Open Access
Winter 2011 On the Cauchy problem for noneffectively hyperbolic operators: The Gevrey 4 well-posedness
Enrico Bernardi, Tatsuo Nishitani
Kyoto J. Math. 51(4): 767-810 (Winter 2011). DOI: 10.1215/21562261-1424857
Abstract

For a hyperbolic second-order differential operator P, we study the relations between the maximal Gevrey index for the strong Gevrey well-posedness and some algebraic and geometric properties of the principal symbol p. If the Hamilton map Fp of p (the linearization of the Hamilton field Hp along double characteristics) has nonzero real eigenvalues at every double characteristic (the so-called effectively hyperbolic case), then it is well known that the Cauchy problem for P is well posed in any Gevrey class 1s<+ for any lower-order term. In this paper we prove that if p is noneffectively hyperbolic and, moreover, such that KerFp2ImFp2{0} on a C double characteristic manifold Σ of codimension 3, assuming that there is no null bicharacteristic landing Σ tangentially, then the Cauchy problem for P is well posed in the Gevrey class 1s<4 for any lower-order term (strong Gevrey well-posedness with threshold 4), extending in particular via energy estimates a previous result of Hörmander in a model case.

References

1.

[1] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45–57. MR435933 10.1215/S0012-7094-77-04402-7 euclid.dmj/1077312091 [1] R. Beals, Characterization of pseudodifferential operators and applications, Duke Math. J. 44 (1977), 45–57. MR435933 10.1215/S0012-7094-77-04402-7 euclid.dmj/1077312091

2.

[2] E. Bernardi, A. Bove, and C. Parenti, Geometric results for a class of hyperbolic operators with double characteristics, II, J. Funct. Anal. 116 (1993), 62–82. MR1237986 0798.35093 10.1006/jfan.1993.1104[2] E. Bernardi, A. Bove, and C. Parenti, Geometric results for a class of hyperbolic operators with double characteristics, II, J. Funct. Anal. 116 (1993), 62–82. MR1237986 0798.35093 10.1006/jfan.1993.1104

3.

[3] E. Bernardi and T. Nishitani, On the Cauchy problem for non-effectively hyperbolic operators, the Gevrey 5 well-posedness, J. Anal. Math. 105 (2008), 197–240. MR2438425 1209.35009 10.1007/s11854-008-0035-3[3] E. Bernardi and T. Nishitani, On the Cauchy problem for non-effectively hyperbolic operators, the Gevrey 5 well-posedness, J. Anal. Math. 105 (2008), 197–240. MR2438425 1209.35009 10.1007/s11854-008-0035-3

4.

[4] M. D. Bronšteĭn, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity (in Russian), Trudy Moscov. Mat. Obshch. 41 (1980), 83–99. MR611140 0468.35062[4] M. D. Bronšteĭn, The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity (in Russian), Trudy Moscov. Mat. Obshch. 41 (1980), 83–99. MR611140 0468.35062

5.

[5] J. J. Duistermaat, Fourier Integral Operators, reprint of the 1996 original, Birkhäuser/Springer, New York, 2011. MR1362544[5] J. J. Duistermaat, Fourier Integral Operators, reprint of the 1996 original, Birkhäuser/Springer, New York, 2011. MR1362544

6.

[6] L. Hörmander, The Cauchy problem for differential equations with double characteristics, J. Anal. Math. 32 (1977), 118–196. MR492751 0367.35054 10.1007/BF02803578[6] L. Hörmander, The Cauchy problem for differential equations with double characteristics, J. Anal. Math. 32 (1977), 118–196. MR492751 0367.35054 10.1007/BF02803578

7.

[7] L. Hörmander, “Quadratic hyperbolic operators” in Microlocal Analysis and Applications (Montecatini Terme, Italy, 1989), Lecture Notes in Math. 1495, Springer, Berlin, 1991, 118–160. MR1178557[7] L. Hörmander, “Quadratic hyperbolic operators” in Microlocal Analysis and Applications (Montecatini Terme, Italy, 1989), Lecture Notes in Math. 1495, Springer, Berlin, 1991, 118–160. MR1178557

8.

[8] L. Hörmander, The Analysis of Linear Partial Differential Operators, III, reprint of the 1994 ed., Classics Math., Springer, Berlin, 2007.[8] L. Hörmander, The Analysis of Linear Partial Differential Operators, III, reprint of the 1994 ed., Classics Math., Springer, Berlin, 2007.

