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Stable Ramsey’s Theorem and Measure

Damir D. Dzhafarov

Abstract The stable Ramsey’s theorem for pairs has been the subject of nu-
merous investigations in mathematical logic. We introduce a weaker form of it
by restricting from the class of all stable colorings to subclasses of it that are
nonnull in a certain effective measure-theoretic sense. We show that the sets
that can compute infinite homogeneous sets for nonnull many computable sta-
ble colorings and the sets that can compute infinite homogeneous sets for all
computable stable colorings agree below ∅′ but not in general. We also answer
the analogs of two well-known questions about the stable Ramsey’s theorem by
showing that our weaker principle does not imply COH or WKL0 in the context
of reverse mathematics.

1 Introduction

The logical content of Ramsey’s theorem has been studied extensively from the point
of view of computability theory, beginning with the work of Jockusch [11]. Previ-
ous investigations, a partial survey of which can be found in [3], pp. 5–8, have been
primarily concerned with identifying which complexity classes do or do not contain
homogeneous sets for all computable colorings, thereby gauging the general diffi-
culty of finding solutions to instances of Ramsey’s theorem.

In this article, we concentrate on the stable form of Ramsey’s theorem, which
has played an important role in the study of Ramsey’s theorem proper. We restrict
our analysis from the class of all stable colorings to “large” or nonnull subclasses
of it, using a notion of nullity for 10

2 sets (see Section 2). A previous result in this
direction was obtained by Hirschfeldt and Terwijn [9, Theorem 3.1] and appears as
Theorem 2.5 below. The focus here is on classifying properties of homogeneous sets
of stable colorings not, as above, into those that are and are not universal, but into
those that are and are not typical.
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We begin by reviewing some of the terminology specific to the study of Ram-
sey’s theorem. We refer the reader to Soare [20] for general background material on
computability theory.

Definition 1.1 Let X be an infinite subset of ω and fix n, k ∈ ω.
1. [X ]

n denotes the set of all subsets of X of cardinality n.
2. A k-coloring of [X ]

n is a map f : [X ]
n

→ k, where k is identified with the
set of its predecessors, {0, . . . , k − 1}.

3. A set H ⊆ X is homogeneous for f provided f � [H ]
n is constant.

4. If X = ω and n = k = 2, we call f simply a coloring of pairs, and if, in
addition, lims f (x, s) exists for all x we call f a stable coloring.

Ramsey’s theorem for pairs, denoted RT2
2, asserts that every coloring of pairs has an

infinite homogeneous set, while the stable Ramsey’s theorem, denoted SRT2
2, makes

this assertion only for stable colorings. Restricting to computable colorings allows
for the study of the effective content of homogeneous sets. For stable colorings, this
reduces via the limit lemma to the study of infinite subsets and cosubsets (i.e., subsets
of complements) of 10

2 sets (for details, see [3], Lemma 3.5). In particular, every
computable stable coloring has an infinite homogeneous set of degree at most 0′, a
fact not true of computable colorings in general [11, Corollary 3.2].

A natural question then is whether this upper bound can be improved somehow.
With respect to the lown hierarchy, the following well-known results give a sharp
separation.

Theorem 1.2 (Cholak, Jockusch, and Slaman [3], Theorem 3.1) Every computable
coloring of pairs (not necessarily stable) has a low2 infinite homogeneous set.

Theorem 1.3 (Downey, Hirschfeldt, Lempp, and Solomon [4]) There exists a com-
putable stable coloring with no low infinite homogeneous set.

The next result gives instead an improvement over the original bound with respect to
the arithmetical hierarchy.

Theorem 1.4 (Hirschfeldt, Jockusch, Kjos-Hanssen, Lempp, and Slaman [8], Corollary
4.6) Every computable stable coloring has an infinite homogeneous set of degree
strictly below 0′.

The above-mentioned result of Hirschfeldt and Terwijn from [9] is a measure-
theoretic analysis of Theorem 1.3 and shows that this theorem is atypical in that
the collection of computable stable colorings that actually do have a low infinite
homogeneous set is not null in the sense of 10

2 nullity.
In this article, we similarly analyze Theorems 1.2 and 1.4. As both theorems are

positive, we turn our attention to uniformity. Mileti [16, Theorem 5.3.7 and Corollary
5.4.6] showed that neither of these theorems admits a uniform proof. In Section 3,
we extend one of his results by showing the following.

Theorem 1.5 For each d < 0′, the class of computable stable colorings having an
infinite homogeneous set of degree at most d is 10

2 null.

In Section 4, we prove the following theorem showing that uniformity results can dif-
fer between the class of all computable stable colorings and more general subclasses
of it that are not 10

2 null. The 10
3 bound also gives a partial result in the direction of

showing that < 0′ in the preceding theorem cannot be replaced by low2.
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Theorem 1.6 There is a degree d ≤ 0′′ such that the class of computable stable
colorings having an infinite homogeneous set of degree at most d is not 10

2 null but
is not equal to the class of all such colorings.

In Section 5, we introduce several combinatorial principles related to SRT2
2 from a

measure-theoretic viewpoint and study these in the context of reverse mathematics.
In particular, we introduce the principle ASRT2

2 which asserts that “nonnegligibly
many,” rather than all, computable stable colorings admit a homogeneous set and
show that it lies strictly in between SRT2

2 and the axiom DNR and that it does not
imply WKL0. For background on reverse mathematics, see Simpson [19].

2 10
2 Measure

Martin-Löf introduced the definition of 1-randomness as a constructive notion of
nullity. A stricter approach is that of Schnorr [17], which we now briefly recall.

Definition 2.1 A martingale is a function M : 2<ω
→ R≥0 that satisfies, for every

σ ∈ 2<ω, the averaging condition

2M(σ ) = M(σ0) + M(σ1). (2.1)

We say that M succeeds on a set A if lim supn→∞ M(A � n) = ∞, and we let the
success set of M , S[M], be the class of all sets on which M succeeds.

Unless otherwise noted, we shall assume that all our martingales are rational-valued,
so that it makes sense to speak of martingales being computable. A class C ⊆ 2ω

is said to be computably null if there is a computable martingale M which succeeds
on each A ∈ C, and Schnorr null if in fact there is a computable nondecreasing
unbounded function h with lim supn→∞

M(A�n)
h(n) = ∞ for every such A (i.e., the

martingale succeeds sufficiently fast). The motivation here comes from the following
classical result of Ville. The interested reader may wish to consult [22], Section 1.5,
for a thorough treatment of effective measure, and [6] for background on algorithmic
complexity.

