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Abstract. Our aim in this paper is to prove the Gagliardo-Nirenberg
inequality for Riesz potentials of functions in variable exponent Lebesgue
spaces, which are called Musielak-Orlicz spaces with respect to Φ(x, t) =

tp(x)(log(c0 + t))q(x) for t > 0 and x ∈ Rn, via the Littlewood-Paley de-
composition.

1. Introduction.

The goal of this paper is to investigate the inequality of Gagliardo-Nirenberg
type, where we place ourselves in the setting of the n-dimensional Euclidean space
Rn. The Gagliardo-Nirenberg inequality is the one of the form

‖(−∆)θαf‖X ≤ C‖f‖1−θ
Y ‖(−∆)αf‖θ

Z (0 < α, 0 < θ < 1), (1.1)

where X, Y, Z are all Banach spaces of measurable functions.
Here we are concerned with various function spaces; X, Y, Z can be various

function spaces. As a model case we take up variable exponent spaces. Variable
exponent spaces have been studied in many articles over the past decades. To
describe variable exponent spaces employed in the present paper, we introduce
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some notations. Let p(·) : Rn → (1,∞) and q(·) : Rn → R be bounded functions,
which are called variable exponents in the variable Lebesgue setting. Set

Φp(·),q(·)(x, t) = tp(x)(log(c0 + t))q(x);

here c0 > e is chosen so large that the condition, which we shall call (Φ1), is
fulfilled:

(Φ1) Φp(·),q(·)(x, ·) is convex on [0,∞) for every x ∈ Rn.

Define the Lp(·),q(·)(Rn)-norm by

‖f‖Lp(·),q(·) = inf
{

λ > 0 :
∫

Rn

Φp(·),q(·)

(
x,
|f(x)|

λ

)
dx ≤ 1

}

and denote by Lp(·),q(·)(Rn) the space of all measurable functions f on Rn for
which the norm ‖f‖Lp(·),q(·) is finite. Note that Lp(·),q(·)(Rn) is a Musielak-Orlicz
space [31]. In case q(·) ≡ 0, Lp(·),q(·)(Rn) is denoted by Lp(·)(Rn) for simplicity.
The notation Lp(·),q(·)(Rn), which seems unfamiliar for non-specialists, is used
especially for the purpose of stressing that p(·) and q(·) are functions on x ∈ Rn.
When p(·) and q(·) are constant functions, then as usual we omit (·) and we write
Lp,q(Rn).

We shall illustrate the Littlewood-Paley theory is very useful when we obtain
an inequality of the form (1.1). The Littlewood-Paley theory is one of the most
powerful tools in harmonic analysis. Roughly speaking, this is a technique of
transforming functions into good ones in order to measure the norms. Here and
below, we use the notation A . B to indicate that there exists a constant C

independent of functions such that A ≤ CB. If we need to emphasize that C

depends on parameters α, β, . . ., then we write .α,β,... instead of .. The notation
A ∼ B means that A . B . A.

Write B(r) ≡ {x ∈ Rn : |x| ≤ r} for r > 0. Also, for a function f , Ff denotes
the Fourier transform of f , that is,

Ff(ξ) =
∫

Rn

f(x)e−
√−1xξ dx

and F−1F denotes its inverse, that is,

F−1F (x) =
1

(2π)n

∫

Rn

F (ξ)e
√−1xξ dξ.
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The first result in the present paper, which extends what is known for classical
Lp(Rn) spaces, can be stated as follows:

Theorem 1.1. Suppose that the functions p(·) : Rn → (0,∞) satisfies (p1),
(p2) and (p3) and that q(·) : Rn → R satisfies (q1) and (q2), where these conditions
are;

(p1) 1 < p− = inf
x∈Rn

p(x) ≤ sup
x∈Rn

p(x) = p+ < ∞;

(p2) |p(x)− p(y)| ≤ Clog

log(e + 1/|x− y|) , whenever x ∈ Rn and y ∈ Rn;

(p3) |p(x)− p(y)| ≤ Clog

log(e + |x|) whenever |y| ≥ |x|/2;

(q1) −∞ < q− = inf
x∈Rn

q(x) ≤ sup
x∈Rn

q(x) = q+ < ∞;

(q2) |q(x)− q(y)| ≤ Clog log

log(e + log(e + 1/|x− y|)) whenever x ∈ Rn and y ∈ Rn.

In the above Clog and Clog log are positive constants independent of x and y.
Assume also that a non-negative function ϕ ∈ S(Rn) has its support on B(8)\

B(1), that is,

supp(ϕ) ⊂ B(8) \B(1) (1.2)

and that there exists a non-negative ϕ̃ ∈ S(Rn) such that

supp(ϕ̃) ⊂ B(8) \B(1),
∞∑

j=−∞
ϕ(2−jξ)ϕ̃(2−jξ) ≡ χRn\{0}(ξ) (ξ ∈ Rn). (1.3)

Then we have the following equality and norm equivalence: For all f ∈
Lp(·),q(·)(Rn) we have

f = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f in S ′(Rn), (1.4)

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

∼ ‖f‖Lp(·),q(·) . (1.5)

This theorem can be located as an extension of the classical Littlewood-Paley
theory to the variable Lebesgue spaces.
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The conditions (p1), (p2), (p3), (q1) and (q2) appear throughout in the
present paper to describe the conditions of variable exponents. Here clarifying
remarks on p(·) and q(·) may be in order.

Remark 1.2.

1. The idea of employing p(·) and q(·) dates back to the paper by Cruz-Uribe and
Fiorenza [3].

2. Condition (p3) implies that p∞ = lim|x|→∞ p(x) exists and that

|p(x)− p∞| ≤ Clog

log(e + |x|) for all x ∈ Rn.

3. For later use it is convenient to see from (Φ1) that

(Φ2) t−1Φp(·),q(·)(x, t) is nondecreasing on (0,∞) for fixed x ∈ Rn.

The first thrust to investigate variable exponent spaces is to apply it to the
partial differential equations by Diening and Růžička [9] with q(·) ≡ 0. For a
survey see [8], [17], [37]. These investigations have been concerned both with the
spaces themselves, e.g. [4], [13], [16], [18], [20], [29], and with related differential
equations [2], [6], [11], and with applications [1], [36].

One of the reasons why we are fascinated to consider the function q(·) is that
this function can be used to describe the maximal operator control in very subtle
settings. We denote by B(x, r) the open ball centered at x and of radius r. For a
locally integrable function f on Rn, we consider the maximal function

Mf(x) = sup
r>0

1
|B(x, r)|

∫

B(x,r)

|f(y)| dy.

For the fundamental properties of maximal functions, see Duoandikotxea [10] and
Stein [42]. It is known as Stein’s theorem that there exists a universal constant
C > 0 such that

∫

B

Mf(x) dx ≤ C‖f‖L1,1

for all functions f supported on a ball B with radius less than 1. So in our setting
it is very important to introduce the second function q(·).

Based upon the Littlewood-Paley characterization, we obtain inequalities of
the form (1.1). First we rewrite (−∆)α/2 in terms of the Riesz potential. We
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define the Riesz potential Rαf of order α by

Rαf(x) =
∫

Rn

|x− y|α−nf(y)dy

for 0 < α < n and a locally integrable function f on Rn. By taking the Fourier
transform, we notice that (−∆)−α/2 is a constant multiple of Rα for 0 < α < n.
Here we assume that Rα|f | 6≡ ∞, which is equivalent to

∫

Rn

(1 + |y|)α−n|f(y)|dy < ∞

(see [28]). With the terminology fixed, we specify a Gagliardo-Nirenberg inequality
for Riesz potentials of functions in Lp(·),q(·)(Rn) obtained in this paper. Namely,
we prove the inequality

‖Rθαf‖Lp(·),q(·) ≤ C‖f‖1−θ
Lp1(·),q1(·)‖Rαf‖θ

Lp2(·),q2(·) , (1.6)

with 0 < α < n, θ ∈ (0, 1) and a certain relation of the variable exponents.
We refer the readers to the works by Nirenberg [33], [34] and Gagliardo [14] for
f ∈ C∞0 (Rn) in the constant Lp(Rn) case. Recently, in the short paper [21],
Kopaliani and Chelidze have proved the inequality for Sobolev functions in the
variable Lp(·)(Rn) case. For related results, see also Stein [41] and Zang-Fu [44].
To obtain the inequality (1.6), we use the Littlewood-Paley theory for the function
space Lp(·),q(·)(Rn). The spirit is close to the one in [39].

