Open Access
January, 2017 Joint universality for Lerch zeta-functions
Yoonbok LEE, Takashi NAKAMURA, Łukasz PAŃKOWSKI
J. Math. Soc. Japan 69(1): 153-161 (January, 2017). DOI: 10.2969/jmsj/06910153


For $0$ < $\alpha,$ $\lambda \leq 1$, the Lerch zeta-function is defined by $L(s;\alpha, \lambda) := \sum_{n=0}^\infty e^{2\pi i\lambda n} (n+\alpha)^{-s}$, where $\sigma$ > $1$. In this paper, we prove joint universality for Lerch zeta-functions with distinct $\lambda_1,\ldots,\lambda_m$ and transcendental $\alpha$.


Download Citation

Yoonbok LEE. Takashi NAKAMURA. Łukasz PAŃKOWSKI. "Joint universality for Lerch zeta-functions." J. Math. Soc. Japan 69 (1) 153 - 161, January, 2017.


Published: January, 2017
First available in Project Euclid: 18 January 2017

zbMATH: 1383.11110
MathSciNet: MR3597551
Digital Object Identifier: 10.2969/jmsj/06910153

Primary: 11M35

Keywords: Joint Universality , Lerch zeta-functions

Rights: Copyright © 2017 Mathematical Society of Japan

Vol.69 • No. 1 • January, 2017
Back to Top