provably total function of T can be eventually dominated by Hn for

some n and H.i/ D Hi .i/.
4. Ml�1

c
.n; c; i/ � Hn.i/ for every n;

then:
T ° 8n; c; x9yMh.n; c; x/ D y;

where h.i/ D l�1
H �1.i/

.i/.

Proof We show that
M D Mh.x; x; x/ � H.x/:

Suppose, for a contradiction, that
M < H.x/I

then H �1.i/ � x for all i � M ; hence h.i/ � l�1
x .i/ for all i � M . Therefore,

M � Ml�1
x

.x; x; x/

� Hx.x/ D H.x/;

which contradicts our assumption.

Corollary 2.10 We have the following:

1. PA ° ARf , where f .i/ D logH �1
"0

.i/
.i/;

2. I†dC1 ° ARdC1
f

, where f .i/ D
H�1

!dC2
.i/

q
logd .i/;

3. PA ° PHf , where f .i/ D logH �1
"0

.i/
.i/;

4. I†dC1 ° PHdC2
f

, where f .i/ D
logdC1.i/

H �1
!dC2

.i/
.

Lemma 2.11 (Model-theoretic lower-bounds sharpening) Suppose that T is a the-
ory that includes I†1, that Mf is computable for every computable f , and that we
have the following.

1. .i; c/ ! lc.i/ is nondecreasing and provably total in T .
2. f .i/ � g.i/ for all i � Mg.n; c; x/ implies Mf .n; c; x/ � Mg.n; c; x/.
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3. H eventually dominates every provably total function of T .
4. In every nonstandard model N of I†1 and for every c 2 N and nonstandard

n; x; Ml�1
c

.n; c; x/ 2 N there exists an initial segment I < Ml�1
c

.n; c; x/

which models T ;
then:

T ° 8n; c; x9yMh.n; c; x/ D y;

where h.i/ D l�1
H �1.i/

.i/.

Proof Fix a nonstandard model N ˆ I†1 C 8x9yMh.x; x; x/ D y. If
Mh.x; x; x/ � H.x/ for infinitely many standard x, we are finished, so suppose that
for all but finitely many standard x we have

Mh.x; x; x/ < H.x/:

For these x we know that h.i/ � l�1
x .i/ for all i � Mh.x; x; x/; by overflow there

exists a nonstandard x with these properties, so there exists a nonstandard instance
of Ml�1

x
.x; x; x/. Hence there exists an initial segment which models T .

Corollary 2.12 We have the following:

1. PA ° KMf , where f .i/ D logH �1
"0

.i/
.i/;

2. I†dC1 ° KMdC2
f

, where f .i/ D
H�1

!dC2
.i/

q
logd .i/.

3 Upper Bounds

In this section we show items (3) and (4) and the provability parts of items (5) and
(6) of Theorems 1.14, 1.15, and 1.16.

Lemma 3.1 (Upper-bounds lemma) Suppose that T is a theory that contains
I†1, that Mf WN2 ! N is a computable function for all computable f , and that
Mf .d; x/ � Mg.d; x/ whenever f .i/ � g.i/ for all i � Mg.d; x/. Additionally,
suppose that there exist nondecreasing, provably total, functions u, h such that, for
every d; n and k � h.d; n/, we have

Mk.d; n/ � u.k/I

then
T ` 8d; x9ŠyMu�1.d; x/ D y:

Proof If i � u.h.d; x//, then u�1.i/ � h.d; x/. Hence
Mu�1.d; x/ � Mh.d;x/.d; x/ � u

�
h.d; x/

�
:

Corollary 3.2 If ' is one of AR, PH, KM, then
I†1 ` 'log� :

Proof First note that
ARd

k .r/ � R.d; d C 1; kd /;

PHd
k .m; r/ � R.d; k; r/ C m;

KMd
k .a; m/ � R.d; m; k/ C a;

where R.d; m; r/ are the Ramsey numbers for dimension d , size m, and r colors.
We know that R.d; m; k/ � 2k.2/ for k > 2d .m/ by the Erdős–Rado bounds from
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[5]; hence, k 7! ARd
k .r/, k 7! PHd

k .m; r/, and k 7! KMd
k .a; m/ are also bounded

by the tower function.