For fundamental properties of these spaces, see, for example, Kováčik and
Rákosńık [23] and the authors [30].

Remark 1.3. The idea of using ϕ and ϕ̃ can be found in [12]. For the sake
of convenience for readers, we give an example of ϕ and ϕ̃. Let Ψ ∈ S(Rn) be
taken so that it is R-valued and that

supp(Ψ) ⊂ B(8) \B(1), Ψ ≡ 1 on B(4) \B(2).

We set

ϕ(ξ) = ϕ̃(ξ) = Ψ(ξ)
( ∞∑

j=−∞
Ψ(2−jξ)2

)−1/2

.

Then ϕ and ϕ̃ satisfies (1.3). Another example is
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ϕ(ξ) = Ψ(ξ), ϕ̃(ξ) = Ψ(ξ)
( ∞∑

j=−∞
Ψ(2−jξ)2

)−1

. (1.7)

Now we formulate the Gagliardo-Nirenberg inequality for function spaces
Lp(·),q(·)(Rn).

Theorem 1.4. Suppose that the functions p(·), p1(·), p2(·) : Rn → (1,∞)
satisfy (p1), (p2) and (p3) and that the functions q(·), q1(·), q2(·) : Rn → R satisfy
(q1) and (q2). Assume that these functions are related by

1
p(x)

=
1− θ

p1(x)
+

θ

p2(x)
,

q(x)
p(x)

= (1− θ)
q1(x)
p1(x)

+ θ
q2(x)
p2(x)

(1.8)

for some θ ∈ (0, 1). Then

‖Rθαf‖Lp(·),q(·) . ‖f‖1−θ
Lp1(·),q1(·)‖Rα|f |‖θ

Lp2(·),q2(·) (1.9)

for all f ∈ Lp1(·),q1(·)(Rn).

Remark 1.5. If m ∈ (0, n) is a positive integer and λ is a multi-index with
length m, then the operator

T : f −→ Dλ(Rmf) = (DλRm) ∗ f

defines a singular integral operator. This implies that Rmf belongs to the Sobolev
space Wm,p(·)(Rn) when f ∈ Lp(·)(Rn) has compact support and 1 < p− ≤ p+ <

n/α, with the aid of [4, Corollary 2.5].

In [21] Kopaliani and Chelidze dealt the case when q(·) ≡ 0 by using an
inequality due to Maz’ya and Shaposhnikova [26]. Indeed, Kopaliani and Chelidze
[21] used inequalities of the form

|∇kf(x)| ≤ C
(
M [|∇lf |](x)

)(m−k)/(m−l)Dp,mf(x)(k−l)/(m−l),

where, denoting by [m] the integer part of a non-integer m > 0, we defined

Dp,mf(x) =
( ∫

Rn

|∇[m]u(x)−∇[m]u(y)|p
|x− y|n+p[m]

dy

)1/p

.

This technique can be also used for our spaces.
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However, this technique has a series of disadvantages. First, in the actual
paper [21], the case when k and l are integers is covered. This aspect can be
overcome somehow by reexamining the proof of their result and the result due to
Maz’ya and Shaposhnikova [26]. Indeed, Maz’ya and Shaposhnikova used

|Rzf(x)| ≤ CM [Rζf ](x)Re(z)/Re(ζ)Mf(x)1−Re(z)/Re(ζ) (1.10)

for all z, ζ ∈ {w ∈ C : 0 < Re(w) < n}. It seems that a careful observation yields
a result of Theorem 1.4. However, their method is no more applicable for other
function spaces such as Hardy spaces. As an example of function spaces beyond
the reach of (1.10), we take up variable exponent Hardy spaces. Assume that an
exponent p(·) : Rn → (0,∞) satisfies (p2), (p3) and (p1)− described below

(p1)− 0 < p− = infx∈Rn p(x) ≤ supx∈Rn p(x) = p+ < ∞.

Then the definition of Lp(·)(Rn) is still available as a linear space and the
only change is that Lp(·)(Rn) satisfies only when p− ≥ 1. We set ψt(x) =
t−n exp(−|x|2/t2) for t > 0 and x ∈ Rn. Then we define the variable exponent
Hardy space Hp(·)(Rn) as the set of all f ∈ S ′(Rn) satisfying

‖f‖Hp(·) :=
∥∥∥ sup

t>0
|ψt ∗ f(·)|

∥∥∥
Lp(·)

< ∞.

Proposition 1.6 ([32, Theorem 5.7]). Keep to the same notations for ϕ and
ϕ̃ as Theorem 1.1. Assume that an exponent p(·) satisfies (p1)−, (p2) and (p3).
Then we have the following equality and norm equivalence: For all f ∈ Hp(·)(Rn)
we have

f = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f, in S ′(Rn),

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·)

∼ ‖f‖Hp(·) .

Using Proposition 1.6, we can prove the following proposition, which is beyond
the reach of (1.10) because of the maximal operator.

Theorem 1.7. Let p(·), p1(·), p2(·) : Rn → (0,∞) satisfy (p1)−, (p2) and
(p3). Assume that these functions are related by (1.8). Let 0 < θ < 1. Then, for
f ∈ Hp1(·)(Rn) such that 0 /∈ supp(Ff),
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‖Rθαf‖Hp(·) . ‖f‖1−θ
Hp1(·)‖Rαf‖θ

Hp2(·) .

The method we shall use in the present paper can enlarge the class of functions
as we will illustrate in Section 4. Another advantage of our method is that we can
use a simple pointwise estimate (4.6). As an evidence, our method can be also
applied to the stochastic analysis. This aspect will be described in Section 5.

The behavior of the constant C in (1.1) is investigated precisely by Kozono,
Wadade and Nagayasu in the case when X, Y are Lebesgue spaces and Z is a
Lebesgue space, Besov space, or the BMO space [22], [43]. For example, in [35],
when 1 < p ≤ n/(n− 2), Pino and Dolbeault established

‖w‖p+1 ≤
(

y(p− 1)2

2πn

)θ/2( 2y

2y + n

)(1−θ)/2p(Γ(n/2 + 1 + y)
Γ(1 + y)

)θ/n

‖∇w‖θ
2‖w‖1−θ

2p ,

where

θ =
n(p− 1)

(1 + p)(n− np + 2p)
,

and this can be used for the minimizing problem

minimize
{ ∫

Rn

(
1
2
|∇u(x)|2 − 1

p + 1
|u(x)|p+1

)
dx : u ∈ H1(Rn), ‖u‖2p = m

}

with m > 0.
The structure of the rest of this paper is as follows. We will obtain a result on

boundedness of singular integral operators in Section 2 to prove the Littlewood-
Paley theory for Lp(·),q(·)(Rn) in Section 3. Then we give a Gagliardo-Nirenberg
inequality for Riesz potentials of functions in Lp(·),q(·)(Rn) in Section 4. Inequali-
ties related to Theorem 1.4 can be found in Section 5.

2. Boundedness of the maximal operators and the singular integral
operators.

In this section we obtain a boundedness result for the maximal operators and
that for the singular integral operators of convolution type.

2.1. Boundedness of the maximal operators.
Let p− > 1. We use the duality formula. Here and below we write loga b =

(log b)a for simplicity. Observe that
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sup
t>0

(
st− tp(x) logq(x)(c0 + t)

) ' sp(x)/(p(x)−1) log−q(x)/(p(x)−1)(c0 + s),

whenever p− > 1. For more details of this calculation, we refer to [40, Claim 4.4].
Therefore, if we write p(x) ≡ p(x)/(p(x) − 1) and q(x) ≡ −q(x)/(p(x) − 1), then
we have

Lp(·),q(·)(Rn)′ ≈ Lp(·),q(·)(Rn) (2.1)

and the pair (p(·), q(·)) still fulfills the condition of the same type as (p(·), q(·)).
We now invoke one of the fundamental properties used in this paper:

Proposition 2.1 ([10, Proposition 2.7], [42, page 63]). Let φ : Rn → R be
a function, which is positive, radial, decreasing and integrable. Then

sup
t>0

|φt ∗ f(x)| ≤ ‖φ‖L1Mf(x)

for all locally integrable functions f , where we defined φt = t−nφ(·/t) for t > 0.
In particular, if φ is a measurable function such that |φ(x)| . (1 + |x|)−n−1, then

sup
t>0

|φt ∗ f(x)| . Mf(x).

