
c©2017 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 69, No. 1 (2017) pp. 153–161
doi: 10.2969/jmsj/06910153

Joint universality for Lerch zeta-functions

By Yoonbok Lee, Takashi Nakamura and �Lukasz Pańkowski
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Abstract. For 0 < α, λ ≤ 1, the Lerch zeta-function is defined by
L(s;α, λ):=

∑∞
n=0 e

2πiλn(n + α)−s, where σ > 1. In this paper, we prove
joint universality for Lerch zeta-functions with distinct λ1, . . . , λm and tran-
scendental α.

1. Introduction and statement of main result.

For 0 < α, λ ≤ 1, we define the Lerch zeta-function by

L(s;α, λ) :=

∞∑
n=0

e(λn)

(n + α)s
, σ > 1,

where e(t) = exp(2πit). When λ = 1, the function L(s;α, λ) reduces to the Hurwitz

zeta-function ζ(s, a). If λ �= 1, the Lerch zeta-function L(s;α, λ) is analytically continu-

able to an entire function. However, the Hurwitz zeta-function ζ(s, a) is extended to a

meromorphic function, which has a simple pole at s = 1.

In this paper, we show the following joint universality theorem expected by Mishou

[6, Conjecture 1]. In order to state it, put D := {s ∈ C : 1/2 < Re s < 1} and let

meas{A} be the Lebesgue measure on R of the set A.

Theorem 1. Suppose that L(s;α, λ1), . . . , L(s;α, λm) are Lerch zeta-functions

with distinct λ1, . . . , λm and transcendental α. For 1 ≤ j ≤ m, let Kj ⊂ D be compact

sets with connected complements and fj(s) be continuous function on Kj and analytic in

the interior of Kj. Then, for every ε > 0, we have

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤j≤m
max
s∈Kj

∣∣L(s + iτ ;α, λj) − fj(s)
∣∣ < ε

}
> 0.

Roughly speaking, this theorem implies that any analytic functions can be simulta-

neously and uniformly approximated by Lerch zeta-functions with distinct λ1, . . . , λm.

The proof will be written in Sections 2 and 3. We skip the detail of the proofs of re-

sults appeared in Section 2 since they do not contain essentially new ideas. In Section

3, we prove the denseness lemma using an orthogonality of Dirichlet coefficients of the

zeta-functions. The main idea of our proof was recently observed in [5] by the authors.

However, in the present paper we adopt this approach to completely different kind of

zeta-functions without Euler product. It proves the conjecture on joint universality for
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Lerch zeta-functions put forward by Mishou in [6] and shows that this idea can be ap-

plicable to many collections of zeta and L-functions, which independence relies on some

orthogonality property of their coefficients.

Now we look back in the history of the joint universality for Lerch zeta-functions.

Laurinčikas showed Theorem 1 with m = 1 in [2, Theorem] (see also [3, Theorem 6.1.1]).

Laurinčikas and Matsumoto proved Theorem 1 with the condition that λj = kj/lj are

distinct rational numbers satisfying (kj , lj) = 1 and 0 < kj ≤ lj in [4, Theorem 1] (see

also [3, Theorem 6.3.1] or [6, Theorem 2]). In [7, Theorem 17], Nakamura obtained the

joint universality of the Lerch zeta-functions with λj = λ+kj/lj , where 0 < λ ≤ 1 and λj

are distinct in mod 1. The method in the both papers [4, Theorem 1] and [7, Theorem

17] are based on the observation that

e((λi − λj)n) = e

(
ki	j − kj	i

	i	j
n

)

is a (	i	j)-th root of unity for each i �= j and n ∈ Z so that

|e(λin) − e(λjn)| = |1 − e((λi − λj)n)| ≥ |1 − e(1/(	i	j))| > 0

or e(λin) = e(λjn). Recently, Mishou proved in [6, Theorem 4], the joint universality of

the Lerch zeta-functions for almost all real numbers λj , 1 ≤ j ≤ m such that 1, λ1, . . . , λm

are linearly independent over Q. His proof is based on some results of discrepancy

estimate from uniform distribution theory (see [6, Section 2]). Obviously, Theorem 1 of

the present paper is not only an improvement of Mishou’s result [6, Theorem 4] but also

the final answer to [6, Conjecture 1].