Theorem 2.2 (Ville’s theorem) A class C ⊆ 2ω has Lebesgue measure 0 if and only
if there is martingale M such that C ⊆ S[M].

By relativizing computable nullity to ∅′, we thus obtain a notion of nullity for the
class of 10

2 sets.

Definition 2.3 A class C ⊆ 2ω is 10
2 null (or has 10

2 measure 0) if there exists a
10

2 martingale M such that C ⊆ S[M].

The study of this notion of nullity has been conducted principally by Terwijn [22; 23]
and by Terwijn and Hirschfeldt [9], though in more general contexts it goes back to
Schnorr (see [17], p. 55). It is a reasonable notion of nullity in that many of the basic
properties one would expect to hold, do.

Proposition 2.4 (Lutz, see [22], Section 1.5)

1. The class of all 10
2 sets is not 10

2 null.
2. For every 10

2 set A, {A} is 10
2 null.

3. If C0, C1, . . . is a sequence of subsets of 2ω and M0, M1, . . . a uniformly
10

2 sequence of martingales such that Ce ⊆ S[Me] for every e ∈ ω, then⋃
e∈ω Ce is 10

2 null.
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Additionally, Lutz and Terwijn (see [22], Theorem 6.2.1) have shown that for every
10

2 set A >T ∅, the upper cone {B : B ≥T A} is 10
2 null, thereby effectivizing the

corresponding classical result of Sacks for Lebesgue measure.
In view of the remarks following Definition 1.1, we can use 10

2 nullity as a rea-
sonable notion of “smallness” for computable stable colorings. It is easy to show
that the class of 10

2 sets having an infinite computable subset or cosubset is 10
2 null,

meaning that “most” stable colorings do not have a computable infinite homogene-
ous set (it is equally easy to extend this from computable to c.e. or even co-c.e.). The
following result is an instance where the measure-theoretic approach differs from the
classical computability-theoretic one.

Theorem 2.5 (Hirschfeldt and Terwijn [9], Theorem 3.1) The class of low sets is
not 10

2 null.

In fact, the proof of the above theorem gives the stronger result that the class of 10
2

sets not having an infinite low subset or cosubset is 10
2 null. It follows that “most”

computable stable colorings do not satisfy Theorem 1.3.
We will need a more uniform version of the above theorem, which we present

in the form of the proposition below, in our proof of Theorem 1.6 in Sec-
tion 4. It will rely on the following three facts. The first is the existence of
a universal oracle c.e. martingale, that is, of a real-valued martingale U such
that for all sets X , {x ∈ Q : x < U X (σ )} is X -c.e. uniformly in σ , and
S[U X

] = {B ∈ 2ω
: B not X -random} (see, e.g., [6], Corollary 5.3.5). By the proof

of Proposition 1.5.5 in [22], we can fix a u ∈ ω so that for all X , 8X ′

u is a rational-
valued martingale with S[8X ′

u ] ⊇ S[U X
]. The second, which we will use repeatedly

in the sequel, is van Lambalgen’s theorem (see [6], Theorem 5.9.1), which states that
a set is 1-random if and only if its odd and even halves are relatively 1-random. And
the third fact, due to Nies and Stephan (unpublished, see [5], Theorem 3.4), is the
following theorem. Recall that if {Cs}s∈ω is a computable approximation of a 10

2 set,
its modulus of convergence is the function m(x) = (µs)(∀t ≥ s)[Cs(x) = Ct (x)].
We write ϕX

e for the use of a computation 8X
e .

Theorem 2.6 (Nies and Stephan) Let C and B be sets such that C is 10
2 and B-

random (i.e., 1-random relative to B). If m is the modulus of convergence of a
computable approximation of C, then ϕB

x (x) ≤ m(x) for all large enough x such
that 8B

x (x) ↓. In particular, since m ≤T ∅′, B is GL1 (i.e., B ′
≤T B ⊕ ∅′).

Recall that a 10
2 index for a 10

2 set A (or, more generally, for a partial ∅′-computable
function f ) is an i ∈ ω such that A = 8∅′

i ( f = 8∅′

i ). A lowness index for a low
set L is a 10

2 index for L ′. We draw attention to our use of 8X
e,s(x) to indicate a

computation with oracle X run for s steps on input x , versus our use of 8X
e (x)[s]

to indicate the computation 8
Xs
e,s(x) under the assumption of a fixed computable

approximation (or enumeration) {Xs}s∈ω of X . In particular, determining whether
8X

e,s(x) converges is X -computable, while for 8
Xs
e,s(x) it is computable. We fix a

computable enumeration {∅′
s}s∈ω of ∅′.

Proposition 2.7 There exists a ∅′′-computable function f such that for every
e, i ∈ ω, if 8∅′

e is total and a martingale, and if i is a lowness index for some
set L, then there is a set B /∈ S[8∅′

e ] such that f (e, i) is a lowness index for L ⊕ B.
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Proof Fix e, i ∈ ω and let u ∈ ω be as described above. We define a partial ∅′-
computable function M : 2<ω

→ Q≥0. Given σ ∈ 2<ω, let σ̃ be either λ if σ = λ,
or σ(0)σ (2) · · · σ(2m) if σ has length 2m + 1 or 2m + 2 for some m ≥ 0. If there
exist q, r ∈ Q≥0 and τ ∈ 2<ω such that

1. 8∅′

e (̃σ ) ↓= q ,
2. 8∅′

i (x) ↓= τ(x) for all x < |τ | and 8τ
u(σ ) ↓= r,

then let M(σ ) =
1
2 (q + r), and otherwise let M(σ ) be undefined. It is not difficult

to see that M satisfies the averaging condition (2.1) where defined.
We next define {0, 1}-valued partial ∅′-computable functions A, B, and C as

follows. Given x , let

A(x) =


0 if M((A � x) 0) ↓ ≤ M(A � x) ↓

1 if M((A � x) 0) ↓ > M(A � x) ↓

↑ otherwise
.