We know the following result concerning the boundedness of the Hardy-
Littlewood maximal function M in Lp(·),q(·)(Rn), which is an extension of Diening
[7] and Cruz-Uribe, Fiorenza and Neugebauer [5] when q ≡ 0.

Lemma 2.2 ([25, Proposition 2.2]). Suppose that the functions p(·), p1(·),
p2(·) : Rn → (1,∞) satisfy (p1), (p2) and (p3) and that the functions q(·), q1(·),
q2(·) : Rn → R satisfy (q1) and (q2). Then the estimate

‖Mf‖Lp(·),q(·) . ‖f‖Lp(·),q(·)

holds for all f ∈ Lp(·),q(·)(Rn).

2.2. Boundedness of the singular integral operators.
Here we develop a theory of Calderón-Zygmund in our variable exponent

setting. However, our aim is very modest; the goal is to obtain the Littlewood-
Paley characterization. Therefore, we assume that the integral kernel k belongs to
S(Rn) to avoid the problem of convergence of k ∗ f (see (2.3) below). Let us set
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A(k) ≡ sup
ξ∈Rn

|Fk(ξ)|, B(k) ≡ sup
x∈Rn

|x|n|k(x)|,

C(k) ≡ sup
x∈Rn

|x|n+1|∇k(x)|. (2.2)

In our variable exponent setting, we use the sum space Lp1(Rn) + Lp2(Rn).
We denote by Lp1(Rn) + Lp2(Rn) the set of all functions that can be written as
the sum of an Lp1(Rn) function and an Lp2(Rn) function. Here the norm is given
by

‖f‖Lp1+Lp2 ≡ inf
{‖f1‖Lp1 + ‖f2‖Lp2 : f = f1 + f2, f1 ∈ Lp1(Rn), f2 ∈ Lp2(Rn)

}
.

Let us now prove the boundedness of the singular integral operators. Here we
shall truncate the kernel because, if we do that, it is still sufficient for our purpose.

Theorem 2.3. Suppose that the functions p(·), p1(·), p2(·) : Rn → (1,∞)
satisfy (p1), (p2) and (p3) and that the functions q(·), q1(·), q2(·) : Rn → R satisfy
(q1) and (q2). Let k ∈ S(Rn) and let A(k), B(k) and C(k) be defined by (2.2).
Then

‖k ∗ f‖Lp(·),q(·) .A(k),B(k),C(k) ‖f‖Lp(·),q(·) . (2.3)

Here the implicit positive constant is dependent on A(k), B(k) and C(k) but it is
independent of ‖k‖L1 .

According to the Calderón-Zygmund theory [10], we have

‖k ∗ f‖Lp .A(k),B(k),C(k) ‖f‖Lp (1 < p < ∞),

where ‖ · ‖Lp is the Lp(Rn)-norm.
We will need the sharp maximal operator control to prove Theorem 2.3. De-

note byQ(x) the set of all compact cubes whose edges are parallel to the coordinate
axes and which contain a point x. Given a function g : Rn → [0,∞], we denote by
g∗ : [0,∞) → [0,∞) its decreasing rearrangement. The sharp maximal operator
we use in the present paper is given by

M ]
λf(x) = sup

Q∈Q(x)

inf
c∈C

(|f − c|χQ)∗(λ|Q|) (0 < λ < 1).

Here note the following result:
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Proposition 2.4 ([19], [24]). Let λn = 10−n.

1. For any measurable function f with |{|f | > λ}| < ∞ for all λ > 0, and for any
weight w,

∫

Rn

|f(x)|w(x) dx .n

∫

Rn

M ]
λn

f(x)Mw(x) dx. (2.4)

2. Let k ∈ S and let A(k), B(k) and C(k) be defined by (2.2). Then, for any
f ∈ L1

loc(Rn),

M ]
λn

[k ∗ f ](x) .n,A(k),B(k),C(k) Mf(x). (2.5)

Now we turn to the proof of Theorem 2.3.

Proof of Theorem 2.3. Let us set P †(+) = p+ +1 and P †(−) = (p−+1)/2.
If f ∈ Lp(·),q(·)(Rn), then it follows immediately from the definition of the norm

that f ∈ L
P †(−)(Rn) + L

P †(+)(Rn). Therefore, we conclude k ∗ f ∈ L
P †(−)(Rn) +

L
P †(+)(Rn). Hence

|{|k ∗ f | > λ}| < ∞

for all λ > 0, which is necessary to use (2.4). Let us denote by L
p(·),q(·)
1 (Rn) the

closed unit ball in Lp(·),q(·)(Rn). By the duality (2.1), (2.4) and (2.5), we have

‖k ∗ f‖Lp(·),q(·) ∼ sup
g∈L

p(·),q(·)
1 (Rn)

∫

Rn

|k ∗ f(x)|g(x) dx

. sup
g∈L

p(·),q(·)
1 (Rn)

∫

Rn

M ]
10−n [k ∗ f ](x)Mg(x) dx

.A(k),B(k),C(k) sup
g∈L

p(·),q(·)
1 (Rn)

∫

Rn

Mf(x)Mg(x) dx. (2.6)

If we invoke the boundedness of M on Lp(·),q(·)(Rn) and Lp(·),q(·)(Rn) (Lemma
2.2), then we have
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sup
g∈L

p(·),q(·)
1 (Rn)

∫

Rn

Mf(x)Mg(x) dx

. sup
g∈L

p(·),q(·)
1 (Rn)

‖Mf‖Lp(·),q(·)‖Mg‖Lp(·),q(·) . ‖f‖Lp(·),q(·) . (2.7)

Thus, if we combine (2.6) and (2.7), then we obtain (2.3). ¤

3. Littlewood-Paley theory for variable exponent Lebesgue spaces.

The passage of Theorem 2.3 to `2(Z)-valued spaces can be achieved easily by
replacing | · | with the `2(Z) norm. Our result reads as follows:

Theorem 3.1. Assume that an exponent p(·) : Rn → (0,∞) satisfies (p1)−,
(p2) and (p3) and that an exponent q(·) : Rn → R satisfies (q1) and (q2). Suppose
that {kij}i,j∈Z is a given collection with the following properties:

1. kij ≡ 0 if |i|+ |j| is sufficiently large.
2. The following quantities are finite:

A(K) ≡ sup
ξ∈Rn

‖FK(ξ)‖`2(Z)→`2(Z),

B(K) ≡ sup
x∈Rn

|x|n‖K(x)‖`2(Z)→`2(Z),

C(K) ≡ sup
l=1,2,...,n

sup
x∈Rn

|x|n+1‖∂lK(x)‖`2(Z)→`2(Z),

where K(x) and ∂lK(x) (l = 1, 2, . . . , n) denote the multiplication operator on
`2(Z) given by the matrix {kij(x)}i,j∈Z and {∂lkij(x)}i,j∈Z respectively.

Then we have

∥∥∥∥
( ∞∑

i=−∞

∣∣∣∣
∞∑

j=−∞
kij ∗ fj

∣∣∣∣
2)1/2∥∥∥∥

Lp(·),q(·)

.A(K),B(K),C(K)

∥∥∥∥
( ∞∑

j=−∞
|fj |2

)1/2∥∥∥∥
Lp(·),q(·)

, (3.1)

where the implicit constant in .A(K),B(K),C(K) does not depend on ‖ki,j‖L1 .

Proof. Just reexamine the proof of Theorem 2.3 by replacing | · | with the
`2(Z)-norm. ¤
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As an application of Theorem 3.1, we obtain the Littlewood-Paley type char-
acterization (Theorem 1.1 in Section 1).

