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Abstract. Let H2(D?) be the Hardy space over the bidisk. Let
{pn(2)}n>0 and {¥n(w)}n>0 be sequences of one variable inner functions
satisfying some additinal conditions. Associated with them, we have a Rudin
type invariant subspace .# of H2(D2). We study the Beurling type theorem
for the fringe operator Fyy, on A4 © z.4 .

1. Introduction.

Let T be a bounded linear operator on a Hilbert space H. For a subset E
of H, we denote by [E]y the smallest invariant subspace of H for T' containing
E. Let M be an invariant subspace of H for T. We denote by M © TM the
orthogonal complement of TM in M. The space M © T M is called a wandering
subspace of M for the operator T. We have [M & TM]y C M. We say that the
Beurling type theorem for T if [M & T M|y = M for every invariant subspace M
of H for T'. Our basic problem is to find operators 1" on H for which the Beurling
type theorem holds.

Let D be the open unit disk in the complex plane C'. We denote by H?(D) the
Hardy space on D. A function ¢(z) in H?(D) is called inner if [p(z)| = 1 a.e. on
OD. Let T, be the multiplication operator on H?(D) by the coordinate function z.
For every nonzero invariant subspaces M of H2(D) for T, the Beurling theorem [2]
says that MOT, M = C-p(z) for an inner function ¢(z) and M = [M ST, M| y2(p)
(see also [5], [7]). For a nonzero closed invariant subspace M of the Dirichlet shift
T, on the Dirichlet space &, Richter showed that dim(M © T,M) = 1 and the
Beurling type theorem holds for the Dirichlet shift in [15]. Aleman, Richter,
and Sundberg proved that the Beurling type theorem also holds for the Bergman
shift on the Bergman space L2(D) in [1]. In [19], Shimorin showed the following
theorem.
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SHIMORIN’S THEOREM. IfT : H — H satisfies the following conditions

(a) [T +yl2 < 2022 + ITyl?), @y e H,
(b) ({T"H :n >0} = {0},

then the Beurling type theorem holds for T.

As an application of this theorem, Shimorin gave a simpler proof of the Ale-
man, Richter, and Sundberg theorem (see also [6]). Later, different proofs of the
the Beurling type theorem are given in [12], [14], [20]. Recently, the authors [8]
proved the following theorem.

THEOREM A. IfT:H — H satisfies the following conditions

(1) | T|* + |T**Tz|* < 2|T*Tx|?, =€ H,
(ii) T is bounded below,
(iii) ||T*"z| — 0 as n — oo for every x € H,

then the Beurling type theorem holds for T.

Also it is pointed out that conditions (a) and (b) in Shimorin’s theorem are
equivalent to conditions (i)—(iii) in Theorem A.

Let H? := H?(D?) be the Hardy space over the bidisk D?. We identify a
function in H? with its boundary function on the distinguished boundary (9D)? of
D2 so we think of H? as a closed subspace of the Lebesgue space L2 := L2((0D)?).
We use z,w as variables in D?. We denote by H?(z) the z-variable Hardy space,
and we think of H?(z) as a closed subspace of H?. Then H? coincides with the
tensor product H?(z) ® H?(w). Let T, T, be multiplication operators on H? by
z and w. A closed subspace M of H? is called invariant if T,M C M and T,,M
C M. For a subset E of M, we denote by [E]g2 the smallest invariant subspace
containing E. For a subspace E of H?, we denote by Pg the orthogonal projection
from L? onto E. See books [3], [16] for the study of the Hardy space H? over D?.

Let M be an invariant subspace of H?. Write R, = T, |y and Ry, = Ty,
the operators on M. Since R, is an isometry on M, by the Wold decomposition
theorem we have

M=) &MozM):".

n=0

So a lot of information of an invariant subspace M are considered to be encoded
in those of M © zM. So to study the structure of invariant subspaces M of H?,
M & zM is one of the most important spaces. Note that Pyro.nr =1 — R, R}. To
study M & zM, Yang [21] defined the fringe operator F,, on M & zM by
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and studied the properties of Fy, (see [21], [22], [23]).

Let M, := [z—¢(w)] g2 for a nonconstant inner function ¢(w). In the previous
paper [9], as applications of Theorem A we studied the Beurling type theorem for
the fringe operator F,, on M, © zM, and for the compression operator S, on
H? & M, respectively.