Lemma 3.3 (Upper-bounds sharpening lemma) Let T; M be as in the upper
bounds lemma, and let lc be unbounded for every c. If .c; i/ 7! lc.i/ is a nonde-
creasing provably total function such that there exist provably total functions g1; g2

with g1.d/ � g2.d; x/ for all x and Mk.d; x/ � lg1.d/.k/ whenever k � g2.d; x/,
then

T ` 8d; x9ŠyMf .d; x/ D y;

where f .i/ D l�1
B�1.i/

.i/, and B is an arbitrary unbounded, nondecreasing, and
provably total function.
Proof Assume without loss of generality that B � id. If i � lg1.d/.B.g2.d; x///,
then

f .i/ � l�1
g2.d;x/

�
lg1.d/

�
B

�
g2.d; x/

���
� l�1

g2.d;x/

�
lg2.d;x/

�
B

�
g2.d; x/

���
:

Therefore
Mf .d; x/ � MB.g2.d;x//.d; x/ � lg1.d/

�
B

�
g2.d; x/

��
:

Corollary 3.4 We have I†dC1 ` ARdC1
f˛

whenever f˛.i/ D
H�1

˛ .i/

q
logd .i/ and

˛ < !dC2.

Proof Examine ARd
f with fixed d and its associated function ARd

f .r/. The r

will have the role of d when applying the upper-bounds sharpening lemma. By the
Erdős–Rado bounds on Ramsey numbers from [5],

ARdC1
k

.r/ � 2d .k.rC1//:

Hence, by sharpening, I†dC1 ` ARdC1
f˛

whenever f˛.i/ D
H�1

˛ .i/

q
logd .i/ and

˛ < !dC2.

Corollary 3.5 We have I†d ` PHdC1
f˛

whenever f˛.i/ D
logd .i/

H �1
˛ .i/

and ˛ < !dC1.

Proof Examine PHd
f with fixed d and its associated function PHd

f .m; r/. The r

will have the role of d when applying the upper-bounds sharpening lemma. By the
Erdős–Rado bounds on Ramsey numbers from [5], if k � r C m, then

PHd
k .m; r/ � 2d�1.rd2

� k/ C m � 2d�1

�
.rd2

C 1/ � k
�

D l
rd2

C1
.k/:

Hence, by sharpening, I†d ` PHdC1
f˛

whenever f˛.i/ D
logd .i/

H �1
˛ .i/

and ˛ < !dC1.

Corollary 3.6 We have I†dC1 ` KMdC2
f˛

whenever f˛.i/ D
H�1

˛ .i/

q
logd .i/ and

˛ < !dC2.

Proof Examine KMd
f with fixed d and its associated function KMd

f .a; m/. The
m will have the role of d when applying the upper-bounds sharpening lemma. We
use bounds from [11, Corollary 4.2.3]:

KMd
k .a; m/ � 2d�2.kd2�m/ C a � 2d�2.kd2�mC2/ D ld2�nC2.k/;

where the second inequality is true for k � .a C d 2 � m C 2/. Hence, by sharpening,

I†dC1 ` KMdC2
f˛

whenever f˛.i/ D
H�1

˛ .i/

q
logd .i/ and ˛ < !dC2.
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Corollary 3.7 Let ' be one of AR, PH, KM, and let f˛.i/ D logH �1
˛ .i/.i/. We

have
PA ` 'f˛

whenever ˛ < "0.

4 Some Observations on Transitions

In the phase transitions which have been examined so far, the same heuristics are used
to determine the threshold functions: as soon as the upper-bound lemmas cannot be
applied, because l is a lower bound, the resulting theorem is not provable for l�1. We
conjecture that phase transitions in unprovability always have the following shape.