Proof of Theorem 1.1. Let us set P †(+) = p+ + 1 and P †(−) = (p−+ 1)/2

as before. Note that 1 < P †(−) ≤ P †(+) < ∞. Once we accept that Theorem 1.1 is

true when p(·) is a constant function, since Lp(·)(Rn) ↪→ L
P †(−)(Rn)+L

P †(+)(Rn), the
convergence of (1.4) is readily obtained. Indeed, assume that f ∈ Lp(·),q(·)(Rn),

then we have f ∈ L
P †(−)(Rn) + L

P †(+)(Rn). Consequently, f can be written as

f = f(−) + f(+), where f(+) ∈ L
P †(−)(Rn) and f(−) ∈ L

P †(+)(Rn). According to the
classical Littlewood Paley theory, we have

f(±) = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f(±) in L

P †(±)(Rn) (3.2)

and hence

f(±) = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f(±) in S ′(Rn),

since a standard argument shows that L
P †(±)(Rn) is continuously embedded into

S ′(Rn). Consequently (3.2) yields the convergence of (1.4).
Let us concentrate on proving (1.5). We first let

kN
ij ≡

{
2in(F−1ϕ)(2i·) j = 0 and |i| ≤ N,

0 otherwise,
f̃j ≡

{
f j = 0,

0 otherwise,

in (3.1). Denote by KN the multiplication operator corresponding to {kN
ij }i,j∈Z.

By the monotone convergence theorem we have

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

= lim
N→∞

∥∥∥∥
( N∑

j=−N

22jn|(F−1ϕ)(2j ·) ∗ f |2
)1/2∥∥∥∥

Lp(·),q(·)
.

Let us verify
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sup
N∈N

(
A(KN ) + B(KN ) + C(KN )

)
< ∞. (3.3)

Since there are at most two non-zero terms in the summand below, we have

sup
N∈N

A(KN ) = sup
N∈N, ξ∈Rn

‖FKN (ξ)‖`2(Z)→`2(Z)

≤ sup
ξ∈Rn

( ∞∑

j=−∞
|ϕ(2−jξ)|2

)1/2

< ∞.

Next, let us estimate C(KN ). Let us first write it out in full:

C(KN ) = sup
l=1,2,...,n

sup
x∈Rn

|x|n+1‖∂lK
N (x)‖`2(Z)→`2(Z).

Again by virtue of the fact that F−1ϕ ∈ S(Rn), we find

sup
N∈N

C(KN ) ≤ sup
x∈Rn

|x|n+1

( ∞∑

j=−∞
|∇[2jn(F−1ϕ)(2jx)]|2

)1/2

. sup
x∈Rn

( ∞∑

j=−∞

|2jx|2(n+1)

(1 + |2jx|)2n+3

)1/2

.

Observe that the function

F : x ∈ Rn 7→ sup
x∈Rn

( ∞∑

j=−∞

|2jx|2(n+1)

(1 + |2jx|)2n+3

)1/2

∈ R

satisfies F (2x) = F (x). Hence it follows that

sup
N∈N

C(KN ) . sup
1≤|x|≤2

F (x) ∼
( ∞∑

j=−∞

22j(n+1)

(1 + 2j)2n+3

)1/2

∼ 1. (3.4)

Finally, let us estimate B(KN ), which is similar to the estimate of C(KN ). By
definition we have

B(KN ) = sup
x∈Rn

|x|n‖KN (x)‖`2(Z)→`2(Z) = sup
x∈Rn

|x|n
( ∞∑

j=−∞
|2jn(F−1ϕ)(2jx)|2

)1/2

.
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Since F−1ϕ ∈ S(Rn), we have |(F−1ϕ)(2jx)| . (1 + |2jx|)−n−1 for all x ∈ Rn.
Hence, we obtain

sup
N∈N

B(KN ) . sup
x∈Rn

( ∞∑

j=−∞

|2jx|2n

(1 + |2jx|)2n+2

)1/2

∼
( ∞∑

j=−∞

22jn

(1 + 2j)2n+2

)1/2

. 1.

Therefore, (3.3) is proved and we have

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

= lim
N→∞

∥∥∥∥
( ∞∑

i=−∞

∣∣∣∣
∞∑

j=−∞
kN

ij ∗ f̃j

∣∣∣∣
2)1/2∥∥∥∥

Lp(·),q(·)

.
∥∥∥∥
( ∞∑

j=−∞
|f̃j |2

)1/2∥∥∥∥
Lp(·),q(·)

= ‖f‖Lp(·),q(·)

by virtue of Theorem 3.1. Meanwhile if we substitute

kij = δi02jn(F−1ϕ̃)(2jx), fj = 2jn(F−1ϕ)(2j ·) ∗ f (i, j ∈ Z)

in (3.1), then we have

‖f‖Lp(·),q(·) .
∥∥∥∥

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

again by virtue of Theorem 3.1. We calculate the right-hand side carefully to have

‖f‖Lp(·),q(·) .
∥∥∥∥
( ∞∑

i=−∞

∣∣∣∣
∞∑

j=−∞
kij ∗ fj

∣∣∣∣
2)1/2∥∥∥∥

Lp(·),q(·)

=
∥∥∥∥
( ∞∑

j=−∞
|fj |2

)1/2∥∥∥∥
Lp(·),q(·)

=
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)
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Hence we obtain the desired result. ¤

Here is an alternative proof of Theorem 1.1.

Another proof of Theorem 1.1. Let us first establish that

I =
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

. ‖f‖Lp(·),q(·) (3.5)

and hence

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ̃)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

. ‖f‖Lp(·),q(·) . (3.6)

Once (3.5) is proven, then (3.6) follows immediately. Indeed, we deduce that

supp(ϕ̃(−·)), supp(ϕ(−·)) ⊂ B(8) \B(1)

and that

∞∑

j=−∞
ϕ̃(−2−jξ)ϕ(−2−jξ) ≡ χRn\{0}(ξ) (ξ ∈ Rn).

from (1.2) and (1.3). Therefore by replacing ϕ with ϕ̃(−·) and ϕ̃ with ϕ(−·), we
have only to establish (3.5).

To this end, let us take a Rademacher sequence {rj(t)}j∈Z ⊂ L2([0, 1)). Recall
that, for every v ∈ (0,∞), then we have

( ∫ 1

0

∣∣∣∣
∑

j∈Z
ajrj(t)

∣∣∣∣
v

dt

)1/v

∼v

( ∑

j∈Z
|aj |2

)1/2

(3.7)

if {aj}j∈N ∈ `2(Z). For details we refer to [15].
If we use (3.7) with v = 1, then we have

I ∼
∥∥∥∥

∫ 1

0

∣∣∣∣
∞∑

j=−∞
rj(t)2jn(F−1ϕ)(2j ·) ∗ f

∣∣∣∣ dt

∥∥∥∥
Lp(·),q(·)

.

By the Minkowski inequality, we obtain
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I .
∫ 1

0

∥∥∥∥
∞∑

j=−∞
rj(t)2jn(F−1ϕ)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

dt.

By the Fatou theorem, we obtain

I ≤ lim inf
N→∞

∫ 1

0

∥∥∥∥
N∑

j=−N

rj(t)2jn(F−1ϕ)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

dt. (3.8)

Let us set

kN (x, t) ≡
N∑

j=−N

rj(t)2jn(F−1ϕ)(2jx).

Then we have

F [kN (·, t)](ξ) =
N∑

j=−N

rj(t)ϕ(2−jξ)

and hence

A(kN (·, t)) < ∞

by virtue of the support condition. Since F−1ϕ ∈ S(Rn), we have

B(kN (·, t)) ≤ sup
x∈Rn

N∑

j=−N

|2jx|n|(F−1ϕ)(2jx)|.

In a way similar to (3.4), we deduce

B(kN (·, t)) . sup
x∈Rn

∞∑

j=−∞

|2jx|n
(1 + |2jx|)n+1

∼
∞∑

j=−∞

2jn

(1 + 2j)n+1
∼ 1.

Likewise we calculate by using

C(kN (·, t)) ≤ sup
x∈Rn

N∑

j=−N

|2jx|n+1|(F−1ϕ)(2jx)|.
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The consequence is

C(kN (·, t)) . sup
x∈Rn

∞∑

j=−∞

|2jx|n+1

(1 + |2jx|)n+2
∼

∞∑

j=−∞

2j(n+1)

(1 + 2j)n+2
∼ 1.