9.

[9] V. Ja. Ivrii, Correctness of the Cauchy problem in Gevrey classes for non-strictly hyperbolic operators, Math. USSR Sbornik 25 (1975), 365–387.[9] V. Ja. Ivrii, Correctness of the Cauchy problem in Gevrey classes for non-strictly hyperbolic operators, Math. USSR Sbornik 25 (1975), 365–387.

10.

[10] V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the correctness of the Cauchy problem for non-strictly hyperbolic equations (in Russian), Uspehi Mat. Nauk. 29 (1974), no. 5, 3–70. MR427843[10] V. Ja. Ivrii and V. M. Petkov, Necessary conditions for the correctness of the Cauchy problem for non-strictly hyperbolic equations (in Russian), Uspehi Mat. Nauk. 29 (1974), no. 5, 3–70. MR427843

11.

[11] K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem, Lecture Notes in Math. 1505, Springer, Berlin, 1991. MR1166190[11] K. Kajitani and T. Nishitani, The Hyperbolic Cauchy Problem, Lecture Notes in Math. 1505, Springer, Berlin, 1991. MR1166190

12.

[12] H. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, Mass., 1982.[12] H. Kumano-go, Pseudo-Differential Operators, MIT Press, Cambridge, Mass., 1982.

13.

[13] T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, J. Math. Kyoto Univ. 24 (1984), 623–658; II, 659–666. MR775976 euclid.kjm/1250521222 [13] T. Nishitani, Local energy integrals for effectively hyperbolic operators, I, J. Math. Kyoto Univ. 24 (1984), 623–658; II, 659–666. MR775976 euclid.kjm/1250521222

14.

[14] T. Nishitani, “Microlocal energy estimates for hyperbolic operators with double characteristics” in Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), Academic Press, Boston, 1986, 235–255. MR925251[14] T. Nishitani, “Microlocal energy estimates for hyperbolic operators with double characteristics” in Hyperbolic Equations and Related Topics (Katata/Kyoto, 1984), Academic Press, Boston, 1986, 235–255. MR925251

15.

[15] T. Nishitani, Non effectively hyperbolic operators, Hamilton map and bicharacteristics, J. Math. Kyoto Univ. 44 (2004), 55–98. MR2062708 1069.35037 euclid.kjm/1250283583 [15] T. Nishitani, Non effectively hyperbolic operators, Hamilton map and bicharacteristics, J. Math. Kyoto Univ. 44 (2004), 55–98. MR2062708 1069.35037 euclid.kjm/1250283583

16.

[16] T. Nishitani, “On Gevrey well-posedness of the Cauchy problem for some noneffectively hyperbolic operators” in Advances in Phase Space Analysis of Partial Differential Equations: In Honor of Ferruccio Colombini’s 60th Birthday, Nonlinear Differential Equations Appl. 78, Birkhäuser, Boston, 2009, 217–233. MR2664613 1203.35159 10.1007/978-0-8176-4861-9_13[16] T. Nishitani, “On Gevrey well-posedness of the Cauchy problem for some noneffectively hyperbolic operators” in Advances in Phase Space Analysis of Partial Differential Equations: In Honor of Ferruccio Colombini’s 60th Birthday, Nonlinear Differential Equations Appl. 78, Birkhäuser, Boston, 2009, 217–233. MR2664613 1203.35159 10.1007/978-0-8176-4861-9_13

17.

[17] T. Nishitani and M. Tamura, A class of Fourier integral operators with complex phase related to the Gevrey classes, J. Pseudo-Differ. Oper. Appl. 1 (2010), 255–292. MR2679894 1204.35183 10.1007/s11868-010-0014-1[17] T. Nishitani and M. Tamura, A class of Fourier integral operators with complex phase related to the Gevrey classes, J. Pseudo-Differ. Oper. Appl. 1 (2010), 255–292. MR2679894 1204.35183 10.1007/s11868-010-0014-1
Copyright © 2011 Kyoto University
Enrico Bernardi and Tatsuo Nishitani "On the Cauchy problem for noneffectively hyperbolic operators: The Gevrey 4 well-posedness," Kyoto Journal of Mathematics 51(4), 767-810, (Winter 2011). https://doi.org/10.1215/21562261-1424857
Published: Winter 2011
Vol.51 • No. 4 • Winter 2011
Back to Top