Conjecture 4.1 (Lower bounds) Suppose that T is a theory that contains I†1,
that l is nondecreasing, and that Mf is a nondecreasing computable function for
every computable f with the following properties:

1. T ° 8x9yMid.x/ D y;
2. f .i/ � g.i/ for all i � Mg.x/ implies Mf .x/ � Mg.x/;
3. there exists x such that k 7! l.k/ is eventually strictly dominated by

k 7! Mk.x/;
then

T ° 8x9yMl�1.x/ D y:

This observed connection between lower- and upper-bound estimates for Mk and
the transition threshold leads to a difference between the threshold results for PHd

f

and ARd
f , KMd

f . In the first case, PHd
k is a statement which involves the size of

homogeneous sets being of size k, while in ARd
k and KMd

k the number of colors
is dependent on k. In the estimates for Ramsey numbers there is a difference in
the height in the exponential tower at which these two factors occur, leading to the
different thresholds.

For the sharpening of the transition results the two lower-bounds sharpening lem-
mas suffice. These lemmas are dependent on the method of proving independence of
'id. We conjecture that it is possible to generalize the following sharpening.

Conjecture 4.2 (Lower-bounds sharpening) Suppose that T is a theory that con-
tains I†1, that .c; i/ 7! lc.i/ is nondecreasing, and that Mf is a nondecreasing
computable function for every computable f with the following properties:

1. T ° 8x9yMl�1
c

.x/ D y for every c;
2. f .i/ � g.i/ for all i � Mg.x/ implies Mf .x/ � Mg.x/;
3. H eventually dominates every provably total function of T ;

then
T ° 8x9yMh.x/ D y;

where h.i/ D l�1
H �1.i/

.i/.

References

[1] Arai, T., “Introduction to proof theory,” lecture notes, http://kurt.scitec.kobe-u.ac.jp/
~arai/. 198

[2] Buchholz, W., “Beweistheorie,” lecture notes, http://www.mathematik.uni-muenchen
.de/~buchholz/. 198

http://kurt.scitec.kobe-u.ac.jp/~arai/
http://kurt.scitec.kobe-u.ac.jp/~arai/
http://www.mathematik.uni-muenchen.de/~buchholz/
http://www.mathematik.uni-muenchen.de/~buchholz/


Phase Transitions for Three Ramsey-Like Theorems 207

[3] Buss, S. R., ed., Handbook of Proof Theory, vol. 137 of Studies in Logic and the Founda-
tions of Mathematics, North-Holland, Amsterdam, 1998. Zbl 0898.03001. MR 1640324.
198

[4] Carlucci, L., G. Lee, and A. Weiermann, “Sharp thresholds for hypergraph regres-
sive Ramsey numbers,” Journal of Combinatorial Theory Series A, vol. 118 (2011),
pp. 558–85. Zbl 1251.05103. MR 2739504. DOI 10.1016/j.jcta.2010.08.004. 195, 198,
201

[5] Erdős, P., and R. Rado, “Combinatorial theorems on classifications of subsets of a given
set,” Proceedings of the London Mathematical Society (3), vol. 2 (1952), pp. 417–39.
MR 0065615. 205

[6] Friedman, H. M., “Adjacent Ramsey theory,” preprint, https://u.osu.edu
/friedman.8/foundational-adventures/downloadable-manuscripts. 196, 199

[7] Friedman, H. M., and F. Pelupessy, “Independence of Ramsey theorem variants using
"0,” preprint, http://cage.ugent.be/~pelupessy/ARPH.pdf. 196, 197, 202

[8] Graham, R. L., B. L. Rothschild, and J. H. Spencer, Ramsey Theory, 2nd ed., Wiley, New
York, 1990. MR 1044995. 200

[9] Kanamori, A., and K. McAloon, “On Gödel incompleteness and finite combina-
torics,” Annals of Pure and Applied Logic, vol. 33 (1987), pp. 23–41. MR 0870685.
DOI 10.1016/0168-0072(87)90074-1. 197, 202