Therefore, if we invoke Theorem 2.3, then we have

∫ 1

0

∥∥∥∥
∞∑

j=−∞
rj(t)2jn(F−1ϕ)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

dt . ‖f‖Lp(·),q(·) . (3.9)

If we insert (3.9) to (3.8), we obtain (3.5).
For the reverse inequality, we use the duality (2.1). More precisely, we proceed

as follows: Let f ∈ Lp(·),q(·)(Rn) and g ∈ S(Rn) whose Lp(·),q(·)(Rn) -norm is 1.
Then we have

∫

Rn

f(x)g(x) dx = cn

∞∑

j=−∞

∫

Rn

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f(x)g(x) dx

(3.10)

because we have (1.4). By the Fubini theorem we have
∫

Rn

f(x)g(x) dx

= cn

∞∑

j=−∞

∫

Rn

( ∫

Rn

2jn(F−1ϕ)(2j(x− y))2jn(F−1ϕ̃)(2j ·) ∗ f(y) dy

)
g(x) dx

= cn

∞∑

j=−∞

∫

Rn

( ∫

Rn

2jn(F−1ϕ)(2j(x− y))g(x) dx

)
2jn(F−1ϕ̃)(2j ·) ∗ f(y) dy

= cn

∞∑

j=−∞

∫

Rn

2jn(F−1ϕ)(2j ·) ∗ f(x) · 2jn(F−1ϕ̃)(−2j ·) ∗ g(x) dx.

Now we use the Schwarz inequality and the duality (2.1). The result is

∣∣∣∣
∫

Rn

f(x)g(x) dx

∣∣∣∣ .
∥∥∥∥
( ∞∑

j=−∞
|2jn(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

×
∥∥∥∥
( ∞∑

j=−∞
|2jn(F−1ϕ̃)(−2j ·) ∗ g|2

)1/2∥∥∥∥
Lp(·),q(·)

.
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If we use (3.5), then we have

∣∣∣∣
∫

Rn

f(x)g(x) dx

∣∣∣∣ .
∥∥∥∥
( ∞∑

j=−∞
|2jn(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

‖g‖Lp(·),q(·) .

Now that S(Rn) is dense in Lp(·),q(·)(Rn), the reverse inequality is proved. ¤

About Theorem 1.1, we have the following variant.

Theorem 3.2. Let p(·), q(·), ϕ and ϕ̃ satisfy the same condition as Theorem
1.1. If f ∈ S ′(Rn) satisfies 0 /∈ supp(Ff) and

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

< ∞, (3.11)

then f ∈ Lp(·),q(·)(Rn) and f satisfies (1.4) and (1.5).

Proof. The heart of the matter is to verify that f ∈ Lp(·),q(·)(Rn). Once
this is achieved, then (1.4) and (1.5) follow automatically from Theorem 1.1. Since
0 /∈ supp(Ff), we have

f = cn

∞∑

j=−J

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f in S ′(Rn) (3.12)

for some large J ∈ N. Let K ∈ N be fixed. Notice that by virtue of the triangle
inequality, Proposition 2.1, Lemma 2.2 and (3.11), we have

∥∥∥∥
K∑

j=−J

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

≤
K∑

j=−J

∥∥2jn(F−1ϕ̃)(2j ·) ∗ 2jn(F−1ϕ)(2j ·) ∗ f
∥∥

Lp(·),q(·)

.
K∑

j=−J

∥∥M [2jn(F−1ϕ)(2j ·) ∗ f ]
∥∥

Lp(·),q(·)

.
K∑

j=−J

∥∥2jn(F−1ϕ)(2j ·) ∗ f
∥∥

Lp(·),q(·)
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≤ (J + K + 1)
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

< ∞.

Consequently, Theorem 1.1 is applicable to
∑K

j=−J 2jn(F−1ϕ)(2j ·) ∗
2jn(F−1ϕ̃)(2j ·) ∗ f for each K ∈ N. Applying Theorem 1.1, we obtain

sup
K∈N

∥∥∥∥
K∑

j=−J

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

∥∥∥∥
Lp(·),q(·)

.
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

.

Now we shall make use of the Banach-Alaoglu theorem to conclude that the se-
quence

{ K∑

j=−J

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

}∞

K=1

is a subsequence convergent in the weak topology of Lp(·),q(·)(Rn), which is re-
flexive. Denote by g ∈ Lp(·),q(·)(Rn) the limit above. Then by (3.12) we obtain
f = g ∈ Lp(·),q(·)(Rn) and this is exactly what we wanted to prove. ¤

4. Gagliardo-Nirenberg inequality.

4.1. Hölder inequality for variable exponent Lebesgue spaces.
First we obtain the Hölder inequality for the variable Lebesgue spaces.
We use the following inequality of Young type:

Lemma 4.1. Let a, b ≥ 0 and M, q, q1, q2, u satisfy

M > 0, q, q1, q2 ∈ [−M, M ], 1 < u < ∞

and

q =
q1

u
+

q2

u′
, (4.1)

where u′ denotes the Hölder conjugate of u, that is, 1/u+1/u′ = 1. Then we have
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ab logq(e + ab) .M au logq1(e + a) + bu′ logq2(e + b).

Here the implicit constant does not depend on a and b.

Proof. By symmetry we can assume that a ≥ b ≥ 0. If 0 ≤ b ≤ a ≤ 1,
then the result follows from the inequality

ab ≤ au + bu′ ,

which is a consequence of Young’s inequality.
If a ≥ 1 ≥ b and u > 1, we have

ab logq(e + ab) . au logq1(e + a) ≤ au logq1(e + a) + bu′ logq2(e + b).

Next suppose that a ≥ b ≥ 1. If ab logq(e + a) ≤ au logq1(e + a), then there is
nothing to prove. Let us suppose instead that ab logq(e + a) > au logq1(e + a).
Namely we are now assuming that au−1 logq1−q(e + a) < b ≤ a. Observe that
au−1 logq1−q(e + a) < b implies

a < Cb1/(u−1) log−(q1−q)/(u−1)(e + b) (4.2)

for some constant C > 1. To see (4.2), we just consider the inverse of the function
f(a) = au−1 logq1−q(e + a). As a consequence, by using (4.1), we have

ab logq(e + ab) . bu/(u−1) logq−(q1−q)/(u−1)(e + b) = bu/(u−1) logq2(e + b).

The proof is therefore complete. ¤

Theorem 4.2. Let p1, p2 : Rn → (0,∞) satisfy (p1)−, (p2) and (p3) and
let q1, q2 : Rn → R satisfy (q1), (q2). Define p(x) and q(x) by

1
p(x)

=
1− θ

p1(x)
+

θ

p2(x)
,

q(x)
p(x)

= (1− θ)
q1(x)
p1(x)

+ θ
q2(x)
p2(x)

for some θ ∈ (0, 1). Then we have

‖f1−θgθ‖Lp(·),q(·) . ‖f‖1−θ
Lp1(·),q1(·)‖g‖θ

Lp2(·),q2(·) (4.3)

for all positive measurable functions f and g.
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Proof. By normalization we can assume that

‖f‖Lp1(·),q(·) = ‖g‖Lp2(·),q(·) = 1.

If we let u = p1(x)/p(x)(1− θ) and a = |f(x)|p(x)(1−θ) and b = |g(x)|p(x)θ, then
we have by virtue of Lemma 4.1

|f(x)|p(x)(1−θ)|g(x)|p(x)θ logq(x)(e + |f(x)|p(x)(1−θ)|g(x)|p(x)θ)

. |f(x)|p1(x) logq1(x)(e + |f(x)|p(x)(1−θ)) + |g(x)|p2(x) logq2(x)(e + |g(x)|p(x)θ)

. |f(x)|p1(x) logq1(x)(e + |f(x)|) + |g(x)|p2(x) logq2(x)(e + |g(x)|).

If we integrate this inequality over Rn, then we have

∫

Rn

|f(x)|p(x)(1−θ)|g(x)|p(x)θ logq(x)(e + |f(x)|p(x)(1−θ)|g(x)|p(x)θ) dx . 1.

This is the desired result. ¤

4.2. Proof of Theorems 1.4 and 1.7.
Now let us go back to the proof of Theorem 1.4. Maintain the same notation

as Theorem 1.1. Let us set

fj(x) =

{
f(x) |x| ≤ j, |f(x)| ≤ j,

0 otherwise

for j = 1, 2, . . . . We assume Rα|f | ∈ Lp2(·),q2(·)(Rn). Once we assume Rα|f | ∈
Lp2(·),q2(·)(Rn), we have

∫

Rn

(1 + |y|)α−n|f(y)| dy < ∞

and hence

∫

Rn

(1 + |y|)θα−n|f(y)| dy < ∞.

