Abstract
Let $H^2(D^2)$ be the Hardy space over the bidisk. Let $\{\varphi_n(z)\}_{n \geq 0}$ and $\{\psi_n(w)\}_{n \geq 0}$ be sequences of one variable inner functions satisfying some additinal conditions. Associated with them, we have a Rudin type invariant subspace $\mathcal{M}$ of $H^2(D^2)$. We study the Beurling type theorem for the fringe operator $F_w$ on $\mathcal{M} \ominus z \mathcal{M}$.
Citation
Kei-Ji IZUCHI. Kou-Hei IZUCHI. Yuko IZUCHI. "Wandering subspaces and the Beurling type theorem, III." J. Math. Soc. Japan 64 (2) 627 - 658, April, 2012. https://doi.org/10.2969/jmsj/06420627
Information