Then let B(x) = A(2x) and C(x) = A(2x + 1) for all x , and let c be a 10
2 index

for C . Finally, define also mC (x) = (µs)(∀t ≥ s)[8∅′

c (x)[t] ↓= 8∅′

c (x)[s] ↓].

Notice that if 8∅′

e is a total martingale and 8∅′

i is (the characteristic function
of) the jump of some set L , then M is a 10

2 martingale whose success set includes
that of 8L ′

u , and A is a 10
2 set on which M does not succeed. We then also have

that A = B ⊕ C , and it is readily seen from the definition of M that B /∈ S[8∅′

e ].
Now because A /∈ S[M], A must be L-random, and so by van Lambalgen’s theorem
relative to L , C must be L ⊕ B-random. Moreover, mC is in this case the modulus of
convergence for the computable approximation {Cs}s∈ω of C defined by Cs(x) = i
if 8∅′

c (x)[s] ↓= i and Cs(x) = 0 otherwise. Hence, by Theorem 2.6 (with L ⊕ B in
place of B), there must be an n so that for all x ≥ n, whenever ϕL⊕B

x (x) is defined it
is bounded by mC (x).

Now to define f (e, i), choose j ∈ ω so that 8X ′

j = X for all sets X , and let h be
a computable function so that for all x ∈ ω, x ∈ X if and only if h(x) ∈ X ′. Using a
∅′′ oracle, we search for the first of the following to occur:

1. 8∅′

e is undefined or does not satisfy the averaging condition (2.1) on some
string,

2. 8∅′

i is undefined on some number,
3. there exist a σ ∈ 2<ω and an x < |σ | such that 8∅′

i (h(y)) ↓= σ(y) for
all y < |σ |, and either 8σ

x (x) ↓ and 8∅′

i (x) ↓= 0, or else 8τ
x (x) ↑ for all

τ ⊇ σ and 8∅′

i (x) ↓= 1,
4. there is an n ∈ ω so that for all σ, τ of the same length and all x ≥ n, if

(a) 8∅′

i (h(y)) ↓= σ(y) for all y < |σ |,
(b) B(y) ↓= τ(y) for all y < |τ |,
(c) 8σ⊕τ

x (x) ↓ and mC (x) ↓,
then ϕσ⊕τ

x (x) ≤ mC (x).
This search necessarily terminates, for if (1), (2), and (3) above do not obtain, then
we are precisely in the situation of the preceding paragraph, so (4) must obtain as
discussed there. If (1), (2), or (3) occur, let f (e, i) = 0. Otherwise, choose the least
n witnessing the occurrence of (4) and let f (e, i) be a 10

2 index, found according to
some fixed effective procedure, for the following function. On input x , the function
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waits for mC (x) to converge, then chooses the smallest y ≥ n such that 8X
x = 8X

y
for all sets X and searches for the first σ, τ of the same positive length so that (a)
and (b) in (4) above hold. It then outputs 1 or 0 depending as 8σ⊕τ

y (x) ↓ with use
bounded by mC (x) or not. �

3 Almost s-Ramsey Degrees

In [3], Sections 4 and 5, Cholak, Jockusch, and Slaman give two proofs of Theo-
rem 1.2 for the stable case, but neither of them is uniform over the stable colorings
(see the discussion at the beginning of Section 12.3 of [3]), and similarly in the case
of the proof of Theorem 1.4. To address whether such nonuniformities were essen-
tial, Mileti introduced the following class of degrees.

Definition 3.1 (Mileti [16], Definition 5.1.2) A Turing degree d is s-Ramsey if
every 10

2 set has an infinite subset or cosubset of degree at most d.

Obviously, an s-Ramsey degree can also be defined as one which bounds the degree
of a homogeneous set for every computable stable coloring. Thus, the following
results imply that Theorems 1.2 and 1.4 do not have uniform proofs.

Theorem 3.2 (Mileti [16], Theorem 5.3.7 and Corollary 5.4.6)

1. The only 10
2 s-Ramsey degree is 0′.

2. There is no low2 s-Ramsey degree.

With the definition of 10
2 nullity in hand, we can generalize s-Ramsey degrees by

passing from the class of all 10
2 sets to subclasses of it which are not 10

2 null.

Definition 3.3 A Turing degree d is almost s-Ramsey if the collection of 10
2 sets

with an infinite subset or cosubset of degree at most d is not 10
2 null.

We obtain the same class of degrees in the above definition whether we insist on
considering cosubsets or not. For if a martingale M succeeds on the class of all
10

2 sets having an infinite subset of degree at most d, then the martingale M + N ,
where N (σ ) = M((1 − σ(0))(1 − σ(1)) · · · (1 − σ(|σ | − 1))) for all σ , succeeds
on the class of all 10

2 sets having an infinite such subset or cosubset. This is in stark
contrast to Definition 3.1 even if we deal only with infinite, coinfinite 10

2 sets, as it
is easy to construct such a set so that all of its infinite subsets compute ∅′ (in fact,
for any infinite set A, if B is the set of all prefixes of A under some fixed computable
bijection of 2<ω with ω, then each infinite subset of B computes A).

The preceding definition was suggested by Hirschfeldt, who asked whether
Mileti’s results still hold if s-Ramsey degrees are replaced by the weaker almost
s-Ramsey degrees, and more generally, whether the two classes of degrees are the
same. Theorem 1.5, stated in Section 1 and restated in terms of almost s-Ramsey
degrees below, is an affirmative answer with regard to the analog of Theorem 3.2(1).
We discuss the other questions, and give a separation of s-Ramsey and almost
s-Ramsey degrees, in the next section.

Theorem 1.5 The only 10
2 almost s-Ramsey degree is 0′.

Proof Fix a set D <T ∅′. For each e ∈ ω, we construct uniformly in ∅′ a martin-
gale Me so as to satisfy the requirement

Re : (∃∞x)(∀y ≤ x)[8D
e (y) ↓∈ {0, 1} ∧ 8D

e (x) = 1] → (∀A ⊇ 8D
e )[A ∈ S[Me]].
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By Theorem 2.4(3)—letting Ce there be {A : A ⊇ 8D
e } if 8D

e is a characteristic
function and ∅ otherwise—this will ensure that the collection of sets containing an
infinite subset computable in D is 10

2 null, and hence, by the remarks following
Definition 3.3, that deg(D) is not almost s-Ramsey.