Consequently, by the Lebesgue convergence theorem, we have

lim
j→∞

Rαfj(x) = Rαf(x), lim
j→∞

Rθαfj(x) = Rθαf(x).
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By the triangle inequality we have |Rαfj(x)| ≤ Rα|f |(x). Therefore, by the Fatou
lemma and the Lebesgue convergence theorem, we can assume that f ∈ L∞comp(Rn).

Let u ∈ (n/(n− α),∞). Assuming f ∈ L∞comp(Rn), we have

Rθαf = cnRθα

[
lim

L→∞

L∑

j=−L

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

]
in Lu(Rn),

since

f = cn lim
L→∞

L∑

j=−L

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f in Lnu/(n+αu)(Rn).

Again if we pass to subsequence {Lk}∞k=1, we can assume

Rθαf(x) = cnRθα

[
lim

k→∞

Lk∑

j=−Lk

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

]
(x)

for a.e. x ∈ Rn.
Then we have

‖Rθαf‖Lp(·),q(·)

≤ lim inf
k→∞

∥∥∥∥Rθα

[ Lk∑

j=−Lk

2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f

]∥∥∥∥
Lp(·),q(·)

. sup
k∈N

∥∥∥∥
( ∞∑

l=−∞

∣∣∣∣
Lk∑

j=−Lk

2(l+2j)n(F−1ϕ)(2l·) ∗ (F−1ϕ)(2j ·)

∗ (F−1ϕ̃)(2j ·) ∗Rθαf

∣∣∣∣
2)1/2∥∥∥∥

Lp(·),q(·)

by Theorem 3.2. Notice that

Lk∑

j=−Lk

2(l+2j)n(F−1ϕ)(2l·) ∗ (F−1ϕ)(2j ·) ∗ (F−1ϕ̃)(2j ·) ∗Rθαf

∼ 2ln(F−1ϕ)(2l·) ∗Rθαf

when |l| ≤ Lk − 6 and that, by virtue of Proposition 2.1,
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∣∣∣∣
Lk∑

j=−Lk

2(l+2j)n(F−1ϕ)(2l·) ∗ (F−1ϕ)(2j ·) ∗ (F−1ϕ̃)(2j ·) ∗Rθαf(x)
∣∣∣∣

. M [2ln(F−1ϕ)(2l·) ∗Rθαf ](x)

for Lk − 6 ≤ |l| ≤ Lk + 6. Observe also that

Lk∑

j=−Lk

2(l+2j)n(F−1ϕ)(2l·) ∗ (F−1ϕ)(2j ·) ∗ (F−1ϕ̃)(2j ·) ∗Rθαf = 0

when |l| > Lk + 6.
Putting these observations and Lemma 2.2 together, we obtain

‖Rθαf‖Lp(·),q(·) .
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗Rθαf |2

)1/2∥∥∥∥
Lp(·),q(·)

=
∥∥∥∥
( ∞∑

j=−∞
|2jn(F−1ϕ)(2j ·) ∗Rθαf |2

)1/2∥∥∥∥
Lp(·),q(·)

.

Let γ(β) be the constant such that

FRβf(ξ) = γ(β)|ξ|−βFf(ξ) (4.4)

(see for example [45, p. 64]). If we write

ϕκ(ξ) =

{
0 ξ = 0,

ϕ(ξ)|ξ|−κ otherwise
(4.5)

for κ ∈ R, then, from (4.4) and the Fourier transform, we have

2jn(F−1ϕ)(2j ·) ∗Rθαf = cnγ(θα)2j(n−θα)(F−1ϕθα)(2j ·) ∗ f,

so that

‖Rθαf‖Lp(·),q(·) ∼
∥∥∥∥
( ∞∑

j=−∞
22j(n−θα)|(F−1ϕθα)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

.
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The Hölder inequality and the equality

( ∞∑

j=−∞
22j(n−θα)|(F−1ϕθα)(2j ·)∗f |2

)1/2

=
( ∞∑

j=−∞
|2j(n−θα)(F−1ϕθα)(2j ·)∗f |2

)1/2

yield the pointwise estimate; we have

( ∞∑

j=−∞
22j(n−θα)|(F−1ϕθα)(2j ·) ∗ f |2

)1/2

≤
( ∞∑

j=−∞
22jn|(F−1ϕθα)(2j ·) ∗ f |2

)(1−θ)/2

×
( ∞∑

j=−∞
22j(n−α)|(F−1ϕθα)(2j ·) ∗ f |2

)θ/2

=
1

γ(α)θ

( ∞∑

j=−∞
22jn|(F−1ϕθα)(2j ·) ∗ f |2

)(1−θ)/2

×
( ∞∑

j=−∞
22jn|(F−1ϕ(θ−1)α)(2j ·) ∗Rαf |2

)θ/2

. (4.6)

If we invoke (4.3), then we have

∥∥∥∥
( ∞∑

j=−∞
22j(n−θα)|(F−1ϕθα)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp(·),q(·)

.
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕθα)(2j ·) ∗ f |2

)1/2∥∥∥∥
1−θ

Lp1(·),q1(·)

×
∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ(θ−1)α)(2j ·) ∗Rαf |2

)1/2∥∥∥∥
θ

Lp2(·),q2(·)
.

Note that

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕθα)(2j ·) ∗ f |2

)1/2∥∥∥∥
Lp1(·),q1(·)

∼ ‖f‖Lp1(·),q1(·)
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and that

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ(θ−1)α)(2j ·) ∗Rαf |2

)1/2∥∥∥∥
Lp2(·),q2(·)

∼ ‖Rαf‖Lp2(·),q2(·)

again by virtue of Theorem 1.1; remark that ϕθα and ϕ(θ−1)α satisfy the assump-
tion (1.2) and (1.3) of Theorems 1.1 and 3.2, since ϕ does. If we combine the
observations above, we obtain (3.11) and then (1.9).

The proof of Theorem 1.7 is similar to the above by using Proposition 1.6,
Theorem 4.2 and (4.6).

Remark 4.3. The inequality

‖Rθαf‖Lp(·),q(·) . ‖f‖1−θ
Lp1(·),q1(·)‖Rαf‖θ

Lp2(·),q2(·)

hold for all f ∈ Lp1(·),q1(·)(Rn) provided one of the following conditions is fulfilled.

1. f ∈ L∞comp(Rn).
2. Rα|f | ∈ Lp2(·),q2(·)(Rn).
3. The origin 0 is not contained in the support of Ff .

The proof is just a matter of reexamination of the above proof. In particular,
when Ff does not have 0 as its support, Theorem 3.2 is directly applicable and
the same argument works.

4.3. Extension of Theorem 1.4.
We reexamine the fundamental inequality (Theorem 1.4) and we obtain the

following extension. We define

Rα[(F−1ϕ)(2k·) ∗ f ] := γ(α)F−1[|ξ|−αF [(F−1ϕ)(2k·) ∗ f ]]

so that Rα[(F−1ϕ)(2k·) ∗ f ] makes sense for all f ∈ S ′(Rn).

Theorem 4.4. Let p, p1, p2 : Rn → (1,∞) satisfy (p1), (p2) and (p3) and
let q, q1, q2 : Rn → R satisfy (q1) and (q2). Assume that these functions are related
by

1
p(x)

=
1− θ

p1(x)
+

θ

p2(x)
,

q(x)
p(x)

= (1− θ)
q1(x)
p1(x)

+ θ
q2(x)
p2(x)

for some θ ∈ (0, 1). Define ϕθα by (4.5). Then, for f ∈ Lp1(·),q1(·)(Rn), we have
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∥∥∥∥
∞∑

j=−∞
2j(n−θα)|(F−1ϕθα)(2j ·) ∗ f |

∥∥∥∥
Lp(·),q(·)

.
∥∥∥∥ sup

k∈Z
(2kn|(F−1ϕ)(2k·) ∗ f |)

∥∥∥∥
1−θ

Lp1(·),q1(·)

×
∥∥∥∥ sup

k∈Z
(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)

∥∥∥∥
θ

Lp2(·),q2(·)
.

For a proof of Theorem 4.4, we note the following lemma.

Lemma 4.5. Let A,B > 0 and κ1, κ2 > 0. Then

∞∑

j=−∞
min(2−jκ1A, 2jκ2B) . Aκ2/(κ1+κ2)Bκ1/(κ1+κ2).