By using Theorem 1, we get the following corollaries. We omit their proofs since

they follow from the standard argument (see for example [3, Section 7.2]).

Corollary 2. Let α ∈ (0, 1] be transcendental and λ1, . . . , λm ∈ (0, 1] be distinct

real numbers. For N ∈ N and 1/2 < σ < 1, define the mapping h : R → CmN by the

formula

h(t) :=
(
L(σ + iτ ;α, λ1), L′(σ + iτ ;α, λ1), . . . , L(N−1)(σ + iτ ;α, λ1),

, . . . , L(σ + iτ ;α, λm), L′(σ + iτ ;α, λm), . . . , L(N−1)(σ + iτ ;α, λm)
)
.

Then the image of R is dense in CmN .

Corollary 3. Let α ∈ (0, 1] be transcendental and λ1, . . . , λm ∈ (0, 1] be distinct

real numbers. Suppose N ∈ N and Fl, 0 ≤ l ≤ k are continuous functions on CmN and

satisfy

k∑
l=0

slFl

(
L(s;α, λ1), L′(s;α, λ1), . . . , L(N−1)(s;α, λ1),

, . . . , L(s;α, λm), L′(s;α, λm), . . . , L(N−1)(s;α, λm)
) ≡ 0.

Then we have Fl ≡ 0 for 0 ≤ l ≤ k.
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2. Proof of Theorem 1.

Recall that D := {s ∈ C : 1/2 < Re s < 1} and denote by H(D) the space of

analytic function on D equipped with the topology of uniform convergence on compacta.

Let B(X) stand for the class of Borel sets of the space X. Define γ as the unit circle on

C, and let Ω :=
∏∞

n=0 γn, where γn = γ for all n ∈ N0. Denoting by mH the probability

Haar measure on (Ω,B(Ω)), we obtain a probability space (Ω,B(Ω),mH). For σ > 1,

we define

L(s;α, λ;ω) :=
∞∑

n=0

e(λn)ω(n)

(n + α)s
, ω(n) ∈ γ.

Note that for almost all ω ∈ Ω the series above converges uniformly on compact subsets

of D (see for instance [3, Lemma 5.2.1]).

Let H(D)m := H(D) × · · · × H(D). We define a probability measure PT on

(H(D)m,B(H(D)m)) by

PT (A) :=
1

T
meas

{
τ ∈ [0, T ] :

(
L(s + iτ ;α, λ1), . . . , L(s + iτ ;α, λm)

) ∈ A
}
,

where A ∈ B(H(D)m). Next define the H(D)m-valued random element L(s;ω) by

L(s;ω) :=
(
L(s;α, λ1;ω), . . . , L(s;α, λm;ω)

)
.

Denote by PL the distribution of the random element L(s;ω), namely,

PL(A) := mH

{
ω ∈ Ω : L(s;ω) ∈ A

}
, A ∈ B(H(D)m).

Then we have the following limit theorem proved by Matsumoto and Laurinčikas [4] (see

also [3, Theorem 5.3.1] or [6, Section 5]).

Proposition 4 ([4, Lemma 1]). Let 0 < α < 1 be transcendental. Then the

probability measure PT converges weakly to PL as T → ∞.

The proof of the next lemma shall be written in Section 3 since it contains the most

novel part of the present paper.

Lemma 5. The set {L(s;ω) : ω ∈ Ω} is dense in H(D)m.

Recall that the minimal closed set SP ⊂ X such that P(SP) = 1 is called the

support of a probability space (X,B(X),P). The set SP consists of all x ∈ S such that

for every neighborhood V of x the inequality P(V ) > 0 is satisfied. From Lemma 5

and [3, Lemma 6.1.3] or [9, Lemma 12.7], the support of the probability measure PL is

H(D)m. First assume that h1(s), . . . , hm(s) ∈ H(D) are polynomials. Let Kj be the

same as in Theorem 1 and Φ be the set of functions ϕ ∈ H(D)m which satisfy

max
1≤j≤m

max
s∈Kj

∣∣ϕj(s) − hj(s)
∣∣ < ε.
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From Proposition 4, the definition of support, Portmanteau theorem (see for instance

[9, Theorem 3.1]) and the fact that the support of PL is H(D)m, we have

lim inf
T→∞

PT (Φ) ≥ PL(Φ) > 0.