Fix a total increasing function f ≤T ∅′ not dominated by any function of degree
strictly below 0′. We define Me by stages, at stage s defining Me on all strings of
length t for a specific t ≥ s.

Stage s = 0 Let Me(λ) = 1.

Stage s + 1 Assume Me has been defined on all strings of length t for some t ≥ s.
Search ∅′-computably for a string τ ⊆ D and a number x ≥ t such that |τ |, x ≤ f (t)
and 8τ

e,|τ |
(x) ↓= 1. If the search succeeds, choose the least x for which it does so.

Then for each σ ∈ 2<ω of length t , and for all τ ⊃ σ with |τ | ≤ x + 1, define

Me(τ ) =


Me(σ ) if |τ | ≤ x
2Me(σ ) if |τ | = x + 1 ∧ τ(x) = 1
0 if |τ | = x + 1 ∧ τ(x) = 0

.

Otherwise, set Me(σ0) = Me(σ1) = Me(σ ) for all σ of length t .
It is clear that the construction succeeds in defining Me on all of 2<ω. To verify

that Re is met, suppose that 8D
e is the characteristic function of an infinite set. Then

the function

g(y) = (µs)(∃x ≥ y)(∀z < x)[8D
e,s(x) ↓= 1 ∧ (y ≤ z → 8D

e,s(z) ↓= 0)]

is total and computable in D, so by choice of f there must exist infinitely many y
such that g(y) ≤ f (y). Fix A ⊇ 8D

e and suppose that at the end of some stage
s′ of the construction, Me(A � t) for some t ≥ 0 is defined and positive, while
Me(A � t + 1) is not yet defined. Choose the least y ≥ t such that g(y) ≤ f (y). If
f is replaced by g in the search performed at each stage of the construction, then the
search always succeeds, so it must necessarily succeed at some stage s > s′. Fix the
least such s. Then by construction, at every stage between s′ and s, Me gets defined
only on the successors of the longest strings it was defined on at the previous stage,
and it is given the same value on these successors. In particular, at the beginning of
stage s, we have that Me is defined on A � t + (s − s′) − 1 at the start of stage s, and
Me(A � t + (s − s′) − 1) = Me(A � t). By choice of s, there exists a string τ ⊆ D
and a number x ≥ t + (s − s′) − 1 such that |τ |, x ≤ f (t) and 8τ

e,|τ |
(x) ↓= 1. Then

at stage s, Me gets defined on A � x + 1 with Me(A � y) = Me(A � t) for all y ≤ x
and, since A(x) = 8D

e (x) = 1, Me(A � x + 1) = 2Me(A � t). Since x + 1 > t , it
follows that lim supn Me(A � n) = ∞. �

We illustrate an application of the preceding theorem by briefly looking at the Much-
nik degrees of classes of infinite subsets and cosubsets of 10

2 sets. Recall that if A
and B are classes of sets, we say A is Muchnik (or weakly) reducible to B, and write
A ≤w B, if every element of B computes an element of A; if also B ≤w A, we write
A ≡w B. We refer the reader to Binns and Simpson [2], Section 1, for additional
background.

Definition 3.4 Given a 10
2 set A, let H(A) be the collection of all infinite sub-

sets or cosubsets of A, and for a class C of 10
2 sets let H(C) denote the structure

{H(A) : A ∈ C} under ≤w. Given a computable stable coloring f , let H( f ) be the
collection of all infinite homogeneous sets of f .
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Clearly, for each 10
2 set A there is a computable stable f with H(A) ≡w H( f ), and

conversely. Thus, we may use the two notions interchangeably here.

Proposition 3.5 H(10
2) is a lower semilattice.

Proof Given two stable colorings, f0 and f1, we define a third, f , such that
H( f ) ≡w H( f0) ∪ H( f1). For x, y ∈ ω, let f (2x, y) equal f0(x, z) for the least
z such that 2z ≥ y, and let f (2x + 1, y) equal f1(x, z) for the least z such that
2z + 1 ≥ y. It is easy to see that f is stable.

If H is an infinite homogeneous set for f0, respectively for f1, then the set
{2x : x ∈ H}, respectively {2x + 1 : x ∈ H}, is homogeneous for f , implying
that H( f ) ≤w H( f0) ∪ H( f1). Conversely, let H be any infinite homogeneous set
for f and let H0 = {x : 2x ∈ H} and H1 = {x : 2x + 1 ∈ H}. One of H0 and H1,
say Hi , must be infinite, and this set is clearly computable in H and homogeneous
for fi , implying that H( f0) ∪ H( f1) ≤w H( f ). �

Notice that if there were a largest element in H(10
2), it would have an infinite homo-

geneous set H <T ∅′ by Theorem 1.4. Then deg(H) would be an s-Ramsey degree
< 0′, contrary to part (1) of Theorem 3.2. This yields the following.

Corollary 3.6 (Mileti [16], Corollary 5.4.8) There is no largest element in H(10
2).

Using Theorem 1.5, we can now extend this result as follows.

Corollary 3.7 If C is a class of 10
2 sets that is not 10

2 null, then there is no largest
element in H(C).

For general interest, we remark that the algebraic properties of the structure H(10
2)

have not previously been studied. It can be shown, though we do not elaborate on
it here, that there are no maximal elements in it, and that for every finite collection
of elements in it there is an element incomparable with each of them (proofs will
appear in [7]). Beyond this, little is known; in particular, we do not know the answer
to the following question.

Question 3.8 Is H(10
2) elementarily equivalent to H(C) for every class C of 10

2
sets that is not 10

2 null?

4 An Almost s-Ramsey Degree That Is Not s-Ramsey

In this section, we give a proof of Theorem 1.6, restated equivalently below, thereby
showing that the s-Ramsey degrees are a proper subclass of the almost s-Ramsey
degrees. We do not know whether the analog of Theorem 3.2(2) holds for almost
s-Ramsey degrees, but as every low2 degree is 10

3, our result is a partial step toward
a negative answer.

Theorem 1.6 There is a 10
3 almost s-Ramsey degree that is not s-Ramsey.