[10] Ketonen, J., and R. Solovay, “Rapidly growing Ramsey functions,” Annals of
Mathematics (2), vol. 113 (1981), pp. 267–314. Zbl 0494.03027. MR 0607894.
DOI 10.2307/2006985. 197

[11] Lee, G., “Phase transitions in axiomatic thought,” Ph.D. dissertation, University of Mün-
ster, Münster, Germany, 2005. 198, 205

[12] Loebl, M., and J. Nešetřil, “An unprovable Ramsey-type theorem,” Proceedings of
the American Mathematical Society, vol. 116 (1992), pp. 819–24. MR 1095225.
DOI 10.2307/2159452. 197

[13] Paris, J., and L. Harrington, “A mathematical incompleteness in Peano arithmetic,”
pp. 1133–42 in Handbook for Mathematical Logic, edited by J. Barwise, vol. 90 of Stud-
ies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam, 1977.
197

[14] Pohlers, W., Proof Theory: An Introduction, vol. 1407 of Lecture Notes in Mathematics,
Springer, Berlin, 1989. MR 1026933. DOI 10.1007/978-3-540-46825-7. 198

[15] Weiermann, A., “A classification of rapidly growing Ramsey functions,” Proceedings
of the American Mathematical Society, vol. 132 (2004), pp. 553–61. Zbl 1041.03044.
MR 2022381. DOI 10.1090/S0002-9939-03-07086-2. 195, 198

[16] Weiermann, A., “Webpage on phase transitions,” preprint, http://cage.ugent.be/
~weierman//phase.html. 195

Mathematical Institute
Tohoku University
6-3, Aoba, Aramaki
Aoba-ku, Sendai 980-8578
Japan
pelupessy@cage.ugent.be
http://cage.ugent.be/~pelupessy/

http://www.emis.de/cgi-bin/MATH-item?0898.03001
http://www.ams.org/mathscinet-getitem?mr=1640324
http://www.emis.de/cgi-bin/MATH-item?1251.05103
http://www.ams.org/mathscinet-getitem?mr=2739504
http://dx.doi.org/10.1016/j.jcta.2010.08.004
http://www.ams.org/mathscinet-getitem?mr=0065615
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts
https://u.osu.edu/friedman.8/foundational-adventures/downloadable-manuscripts
http://cage.ugent.be/~pelupessy/ARPH.pdf
http://www.ams.org/mathscinet-getitem?mr=1044995
http://www.ams.org/mathscinet-getitem?mr=0870685
http://dx.doi.org/10.1016/0168-0072(87)90074-1
http://www.emis.de/cgi-bin/MATH-item?0494.03027
http://www.ams.org/mathscinet-getitem?mr=0607894
http://dx.doi.org/10.2307/2006985
http://www.ams.org/mathscinet-getitem?mr=1095225
http://dx.doi.org/10.2307/2159452
http://www.ams.org/mathscinet-getitem?mr=1026933
http://dx.doi.org/10.1007/978-3-540-46825-7
http://www.emis.de/cgi-bin/MATH-item?1041.03044
http://www.ams.org/mathscinet-getitem?mr=2022381
http://dx.doi.org/10.1090/S0002-9939-03-07086-2
http://cage.ugent.be/~weierman//phase.html
http://cage.ugent.be/~weierman//phase.html
mailto:pelupessy@cage.ugent.be
http://cage.ugent.be/~pelupessy/

	1 Three Ramsey-Like Theorems
	1.1 Adjacent Ramsey
	1.2 Paris–Harrington
	1.3 Kanamori–McAloon
	1.4 Phase transition results

	2 Lower Bounds
	2.1 Adjacent Ramsey
	2.2 Paris–Harrington
	2.3 Kanamori–McAloon
	2.4 Sharpening

	3 Upper Bounds
	4 Some Observations on Transitions
	References
	Author's addresses