Therefore, we obtain

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : max

1≤j≤m
max
s∈Kj

∣∣L(s + iτ ;α, λj) − hj(s)
∣∣ < ε

}
> 0.

Hence it suffices to show that polynomials hj(s) can be replaced by fj(s) appeared in

Theorem 1. It is possible by Mergelyan’s theorem which implies that any function f(s)

which is continuous on K and analytic in the interior of K, where K is a compact subset

with connected complement, is uniformly approximative on K by polynomials. Hence

we omit the details since this is easily done by the well-known method (see for example

[3, p. 129] or [6, p. 1125]).

3. Proof of Lemma 5.

Let U be a simply connected smooth Jordan domain such that U ⊂ D. Let B2(U) be

the Bergman space of all holomorphic square integrable complex functions with respect

to the Lebesgue measure on U with the inner product

〈f, g〉 =

∫∫
U

f(s)g(s)dσdt, f, g ∈ H(U).

The properties below are well-known (see for instance [8]).

Lemma 6 ([8, Proposition 7.2.2 and Theorem 7.2.3]). We have the following.

(a) Convergence in B2(U) implies local uniform convergence on U .

(b) B2(U) is a Hilbert space.

(c) The set of polynomials is dense in B2(U).

Now let Bm := B2(U) × · · · × B2(U) is the Hilbert space with the inner product

given, for f = (f1, . . . , fm) ∈ H(U)m and g = (g1, . . . , gm) ∈ H(U)m by

〈
f, g

〉
=

m∑
j=1

∫∫
U

fj(s)gj(s)dσdt.

In order to prove Lemma 5, we use (b) of Lemma 6 and the following result appeared,

for example, in [9].

Lemma 7 ([9, Theorem 6.1.16]). Let H be a complex Hilbert space. Assume that

a sequence vn ∈ H, n ∈ N satisfies

(i) the series
∑

n ‖vn‖2 < ∞;

(ii) for any element 0 �= g ∈ H the series
∑

n |〈vn, g〉| is divergent.

Then the set of convergent series
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{∑
n

anvn ∈ H : |an| = 1

}

is dense in H.

Let g = (g1, . . . , gm) ∈ Bm be a non-zero element and put

vn(s) :=
(
vn(s;α, λ1), . . . , vn(s;α, λm)

)
, vn(s;α, λj) :=

e(λjn)

(n + α)s
.

Then for Δj(w) :=
∫∫

U
e−swgj(s)dσdt, one has

〈
vn(s), g(s)

〉
=

m∑
j=1

e(λjn)Δj(log(n + α)).

We can see that the condition (i) of Lemma 7 is true since U ⊂ D and

〈
vn(s), vn(s)

〉
=

m∑
j=1

∫∫
U

(n + α)−s(n + α)−sdσdt  sup
s∈U

∣∣∣(n + α)−2s
∣∣∣.

The truth of the condition (ii) in Lemma 7 easily follows from the following crucial

lemma.

Lemma 8. Assume that g(s) = (g1(s), . . . , gm(s)) ∈ Bm is a non-zero element and

for j = 1, . . .m, put Δj(z) :=
∫∫

U
e−szgj(s)dσdt. Then the following series

∞∑
n=0

∣∣e(λ1n)Δ1(log(n + α)) + · · · + e(λmn)Δm(log(n + α))
∣∣

is divergent.

In order to prove the lemma above, we quote the following.