Proof Fix a 10
2 set A with no low infinite subset or cosubset. Computably in ∅′′,

we construct a set D and infinite low sets L0, L1, . . . that satisfy, for every e ∈ ω
and i < 2, the requirements

Re : Le × {e} =
∗ D[e]

∧ (8∅′

e is a total martingale → Le /∈ S[8∅′

e ]),

Se,i : 8D
e is total, {0, 1}-valued and infinite → (∃x)[8D

e (x) = 1 ∧ A(x) = i].
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The first set of requirements ensures that {Le : e ∈ ω} is not 10
2 null and that

Le ≤T D for all e, and the second that no infinite subset or cosubset of A is com-
putable in D. Hence, deg(D) will be the desired degree.

We let D =
⋃

s Ds , where D0, D1, . . . are constructed in stages as follows. At
stage s, we define a finite set Ds , a function fs with domain ω, and for each e a
restraint re,s . We also declare each requirement either online or offline. Let h be a
computable function such that for all sets X and all x ∈ ω, x ∈ X if and only if
h(x) ∈ X ′.

Construction

Stage s = 0 Set D0 = ∅, and f0(e) = re,s = 0 for all e. Declare all requirements
Re and Se,i for e ∈ ω and i < 2 online.

Stage s + 1 Let Ds , fs , and r0,s, r1,s, . . . be given. Assume inductively that
cofinitely many requirements are still online, and that the value of fs is 0 on
cofinitely many arguments.

Case 1 s +1 ≡ 0 mod 3 or s +1 ≡ 1 mod 3. Suppose s +1 = 3〈e, j〉+ i , where
e, j ∈ ω and i < 2. If Se,i is online, ask whether there exists an x ∈ ω and a finite
set F such that

1. Ds ⊆ F ⊆ Ds ∪ {〈y, e′
〉 ≥ re,s : e′

≤ e → Re′ online},
2. 8F

e (x) ↓= 1 and A(x) = i ,
3. for e′

≤ e with Re′ online and all 〈y, e′
〉 ≤ max F ∪ {z : z ≤ ϕF

e (x)},
8∅′

fs (e′)(h(2y + 1)) ↓, and if 〈y, e′
〉 ∈ F − Ds then 8∅′

fs (e′)(h(2y + 1)) = 1.
4. for e′

≤ e with Re′ online and all 〈y, e′
〉 ≤ ϕF

e (x), if 〈y, e′
〉 /∈ F − Ds then

8∅′

fs (e′)(h(2y + 1)) = 0.

If so, we find the first such F and x in some fixed enumeration, set Ds+1 = F ,
let re′,s+1 = re′,s for e′ < e, and let re′,s+1 be the least number greater than
max{re′′,s : e ≤ e′′

≤ e′
} and ϕF

e (x) for e′
≥ e. We say that Se,i acts at stage s + 1,

declare it offline, and declare all Se′,i with e′ > e currently offline online again. Oth-
erwise, or if Se,i is already offline, we set Ds+1 = Ds and re′,s+1 = re′,s for all e′.
Either way, we let fs+1 = fs . Notice that the question of whether or not x and F in
Case 1 exist is 60,∅′

1 , and hence can be answered by ∅′′.

Case 2 s + 1 ≡ 2 mod 3. We begin by choosing the least e such that Re is
online and fs(e′) = 0 for all e′

≥ e, which must exist by inductive hypothesis. Set
re′,s+1 = re′,s for all e′. Fix e′

∈ ω and assume we have defined fs+1 on all e′′ < e′.
If e′ > e or if Re′ is offline, set fs+1(e′) = 0. Otherwise, let i be either a fixed
lowness index for ∅ if there is no e′′ < e′ such that Re′′ is online, or else fs+1(e′′)
for the greatest such e′′. Then let fs+1(e′) be the result of applying to e′ and i the
∅′′-computable function asserted to exist by Proposition 2.7.

To define Ds+1, begin by letting D[e′
]

s+1 = D[e′
]

s for all e′ such that at least one of
the following holds:

1. e′ > e,
2. Re′ is offline,
3. 8∅′

fs+1(e′) is not defined or not {0, 1}-valued on h(2x + 1) for some x ≤ s,

4. 8∅′

e′ is not defined or does not satisfy the averaging condition (2.1) on some
string of length ≤ s,
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For all e′ for which (4) obtains, declare Re′ offline, and declare all offline Se′′,i re-
quirements for e′′

≥ e′ online. For all e′ such that none of the above obtain, let
D[e′

]

s+1 = D[e′
]

s ∪ {〈x, e′
〉 > re′,s+1 : x ≤ s ∧ 8∅′

fs+1(e′)(h(2x + 1)) ↓= 1}.
In either case above only finitely many requirements are declared offline, and

fs+1 is defined to be positive on only finitely many elements. Thus, the induction
can continue.

End construction

The entire construction can be performed using a ∅′′ oracle, hence D ≤T ∅′′.
We now verify that all requirements are satisfied. To begin, note that each R re-
quirement can only switch from being online to being offline but not back, and each
Se,i requirement, once offline, can only become online again because some Re′ re-
quirement with e′

≤ e has become offline. In particular, each S requirement acts at
most finitely many times. Since for every e, re,s is a nondecreasing function in s that
increases only when some Se′,i with e′

≤ e acts, lims re,s exists.

Claim 4.1 For every e ∈ ω, f (e) = lims fs(e) exists. Moreover, if Re is perma-
nently online then f (e) is a lowness index, and if Re is not permanently online then
f (e) = 0 and D[e] is finite.

Proof Fix e ∈ ω and assume the claim holds for all e′ < e. Fix a stage s ≥ 0 such
that for all e′

≤ e and all i < 2,

1. if e′ < e then f (e′) ↓= ft (e′) for all t > s,
2. if Re′ is cofinitely often offline, then it is offline at all stages t ≥ s,
3. if Se′,i is cofinitely often offline, then it is offline at all stages t ≥ s.

First suppose Re is online at stage s, and hence permanently thereafter. Since 0 is not
a lowness index (we assume an enumeration of oracle machines, such as the stan-
dard one based on Gödel numberings, that makes this true), the inductive hypothesis
implies that at any stage t ≥ s that is congruent to 2 modulo 3, the number chosen
at the beginning of Case 2 of the construction is at least as big as e. Hence, we see
from the construction that the value of ft (e) at any stage t ≥ s depends only on e
and, if there is an Re′ with e′ < e which is online at stage s, on ft (e′) = f (e′) for
the largest such e′. Thus ft (e) has the same value for all t ≥ s, so f (e) = fs(e).