Proof. We calculate directly:

∞∑

j=−∞
min(2−jκ1A, 2jκ2B) =

∑

j< 1
κ1+κ2

log2
A
B

2jκ2B +
∑

j≥ 1
κ1+κ2

log2
A
B

2−jκ1A

.
(

A

B

)κ2/(κ1+κ2)

B = Aκ2/(κ1+κ2)Bκ1/(κ1+κ2).

So the result follows. ¤

Proof of Theorem 4.4. Recall that ϕ satisfies (1.2), that is, supp(ϕ) ⊂
B(8) \ B(1). Also, ϕθα is given by (4.5) with κ = θα. Therefore, if we choose
τ ∈ C∞comp(Rn) so that supp(τ) ⊂ B(16) \B(1/2) and that τ ≡ 1 on B(8) \B(1),
then we have

ϕθα(ξ) = τ(ξ)ϕθα(ξ) = τ(ξ)|ξ|−θαϕ(ξ) (ξ ∈ Rn \ {0}).

With this in mind, let us denote τκ(ξ) = τ(ξ)|ξ|−κ for ξ ∈ Rn\{0} and κ > 0. If we
define τκ(0) = 0, then it follows from the support condition that τθα ∈ C∞comp(Rn).
As a result, we obtain

2jn(F−1ϕθα)(2j ·) ∗ f = cn22jn(F−1τθα)(2j ·) ∗ (F−1ϕ)(2j ·) ∗ f

and F−1τθα ∈ S(Rn). Consequently, if we invoke Proposition 2.1, then we have
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2jn|(F−1ϕθα)(2j ·) ∗ f(x)| . M [2jn(F−1ϕ)(2j ·) ∗ f ](x).

In particular,

2jn|(F−1ϕθα)(2j ·) ∗ f(x)| . M

[
sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗ f |)
]
(x). (4.7)

Likewise, we have an equality

2jn(F−1ϕθα)(2j ·) ∗ f = cn,α22jn+jα(F−1τ(θ−1)α)(2j ·) ∗ (F−1ϕ)(2j ·) ∗Rαf,

which yields

2jn|(F−1ϕθα)(2j ·) ∗ f(x)| . 2jαM

[
sup
k∈Z

(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)
]
(x) (4.8)

by Proposition 2.1 again. We replace (4.6) with the following pointwise estimate.
By virtue of (4.7) and (4.8), we have

∞∑

j=−∞
2j(n−θα)|(F−1ϕθα)(2j ·) ∗ f |

.
∞∑

j=−∞
min

{
2−jθαM

[
sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗ f |)
]
,

2j(1−θ)αM

[
sup
k∈Z

(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)
]}

.
(

M

[
sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗ f |)
])1−θ(

M

[
sup
k∈Z

(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)
])θ

.

Here for the last inequality, we used Lemma 4.5. By this inequality, (4.3) and
Lemma 2.2, we can go through the same argument as Theorem 1.4. ¤

To compare our results, it may be of use to observe the following:

Lemma 4.6. Let 0 < α < n. Define a Banach space Xα(Rn) of L1
loc(Rn)-

functions by the norm

‖f‖Xα =
∫

Rn

(1 + |y|)α−n|f(y)|dy.
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1. The space Xα(Rn) is continuous embedded into S ′(Rn). More precisely,

∫

Rn

|f(x)u(x)| dx .
(

sup
x∈Rn

(1 + |x|)−α+n|u(x)|
)
‖f‖Xα

for all f ∈ Xα(Rn) and u ∈ S(Rn).
2. The integral Rαf(x) =

∫
Rn |x−y|α−nf(y) dy also defines an element in S ′(Rn).

More precisely,

∫

Rn

|u(x)Rαf(x)| dx .
(

sup
x∈Rn

(1 + |x|)n+1|u(x)|
)
‖f‖Xα

for all f ∈ Xα(Rn) and u ∈ S(Rn). Moreover,

∫

Rn

u(x)Rαf(x) dx =
∫

Rn

Rαu(x)f(x) dx

for all f ∈ Xα(Rn) and u ∈ S(Rn).

The proof of this lemma is based upon the observation that

|Rαu(x)| ≤
(

sup
z∈Rn

(1 + |z|)n+1|u(z)|
) ∫

Rn

|x− y|α−n

(1 + |y|)n+1
dy

.
(

sup
z∈Rn

(1 + |z|)n+1|u(z)|
)

(1 + |x|)α−n.

Remark 4.7. We claim that Theorem 4.4 covers Theorem 1.4. As before,
a passage to the limit allows us to consider f ∈ L∞comp(Rn) under the condition of
Theorem 1.4.

If necessary, we can choose ϕ ∈ S(Rn) in (1.2) so that

∞∑

j=−∞
ϕ(2−jξ) ≡ χRn\{0}(ξ) (ξ ∈ Rn).

Note that Rαf is an L1
loc(Rn) function and that Proposition 2.1 yields pointwise

estimates

sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗ f |) . Mf
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sup
k∈Z

(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|) = sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗Rαf |)

. M [Rαf ].

By Lemma 2.2 we have

∥∥∥∥ sup
k∈Z

(
2kn|(F−1ϕ)(2k·) ∗ f |)

∥∥∥∥
1−θ

Lp1(·),q1(·)
. ‖f‖1−θ

Lp1(·),q1(·) (4.9)

∥∥∥∥ sup
k∈Z

(
2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)

∥∥∥∥
θ

Lp2(·),q2(·)
. ‖Rαf‖θ

Lp2(·),q2(·) . (4.10)

Observe that

f(x) =
∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ f(x)

in the topology of L1+ε(Rn), where 0 < ε < (n/θα) − 1. Note that Rθα is a
bounded linear operator from L1+ε(Rn) to Ln(1+ε)/(n−θα(1+ε))(Rn), since

1
1 + ε

− θα

n
=

n− θα(1 + ε)
n(1 + ε)

.

Hence, it follows that

Rθαf(x) =
∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗Rθαf(x)

in the topology of Ln(1+ε)/(n−θα(1+ε))(Rn). Also, by the triangle inequality and
the fact above, we obtain

∞∑

j=−∞
2j(n−θα)|(F−1ϕθα)(2j ·) ∗ f(x)| ≥

∣∣∣∣
∞∑

j=−∞
2j(n−θα)(F−1ϕθα)(2j ·) ∗ f(x)

∣∣∣∣

&
∣∣∣∣

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗Rθαf(x)

∣∣∣∣

= |Rθαf(x)|.
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Consequently, we obtain

∞∑

j=−∞
2j(n−θα)|(F−1ϕθα)(2j ·) ∗ f(x)| & |Rθαf(x)|. (4.11)

From (4.9)–(4.11), we see that Theorem 4.4 covers Theorem 1.4.

The following example illustrates that Theorem 4.4 actually extends Theorem
1.4.

Example 4.8. Let Ψ, Φ ∈ S(Rn) be taken so that they are R-valued and
that

supp(Ψ) ⊂ B

(
41
10

)∖
B

(
19
10

)
, Ψ ≡ 1 on B(4) \B(2),

supp(Φ) ⊂ B

(
1
10

)
, Φ ≡ 1 on B

(
1
20

)
.

We set ϕ(ξ) := Ψ(ξ). Note that ϕ is satisfies the requirement of Theorem 1.1 by
virtue of (1.7).

The function given by

f =
∞∑

j=1

F−1[Φ(· − (3 · 2j−1, 0, 0, . . . , 0))]

is a typical example to which Theorem 4.4 is applicable but Theorem 1.4 is not.
Strictly speaking, we need to truncate f so that we have f ∈ Lp(·),q(·)(Rn). How-
ever, we omit the details of this tedious and routine argument.

To see this, we first note that

supp(Φ(· − (3 · 2j−1, 0, 0, . . . , 0))) ⊂ B((3 · 2j−1, 0, 0, . . . , 0), 10−1)

⊂ B(3 · 2j−1 + 10−1)\B(3 · 2j−1 − 10−1)

⊂ B

(
31
10
· 2j−1

)∖
B

(
29
10
· 2j−1

)

for all j ∈ N.
Let k ∈ Z. Observe that the relation
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supp(Ψ(2−k·)) ⊂ B

(
41
10
· 2k

)∖
B

(
19
10
· 2k

)

implies

Ψ(2−k+1·)Φ(· − (3 · 2j−1, 0, 0, . . . , 0)) ≡ 0

if j 6= k. Meanwhile if j = k, the relation

Ψ(2−j ·) ≡ 1 on B(4 · 2j) \B(2 · 2j)

implies

Ψ(2−k+1·)Φ(· − (3 · 2j−1, 0, 0, . . . , 0)) = Φ(· − (3 · 2j−1, 0, 0, . . . , 0)).

