Open Access
April, 2013 Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials
Yoshihiro MIZUTA, Eiichi NAKAI, Yoshihiro SAWANO, Tetsu SHIMOMURA
J. Math. Soc. Japan 65(2): 633-670 (April, 2013). DOI: 10.2969/jmsj/06520633

Abstract

Our aim in this paper is to prove the Gagliardo-Nirenberg inequality for Riesz potentials of functions in variable exponent Lebesgue spaces, which are called Musielak-Orlicz spaces with respect to $\Phi(x,t)=t^{p(x)}(\log(c_0+t))^{q(x)}$ for $t$ > 0 and $x \in {\mathbb R}^n$, via the Littlewood-Paley decomposition.

Citation

Download Citation

Yoshihiro MIZUTA. Eiichi NAKAI. Yoshihiro SAWANO. Tetsu SHIMOMURA. "Littlewood-Paley theory for variable exponent Lebesgue spaces and Gagliardo-Nirenberg inequality for Riesz potentials." J. Math. Soc. Japan 65 (2) 633 - 670, April, 2013. https://doi.org/10.2969/jmsj/06520633

Information

Published: April, 2013
First available in Project Euclid: 25 April 2013

zbMATH: 1269.31005
MathSciNet: MR3055598
Digital Object Identifier: 10.2969/jmsj/06520633

Subjects:
Primary: 31B15 , 46E35
Secondary: 42B25 , 46E30

Keywords: Gagliardo-Nirenberg inequality , Littlewood-Paley theory , Musielak-Orlicz spaces , Riesz potentials , variable exponents

Rights: Copyright © 2013 Mathematical Society of Japan

Vol.65 • No. 2 • April, 2013
Back to Top