As Re is never declared offline, it must be that condition (4) in Case 2 of the
construction never occurs, and hence that 8∅′

e is a total martingale. Let L be either
∅ or, if there exists an e′ < e with Re′ permanently online, 8∅′

f (e′) for the greatest
such e′. Then it follows by construction and by Proposition 2.7 that f (e) is a lowness
index for L ⊕ B, where B is a set not in S[8∅′

e ]. In particular, f (e) is a lowness
index, as desired.

Now suppose Re is offline at stage s. Then ft (e) is defined to be 0 at all stages
t ≥ s, so f (e) = 0. Now no elements can be put into D[e]

t at any stage t > s
under Case 1 of the construction, because by condition (1) in that case this can only
be done because of the action of some requirement Se′,i with e′

≤ e, and all such
requirements have stopped acting by stage s. Moreover, no elements can be put into
D[e]

t under Case 2, because condition (2) in that case allows this only when Re is still
online. Hence, D[e]

t = D[e]
s for all t ≥ s, and so D[e] is finite. �
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Claim 4.2 For every e ∈ ω, requirement Re is satisfied via a set Le such that⊕
e′≤e Le′ is low.

Proof First suppose that 8∅′

e is a total martingale. Then condition (4) in Case 2 of
the construction never occurs and Re is online at all stages. Let L be as in the proof
of the preceding claim, and let Le be the set B from there, so that f (e) is a lowness
index for L ⊕ Le and Le /∈ S[8∅′

e ].
It then remains only to show that Le × {e} =

∗ D[e]. Let s be a stage as in the
proof of the preceding claim. Since no Se′,i requirement with e′

≤ e can act at any
stage t ≥ s, it follows by condition (3) in Case 1 of the construction, as well as the
fact that Le = {x : 8∅′

f (e)(h(2x + 1)) ↓= 1}, that any element put into D[e]
t for the

sake of an S requirement must belong to Le × {e}. For the same reason we must
have that re = re,t for any stage t ≥ s, and, as mentioned in the previous claim,
the number chosen at the beginning of Case 2 of the construction at any such stage t
cannot be smaller than e. Hence, at the end of every stage t ≥ s that is congruent to
2 modulo 3, all elements x in Le × {e} with re < x ≤ t are put into D[e]

t . It follows
that {x ∈ D[e]

: x > max D[e]
s } ⊆ Le × {e} and {x ∈ Le × {e} : x > re} ⊆ D[e],

which yields the desired result.
Next suppose that 8∅′

e is not a total martingale. Then at some stage, condition
(4) in Case 2 of the construction occurs and Re is declared offline. By the previous
claim, D[e] is finite, so if we let Le = ∅ then Le is low and requirement Re is met.

Finally, given e let e0 < e1 < · · · < en be a listing of all e′
≤ e such that Re′ is

online at stage s. Then
⊕

j≤n Le j is low, for f (e0) is a lowness index for ∅ ⊕ Le0 ,
f (e1) is a lowness index for (∅ ⊕ Le0) ⊕ Le1 , and so on. Hence

⊕
e′≤e Le′ is low

since Le′ = ∅ for all e′
6= e j for any j , and this completes the proof. �

Claim 4.3 For every e ∈ ω and i < 2, Se,i is satisfied.

Proof Fix e and i and assume inductively that the claim holds for all e′ < e. Fix
a stage s ≥ 0 congruent to i modulo 3 such that for all e′

≤ e, fs(e′) = f (e) and
D[e′

]
s = D[e′

] if Re′ is not permanently online, and for all e′ < e, re′,s = re and
no Se′,i requirement with e′ < e acts at or after stage s. Assume further that 8D

e is
total, {0, 1}-valued, and infinitely often takes the value 1, as otherwise Se,i is satisfied
trivially. Since Le′ × {e′

} =
∗ D[e′

] for all e′
≤ e, it follows by the previous claim

that
⋃

e′≤e D[e′
] is low, and since Ds is finite, also that

⋃
e′≤e D[e′

]
∪ Ds is low.

Now there must exist an x ∈ ω and a finite set F such that A(x) = i and such that
the following conditions hold:

1. Ds ⊆ F ⊆ Ds ∪ {〈y, e′
〉 ≥ re,s : e′

≤ e → Re′ online},

2. 8F
e (x) ↓= 1,

3. for all e′
≤ e, F [e′

]
⊆ D[e′

],

4. for all e′
≤ e, F [e′

] � ϕF
e (x)) = D[e′

] � ϕF
e (x).

Indeed, from our assumptions about 8D
e it follows that there exist arbitrarily large

numbers x and corresponding finite sets F satisfying (1)–(4) above, for example,
all sufficiently long initial segments of D. And we can clearly find such x and F
computably in

⋃
e′≤e D[e′

]
∪ Ds . Hence, if A(x) were equal to 1 − i for all such x ,
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then depending as i is 0 or 1,
⋃

e′≤e D[e′
]
∪ Ds could compute an infinite subset or

infinite cosubset of A, contradicting that A has no low infinite subset or cosubset.
By choice of s, it is easily seen that for all e′

≤ e, all elements in D[e′
]
− Ds

belong to Le′ × {e′
}. It follows that the question about an x ∈ ω and a finite set F

asked at stage s of the construction is precisely the question of whether there exist x
and F satisfying the conditions above, and as such must have an affirmative answer.
Hence Se,i acts, meaning that for some such x and F , Ds+1 = F and re′,t is greater
than ϕF

e (x) for all t > s and all e′
≥ e. No requirements can then ever put into Dt

any elements below ϕF
e (x) at any stage t > s, meaning that the 8F

e (x) computation
is preserved and so 8D

e (x) = 1. Consequently, requirement Se,i is satisfied. �

Question 4.4 Does there exist a low2 almost s-Ramsey degree?