Lemma 9 ([5, Corollary 2.7]). Let ‖gj‖ �= 0 for 1 ≤ j ≤ m. Then for every A > 0

and every x > 1, there exist sequences B1 > · · · > Bm > 0, x
(0)
0 = x, x

(1)
0 , . . . , x

(m)
0 and

intervals Ij ⊂ [x, x + 1] of length |Ij | ≥ Bjx
−2j such that x

(j)
0 ∈ Ij, Ij+1 ⊂ Ij, and for

all t ∈ Ij we have

1

2

∣∣Δj(x
(j−1)
0 )

∣∣ + O
(
e−Ax

) ≤ 1

2

∣∣Δj(x
(j)
0 )

∣∣ + O
(
e−Ax

)
≤ ∣∣Δj(t)

∣∣ ≤ ∣∣Δj(x
(j)
0 )

∣∣ + O
(
e−Ax

)
. (1)

Proof of Lemma 8. Without loss of generality, we can assume that g1 is a non-

zero element since ‖g‖ �= 0 implies that at least one of gj ’s is a non-zero element.

We shall check the conditions in [1, Lemma 3] for Δ1(z). Obviously, Δ1(z)  eC|z|

for some positive constant C depending on U . Let σ1 and σ2 be real numbers with



158 Y. Lee, T. Nakamura and �L. Pańkowski

1/2 < σ1 < σ2 < 1 such that the vertical strip σ1 < Re s < σ2 contains the simply

connected smooth Jordan domain U . Then for sufficiently small η = η(U) > 0 and for

all complex z with | arg(−z)| ≤ η, we have |eσ2zΔ1(z)|  1. Furthermore, Δ1 is not

identically zero. If it is, we have

0 = Δ
(k)
1 (0) =

∫∫
U

(−s)kg1(s)dσdt

for any nonnegative intger k, which implies that g1 is orthogonal to every polynomial in

B2(U). So g1 = 0 by (c) of Lemma 6, but it contradicts to the assumption ‖g1‖ �= 0.

Hence, by [1, Lemma 3] we can find a real sequence xk tending to infinity such that

|Δ1(xk)| � e−σ2xk .

Fix k and put x = xk. Hence, by using Lemma 9, we can see that for every A > 0

and x = xk, there exist sequences B1 > · · · > Bm > 0, x
(0)
0 = x, x

(1)
0 , . . . , x

(m)
0 and

intervals Ij ⊂ [x, x + 1] of length |Ij | ≥ Bjx
−2j such that x

(j)
0 ∈ Ij , Ij+1 ⊂ Ij , and

for all t ∈ Ij , the inequalities (1) holds. Now let Im := [y, y + Bmy−2m] ⊂ [x, x + 1].

Since Im ⊂ Ij for every j = 1, 2, . . . ,m, the inequalities (1) holds also for all t ∈ Im. In

particular, since x
(0)
0 = x, for t ∈ Im one has

∣∣Δ1(t)
∣∣ � ∣∣Δ1(x

(0)
0 )

∣∣ � e−σ2x. (2)

Moreover, for every j = 1, 2, . . . ,m we have∣∣Δj(t)
∣∣  e−σ1x, t ∈ [x, x + 1]. (3)

We denote by
∑

n
∗

the sum over integers n+α ∈ [ey, ey+Bmy−2m

] in order to obtain

log(n + α) ∈ Im.

First we consider the following sum

S1(x) :=
∑
n

∗ m∑
j=1

∣∣Δj(log(n + α))
∣∣2.

Obviously, it holds that

ey+y−2m − ey = ey
(
ey
−2m − 1

)
=

ey

y2m

∞∑
n=0

y−2mn � ey

y2m
.

Let A > 0 be sufficiently large. Then by using (1), (2), x ≤ y ≤ x + 1 and the formula

above, we have

S1(x) �
∑
n

∗ m∑
j=1

(∣∣Δj(x
(j)
0 )

∣∣2 +
∣∣Δj(x

(j)
0 )

∣∣O(e−Ax) + O(e−2Ax)
)

�
∑
n

∗ m∑
j=1

(∣∣Δj(x
(j)
0 )

∣∣2+O(e−Ax)
)
�

∑
n

∗
(

m∑
j=1

∣∣Δj(x
(j)
0 )

∣∣)2
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�
∑
n

∗
e−σ2x

m∑
j=1

∣∣Δj(x
(j)
0 )

∣∣ � ex(1−σ2)

x2m

m∑
j=1

∣∣Δj(x
(j)
0 )

∣∣.
Since the λk’s are assumed to be distinct in the interval (0, 1], it is easy to see that

for any 1 ≤ k �= l ≤ m

φk,l(t) :=
∑
n≤t

e((λk − λl)n)  1

|1 − e(λk − λ�)|  1.