Consequently

Ψ(2−k+1·)Φ(·−(3·2j−1, 0, 0, . . . , 0)) = δjkΦ(·−(3·2j−1, 0, 0, . . . , 0)) (j ∈ N, k ∈ Z),

which yields

2jn(F−1ϕ)(2j ·) ∗ f =

{F−1[Φ(· − (3 · 2j−1, 0, 0, . . . , 0))] (j ≥ 1),

0 (j ≤ 0)

and

2jn(F−1ϕ)(2j ·) ∗Rαf ∼
{F−1[| · |−αΦ(· − (3 · 2j−1, 0, 0, . . . , 0))] (j ≥ 1),

0 (j ≤ 0).

Consequently, for j ≥ 1, we obtain

sup
j∈Z

2jn|(F−1ϕ)(2j ·) ∗ f | = |F−1Φ| (4.12)

sup
j∈Z

2jn|(F−1ϕ)(2j ·) ∗Rαf(x)| . (1 + |x|)−n−1 (4.13)

∑

j∈Z
|2jn(F−1ϕ)(2j ·) ∗ f |2 = χ{F−1Φ 6=0} ×∞. (4.14)

Indeed, (4.13) is verified by the following:
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∫

Rn

∣∣∣∣
∂m1

∂x1
m1

∂m2

∂x1
m2

· · · ∂mn

∂x1
mn

Φ(ξ − (3 · 2j−1, 0, . . . , 0))|ξ|−α

∣∣∣∣ dξ1 dξ2 · · · dξn . 1

for all j ≥ 1 and all multiindices (m1,m2, . . . , mn). Since F−1Φ ∈ S(Rn) and
{F−1Φ 6= 0} is a set of positive measure, we have

∥∥∥∥ sup
k∈Z

(2kn|(F−1ϕ)(2k·) ∗ f |)
∥∥∥∥

1−θ

Lp1(·),q1(·)

∥∥∥∥ sup
k∈Z

(2kn|Rα[(F−1ϕ)(2k·) ∗ f ]|)
∥∥∥∥

θ

Lp2(·),q2(·)

< ∞,

while

‖f‖1−θ
Lp1(·),q1(·)‖Rαf‖θ

Lp2(·),q2(·) = ∞.

This example shows that f is beyond the reach of Theorem 1.4 but that Theorem
4.4 can control such f .

As a corollary of Theorem 4.4, we have the boundedness of the maximal
operator associated to the Gagliardo-Nirenberg inequality.

Corollary 4.9. Under the same condition as Theorem 1.4, one has

∥∥∥∥ sup
−∞<K≤L<∞

∣∣∣∣
L∑

j=K

Rθα

[
2jn(F−1ϕ)(2j ·) ∗ f

]∣∣∣∣
∥∥∥∥

Lp(·),q(·)

. ‖f‖1−θ
Lp1(·),q1(·)‖Rαf‖θ

Lp2(·),q2(·) .

5. Related estimates.

5.1. Related estimates for Morrey spaces and Hardy-Morrey
spaces.

Suppose that the parameters p, q, r, s satisfy

0 < q ≤ p < ∞, 0 < r ≤ ∞, s ∈ R.

Define the Morrey norm of a measurable function f by

‖f‖Mp
q

:= sup
x∈Rn, r>0

r(n/p)−(n/q)

( ∫

B(x,r)

|f(y)|q dy

)1/q

.
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The parameter p seems to reflect the global integrability while q describes the local
integrability.

Proposition 5.1 ([27, Proposition 4.1]). Keep to the same notations for
the functions ϕ and ϕ̃ as Theorem 1.1. Assume that 1 < q ≤ p < ∞. Then we
have the following equality and norm equivalence: For all f ∈Mp

q(Rn) we have

f = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f, in S ′(Rn),

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Mp

q

∼ ‖f‖Mp
q
.

We set ψt(x) = t−n exp(−|x|2/t2) for t > 0 and x ∈ Rn as before. Then we
define the Hardy-Morrey space HMp

q(Rn) as the set of all f ∈ S ′(Rn) satisfying

‖f‖HMp
q

:=
∥∥∥∥ sup

t>0
|ψt ∗ f(·)|

∥∥∥∥
Mp

q

< ∞.

Proposition 5.2 ([38, Theorem 4.2]). Keep to the same notations for the
functions ϕ and ϕ̃ as Theorem 1.1. Assume that 0 < q ≤ p < ∞. Then we have
the following equality and norm equivalence: For all f ∈ HMp

q(Rn) we have

f = cn

∞∑

j=−∞
2jn(F−1ϕ)(2j ·) ∗ 2jn(F−1ϕ̃)(2j ·) ∗ f, in S ′(Rn),

∥∥∥∥
( ∞∑

j=−∞
22jn|(F−1ϕ)(2j ·) ∗ f |2

)1/2∥∥∥∥
Mp

q

∼ ‖f‖HMp
q
.

The Hölder inequality for Morrey spaces is as follows: The proof is straight-
forward by the Hölder inequality for Lebesgue spaces.

Proposition 5.3. Let 0 < q1 ≤ p1 < ∞, 0 < q2 ≤ p2 < ∞ and let
0 < q ≤ p < ∞. Assume that these parameters are related by

1
p

=
1− θ

p1
+

θ

p2
,

1
q

=
1− θ

q1
+

θ

q2

for some θ ∈ (0, 1). Then,
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‖f1−θgθ‖Mp
q

. ‖f‖1−θ
Mp1

q1
‖g‖θ

Mp2
q2

for all positive measurable functions f and g.

The following theorem can be proven in the same way as Theorems 1.4 or 1.7
by using Propositions 5.1, 5.2 and 5.3.

Theorem 5.4. Let 0 < q1 ≤ p1 < ∞, 0 < q2 ≤ p2 < ∞ and let 0 < q ≤ p <

∞. Assume that these parameters are related by

1
p

=
1− θ

p1
+

θ

p2
,

1
q

=
1− θ

q1
+

θ

q2

for some θ ∈ (0, 1).

1. Assume q1, q2, q > 1. Then, for f ∈Mp1
q1

(Rn) satisfying Rα|f | 6≡ ∞,

‖Rθαf‖Mp
q

. ‖f‖1−θ
Mp1

q1
‖Rαf‖θ

Mp2
q2

.

2. For f ∈ HMp1
q1

(Rn) such that 0 /∈ supp(Ff),

‖Rθαf‖HMp
q

. ‖f‖1−θ
HMp1

q1
‖Rαf‖θ

HMp2
q2

.

5.2. Related estimates for Stochastic process.
Let (Ω,F , P ) be a probability space and let {Fn}∞n=1 be an increasing se-

quence of sub σ-fields. Assume that F1 contains all null sets in F and that
F = σ

( ⋃∞
n=1 Fn

)
. Let 1 < p < ∞. According to the well-known Burkholder-

Gundy-Davis inequality, we have

‖X‖Lp(Ω) ∼ ‖E[X | F1]‖Lp(Ω) +
∥∥∥∥
( ∞∑

j=1

|E[X | Fj+1]− E[X | Fj ]|2
)1/2∥∥∥∥

Lp(Ω)

for all X ∈ Lp(Ω), where E[X|G] denotes the conditional expectation of a σ-field
G.

In analogy with Theorem 1.1, we have the following result.

Proposition 5.5. For θ ∈ (0, 1) and s ∈ R we have
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∥∥∥∥E[X | F1] +
∞∑

j=1

2jθs(E[X | Fj+1]− E[X | Fj ])
∥∥∥∥

Lp(Ω)

. ‖X‖1−θ
Lp(Ω)

∥∥∥∥E[X | F1] +
∞∑

j=1

2js(E[X | Fj+1]− E[X | Fj ])
∥∥∥∥

θ

Lp(Ω)

for all X ∈ Lp(Ω) such that E[X | F1] +
∑∞

j=1 2js(E[X | Fj+1] − E[X | Fj ])
converges in the topology of Lp(Ω).
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