5 Almost Stable Ramsey’s Theorem

The proof-theoretic strength of SRT2
2, as a principle of second-order arithmetic, was

first studied by Cholak, Jockusch, and Slaman [3, Sections 7 and 10]. One major
open problem is whether SRT2

2 implies WKL0 over RCA0 (see [3], p. 53), the closest
related result being by Hirschfeldt et al. [8, Theorem 2.4] that SRT2

2 implies the
weaker axiom DNR. (That WKL0 does not imply SRT2

2 is by [3, Theorems 11.1
and 11.4]; it can also be seen by Theorem 1.3 and the fact that WKL0 has a model
consisting entirely of low sets). Another question is whether SRT2

2 implies COH,
which is equivalent by Theorem 1.3 of [3] and the correction given in Section A.1
of [16] to the question of whether SRT2

2 implies RT2
2. For completeness, we recall

the definitions of DNR and COH.

Definition 5.1 The following definitions are made in RCA0.

1. COH is the statement that for every sequence 〈X i : i ∈ N〉 of sets, there is an
infinite set X such that for every i ∈ N, either X ⊆

∗ X i or X ⊆
∗ X i .

2. DNR is the statement that for every set X there exists a function f that is
DNRX , that is, such that for all e ∈ N, f (e) 6= 8X

e (e).

In this section, we study several principles inspired by our investigations above and
related to SRT2

2 by means of a formal notion of 10
2 nullity.

Definition 5.2 The following definitions are made in RCA0.

1. A martingale approximation is a function M : 2<N
× N → Q≥0 such that

lims M(σ, s) exists for every σ ∈ 2<N (i.e., M(σ, s) = M(σ, t) for all suffi-
ciently large s, t ∈ N), and for all s ∈ N,

2M(σ, s) = M(σ0, s) + M(σ1, s).

2. We say M succeeds on a stable coloring f : [N]
2

→ 2 if

(∀n)(∃σ)(∃s)(∀t ≥ s)(∀x < |σ |)[σ(x) =

f (x, t) ∧ M(σ, t) = M(σ, s) > n]. (5.1)

We can now state an “almost stable Ramsey’s theorem,” along with principles assert-
ing the existence of s-Ramsey and almost s-Ramsey degrees.
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Definition 5.3 The following definitions are made in RCA0.
1. ASRT2

2 is the statement that for every martingale approximation M , there is
a stable coloring f ≤T M on which M does not succeed and which has an
infinite homogeneous set.

2. SRAM is the statement that for every set X , there is a set Y as follows: every
stable coloring f ≤T X has an infinite homogeneous set H ≤T Y .

3. ASRAM is the statement that for every set X , there is a set Y as follows: for
every martingale approximation M ≤T X there is a stable coloring f ≤T X
on which M does not succeed and which has an infinite homogeneous set
H ≤T Y .

Notice that the class of 10
2 sets having an infinite subset or cosubset in a given ω-

model of ASRT2
2 is not 10

2 null.
We begin with the following formalization of Proposition 2.4(1). Recall that B50

1
is the collection of all statements of the form

∀n[(∀x < n)(∃y)ϕ(x, y) → (∃m)(∀x < n)(∃y < m)ϕ(x, y)],

where ϕ is a 50
1 formula (we do not know if its use below can be avoided).

Lemma 5.4 (RCA0 + B50
1) For every martingale approximation M, there is a

stable coloring f ≤T M on which M does not succeed.

Proof Let M be a martingale approximation, say with lims M(λ, s) = 1. Then by
Definition 5.2, if M(σ, s) ≤ 1 for some s, either M(σ0, s) ≤ 1 or M(σ1, s) ≤ 1.
Choose s0 so that M(λ, s) ≤ 1 for all s ≥ s0. For every x and s ≥ s0, a simple 60

0
induction then shows that there exists σ ∈ 2<N of length x + 1 such that

(∀y ≤ x + 1)[M(σ � y, s) ≤ 1] ∧ (∀y ≤ x)[σ(y) = 1 → M((σ � y) 0, s) > 1],

and that this string is unique. Define f : [N]
2

→ 2 by letting f (x, s) for x < s be 0
or σ(x) for the above σ depending as s < s0 or s ≥ s0. Clearly, f has a 60

0 definition
with M as parameter, so f ≤T M . We claim that f is stable and that M does not
succeed on it. Fix x in N and using B50

1 choose an s ≥ s0 with M(σ, t) = M(σ, s)
for all t ≥ s and σ ∈ 2<N of length ≤ x + 1. Then the σ used to define f (x, s) will
be same as that used to define f (x, t) for all t ≥ s. Hence, f (x, t) = σ(x) for all
t ≥ s, and as M(σ, t) ≤ 1 we have the negation of (5.1) holding with n = 1. �

Basic relations of implication and nonimplication between SRT2
2 and the principles

given in Definition 5.3 are established in the next proposition.

Proposition 5.5 Over RCA0,
1. ACA0 → SRAM → SRT2

2 → ASRT2
2 and SRAM → ASRAM → ASRT2

2,
2. SRAM does not imply ACA0, and SRT2

2 does not imply SRAM.

Proof Clearly, SRAM → SRT2
2 and ASRAM → ASRT2

2. As for the implications
SRT2

2 → ASRT2
2 and SRAM → ASRAM, these follow from the preceding lemma

and the fact that SRT2
2, and hence also SRAM, implies B50

1 ([3], comments after
Definition 6.4, and Lemma 10.6). That ACA0 → SRAM amounts to a formalization
of the fact that 0′ is an s-Ramsey degree, and is straightforward.

We now prove (2). By relativizing Corollary 5.1.7 of Mileti [16], we get that for
any set X �T ∅′ there is set Y ≥T X such that Y �T ∅′ and Y is s-Ramsey relative
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to X (i.e., computes an infinite homogeneous set for every X -computable stable col-
oring). Iterating, we thus obtain a sequence Y0 ≤T Y1 ≤T · · · such that Ye �T ∅′

and Ye+1 is s-Ramsey relative to Ye for every e. Then the ideal {S : (∃e)[S ≤T Ye]}

is clearly an ω-model of SRAM containing no set of degree 0′, and hence not a model
of ACA0. That SRT2

2 does not imply SRAM is because the former has an ω-model
consisting entirely of low2 sets by relativizing and iterating Theorem 1.2, whereas
the latter does not by Theorem 3.2(2). �

The next result establishes a certain degree of similarity between ASRT2
2 and SRT2

2.
In particular, we see that ASRT2

2 is not overly weak by comparison with at least
some of the principles studied in conjunction with SRT2

2. The proof resembles that
of Theorem 2.4 of [8] in that it uses the result that every effectively immune set
computes a DNR function (see [12], p. 199). Here we also need the fact, due to
Kučera, that every 1-random set is effectively bi-immune [15, Theorem 6].