Similarly to (3), one can easily get the estimation

d

du
Δj(log u) =

1

u
Δ′

j(log u)  u−1−σ1 .

From Δj(log u) = 〈u−s, gj(s)〉 = 〈u−s, gj(s)〉, we obtain

d

du
Δj(log u) =

1

u

∫∫
U

−su−sgj(s)dσdt =
1

u
Δ′

j(log u)  u−1−σ1 .

Hence, using partial summation, we have∑
X1≤n≤X2

∑
1≤k �=l≤m

e((λk − λl)n)Δk(log(n + α))Δl(log(n + α))

=
∑

1≤k �=l≤m

∫ X2

X1

Δk(log(u + α))Δl(log(u + α))dφk,l(u)

 X−2σ1
1 +

∑
1≤k �=l≤m

∫ X2

X1

∣∣∣∣(Δk(log(u + α))Δl(log(u + α))
)′∣∣∣∣ du

 X−2σ1
1 +

∫ X2

X1

du

u1+2σ1
 X−2σ1

1

for sufficiently large X2 > X1 > 0. Thus we obtain

S2(x) :=
∑

1≤k �=l≤m

∑
n

∗
e((λl − λk)n)Δk(log(n + α))Δl(log(n + α))  e−2σ1x.

We can easily see that

S(x) :=
∑
n

∗∣∣e(λ1n)Δ1(log(n + α)) + · · · + e(λmn)Δm(log(n + α))
∣∣2

= S1(x) + S2(x) � ex(1−σ2)

x2m

m∑
j=1

∣∣Δj(x
(j)
0 )

∣∣ + O
(
e−2σ1x

)

when A is sufficiently large. On the other hand, one has

S(x) 
∑
n

∗
∣∣∣∣∣

m∑
j=1

e(λjn)Δj(log(n + α))

∣∣∣∣∣
m∑
j=1

∣∣Δj(log(n + α))
∣∣
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∑
n

∗
∣∣∣∣∣

m∑
j=1

e(λjn)Δj(log(n + α))

∣∣∣∣∣
m∑
j=1

∣∣Δj(x
(j)
0 )

∣∣ + O(e−(A+σ1−1)x).

Hence, dividing the last inequalities by
∑m

j=1 |Δj(x
(j)
0 )|, we have

∑
n

∗
∣∣∣∣∣

m∑
j=1

e(λjn)Δj(log(n + α))

∣∣∣∣∣ � ex(1−σ2)

x2m
,

since 2σ1 − σ2 > 0. Thus, the last inequality implies Lemma 8. �

We now prove Lemma 5. Put

vn(s, ω(n);α, λj) :=
e(λjn)ω(n)

(n + α)s
, ω(n) ∈ γ,

vn(s, ω(n)) :=
(
vn(s, ω(n);α, λ1), . . . , vn(s, ω(n);α, λm)

)
.

Recall U be a simply connected smooth Jordan domain such that U ⊂ D. Then the set

of convergent series {∑
n

vn(s, ω(n)) : ω ∈ Ω

}

is dense in the space Bm by Lemmas 7 and 8. Thus, for every compact subsets

K1, . . . ,Km ⊂ U , we can find b(n) ∈ γ and M ∈ N satisfying

max
1≤j≤m

max
s∈Kj

∣∣∣∣∣
M∑
n=0

vn(s, b(n);α, λj) − hj(s)

∣∣∣∣∣ < ε

2
,

max
1≤j≤m

max
s∈Kj

∣∣∣∣∣
∑
n>M

vn(s, b(n);α, λj)

∣∣∣∣∣ < ε

2

from (a) of Lemma 6 and Lemma 8. The inequality above and the assumption U ⊂ D

implies Lemma 5.
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