Translator Disclaimer
2011 Stable Ramsey's Theorem and Measure
Damir D. Dzhafarov
Notre Dame J. Formal Logic 52(1): 95-112 (2011). DOI: 10.1215/00294527-2010-039

Abstract

The stable Ramsey's theorem for pairs has been the subject of numerous investigations in mathematical logic. We introduce a weaker form of it by restricting from the class of all stable colorings to subclasses of it that are nonnull in a certain effective measure-theoretic sense. We show that the sets that can compute infinite homogeneous sets for nonnull many computable stable colorings and the sets that can compute infinite homogeneous sets for all computable stable colorings agree below $\emptyset'$ but not in general. We also answer the analogs of two well-known questions about the stable Ramsey's theorem by showing that our weaker principle does not imply COH or WKL0 in the context of reverse mathematics.

Citation

Download Citation

Damir D. Dzhafarov. "Stable Ramsey's Theorem and Measure." Notre Dame J. Formal Logic 52 (1) 95 - 112, 2011. https://doi.org/10.1215/00294527-2010-039

Information

Published: 2011
First available in Project Euclid: 13 December 2010

zbMATH: 1217.03019
MathSciNet: MR2747165
Digital Object Identifier: 10.1215/00294527-2010-039

Subjects:
Primary: 03D32, 03D80, 03F35, 05D10

Rights: Copyright © 2011 University of Notre Dame

JOURNAL ARTICLE
18 PAGES


SHARE
Vol.52 • No. 1 • 2011
Back to Top