Proposition 5.6 Over RCA0, ASRT2
2 implies DNR but is not implied by WKL0.

Proof For the implication, we give only an argument for ω-models, as it, and all
the results it employs, admit straightforward formalization in RCA0. So let M be
an ω-model of ASRT2

2 and fix X ∈ M. Fix u as in the proof of Proposition 2.7,
let M̃ = 8X ′

u , and let {M̃s}s∈ω be an X -computable approximation of M̃ , sped
up to ensure that 2M̃s(σ ) = M̃s(σ0) + M̃s(σ1) for all σ and s. If we define M
by M(σ, s) = M̃s(σ ) for all σ and s, then M ∈ M and is a martingale approxi-
mation, so there exists a stable X -computable coloring f ∈ M and an infinite set
H ∈ M such that M does not succeed on f and H is homogeneous for f . If we
let A = {x : lims f (x, s) = 1} then M̃ does not succeed on A, so A is X -random
and hence effectively bi-immune relative to X . Then H , being an infinite subset or
cosubset of A, is effectively immune relative to X and so computes a DNRX function
g ∈ M.

For the nonimplication, recall that for every incomplete 10
2 PA degree d there

exists an ω-model of WKL0 consisting only of sets of degree below d (this is easily
constructed using the fact that the PA degrees are dense; see Simpson [18], Theorem
6.5). Let M be any such model. By Theorem 1.5, d is not almost s-Ramsey, and so
there is a 10

2 martingale M̃ which succeeds on every 10
2 set containing an infinite

subset or cosubset of degree at most d. Let {M̃s}s∈ω be a (suitably sped up) com-
putable approximation to M̃ and define a martingale approximation M ∈ M from it
as above. Since all stable colorings in M that have an infinite homogeneous set in M
have one of degree below d, it follows that M succeeds on them all. Thus, M is not
a model of ASRT2

2. �

It follows that neither DNR nor COH imply ASRT2
2 either, the latter because COH

does not imply DNR by Theorem 3.7 of [8].
In view of the remarks made at the beginning of the section, it is natural to ask

whether ASRT2
2 implies WKL0 or COH (the preceding proposition makes the first of

these at least plausible). We conclude this section by giving negative answers to both
questions.

Proposition 5.7 Over RCA0, ASRT2
2 does not imply WKL0.
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Proof Let L be a given low 1-random set, and let e ∈ ω be given. If 8∅′

e is a
total martingale, let M , A, B and C be as in the proof of Proposition 2.7 with i a
lowness index for L . Then A = B ⊕ C , the set L ⊕ B is low, and B /∈ S[8∅′

e ].
Furthermore, A is not in S[M] and is therefore L-random, so, by van Lambalgen’s
theorem relative to L , B is L-random too. Since L is 1-random, another application
of van Lambalgen’s theorem yields that L ⊕ B is 1-random. By iterating, we can
thus obtain an increasing sequence of sets L0 ≤T L1 ≤T · · · such that each Le is
low, 1-random, and computes a set B /∈ S[8∅′

e ] when 8∅′

e is a total martingale.
We let M be the ideal {S : (∃e)[S ≤T Le]} and claim first of all that it is a model

of ASRT2
2. Indeed, suppose that M ∈ M is a martingale approximation. Then

M̃ : 2<ω
→ Q≥0 defined by M̃(σ ) = lims M(σ, s) for all σ is a 10,M

2 martin-
gale and hence a 10

2 martingale since every element in M is low. We can thus fix an
e so that M̃ = 8∅′

e . Then by construction, Le computes an infinite 10
2 set B /∈ S[M̃],

say with computable approximation {Bs}s∈ω. If we define f by f (x, s) = Bs(x) for
all x < s, then f is a computable stable coloring, and hence f ∈ M and f ≤T M .
Clearly, M does not succeed on f in the sense of Definition 5.2, but B computes an
infinite homogeneous set H for f , which, since H ≤T B ≤ Le, belongs to M.

Now recall that every ω-model of WKL0 contains a set of PA degree, and that the
class of these degrees is closed upward (for the former, consider, e.g., the 50

1 class
of all {0, 1}-valued DNR functions, and see [6], Theorem 1.22.2; for the latter, see
[6], Theorem 1.21.3). Also, every 1-random PA degree bounds 0′ by the main result
of Stephan [21]. So, as every element of M is Turing reducible to a low 1-random
set, it follows that M cannot be a model of WKL0. �

By Theorems 1.3 and 1.5, respectively, neither SRT2
2 nor ASRAM has an ω-model

consisting entirely of low sets. The same is true of COH because each of its ω-models
must contain a p-cohesive set (see [3], p. 27), and each p-cohesive set has jump of
degree strictly greater than 0′ by Theorem 2.1 of [10]. Hence, we immediately get
the following.

Corollary 5.8 Over RCA0, ASRT2
2 does not imply SRT2

2, ASRAM, or COH.

All the relations between the principles studied above are recapitulated in Figure 1
on page 110 (double arrows indicate implications whose reversals are not provable
in RCA0). We end by listing a few remaining questions concerning ASRAM and
ASRT2

2. Since SRT2
2 has an ω-model consisting entirely of low2 sets while SRAM

does not, one of the first two would likely be answered by a solution to Question 4.4.
The final question concerns the system WWKL0, introduced in Simpson and Yu [24].

Question 5.9 Over RCA0, does ASRAM imply SRAM? Does SRT2
2 imply ASRAM

or conversely? Does ASRT2
2 imply WWKL0?

WWKL0 follows from WKL0, and so cannot imply ASRT2
2 by Proposition 5.6. Since

the ω-models of WWKL0 are precisely those that for every set X in them contain also
an X -random [1, Lemma 1.3(2)], a negative solution to the last question may follow
from showing that the collection of 10

2 sets having an infinite subset or cosubset not
computing any 1-randoms is not 10

2 null. It is worth remarking that Kjos-Hanssen
[13] (see also [14], Theorem 7.4) has recently proved the noneffective version of this,
showing that almost every infinite subset of ω has an infinite subset not computing
any 1-randoms.
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