In this paper, we shall study invariant subspaces of H? based on inner se-
quences. Let {¢,(2)}n>0 and {1, (w)}n>0 be sequences of inner functions such
that ©n(2)/@n+1(2) and Y,41(w)/Yp(w) are inner functions for every n > 0.
Moreover we assume that (-, ¥, (w)H?(w) = {0}. Let

M=y D(pn(2)H(2)) @ (Yn(w)H? () © Ypsr (w)H (w)).

n=0

Then .# is an invariant subspace of H?. This type of invariant subspaces of H?
have been studied in [4], [16], [17], [18]. We have

MOzl =y o (2) (Yn(w) HE () © Y (w) HE (w)).

n=0

We study the Beurling type theorem for the fringe operator F,, on .4 © z.4 .
Without loss of generality, we assume that ¢p(w) = 1. Our strategy of the study
is to define an invertible bounded linear operator V' : H?(w) — .# ©z.# satisfying
VT, = F,V on H?(w). Using this operator, we study the Beurling type theorem
for F, on A © z.4. In Section 2, we shall study the case ¢o(0) # 0, and in
Section 4 we shall study the case ¢o(0) = 0.

For nonconstant inner functions ¢(z) and 1 (w), let

M = @(2)H? 4+ (w)H>.

Then M is an invariant subspace of H? and a special case of .#. Recently these
type of M are studied in [10], [23]. In Section 3, we study the Beurling type
theorem for F, on M © zM. When

bl = == A<,

we shall show that the Beurling type theorem holds for F;, on M & zM if and only
if [8]/(1+|8]) < |a|?, where a = ¢(0) # 0.
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2. Invariant subspaces based on inner sequences.

Let {pn(2)}n>0 and {1, (w)}n>0 be sequences of inner functions satisfying
the following conditions;

(1) vo(w) =1,
(2) (¢n(2))/(pnt1(2)) is an inner function and (¢¥p,41(w))/(¢n(w)) is a noncon-
stant inner function for every n > 0,

(3) MnZo Yn(w)H?(w) = {0}.
Write

VYnt1(w)

on(2) _ 5
- Cn( ) wn(w)

and
Pn+1 (z)

Let
M =" B(on(2)H2(2)) @ (o (W) H* (W) © oy (w) H? (w))

=Y B(en(2)H*(2)) @ (¢n(w) (H?(w) © &u(w) H? (w))).

By conditions (2) and (3), it is not difficult to see that .# is an invariant subspace
of H? and

ME2M =Y Don(2)thn(w) (H*(w) © & (w) H? (w)).

n=0

By (1) and (3), we have

H?*(w) = Z S (w) (H? (w) © &, (w)H? (w)).
n=0
For each n > 0, we write

Ep = tn(w) (H*(w) © & (w) H* (w)).

Then
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= ®E, and M oz2M =) Spu(2)E,.
= n=0

Moreover in this and next sections, we assume that

(4) 0 <lpo(0)] < 1.

Let Ag = 1, and for each positive integer n let

n—1
An = H Cj (O)
j=0

By conditions (2) and (4), ¢»(0) # 0, (,(0) # 0, and A, # 0 for every n > 0. We
have

n—1

" =0 @i+1(0)  ©u(0)’

so we get 0 < |po(0)| < |Ant1] < |An| < |Ao] = 1. Note that |(,(0)] — 1 as
n — oo. We define an operator V : H*(w) — 4 & z.4 by

V(gn(w)) = Anpn(2)gn(w),  gn(w) € Ep.

Then V is an invertible bounded linear operator.

LEMMA 2.1. Let

and

> Gfaw) € 3 0E, - B (w)
n=0 n=0

Then we have the following.
(1) Vig=30 ®Angn(w) € H*(w).
(i) Vg =30l @A gn(w ) € H?(w).
(i) (V*)"Lf(w) = ¥ @A,V on(2) fu(w) € M © 2.
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(iv) (V*V)7Hf(w) = 35020 @l An] 72 fu(w) € H?(w).

PrOOF. (i) We have
(V7g, f(w)) = {9,V f(w))

_ < 3 G (2)gn(w), f_oj (2 ul0))

< > g z & fulw >
Thus we get (i).
It is easy to get (ii)—(iv) from (i) and the definition of V. O
The following is a key theorem in this paper.
THEOREM 2.2. VT, = F,V on H?(w).

PrROOF. Let k be a nonnegative integer. We have
o0
> @B, = vi(w) B (w),
=k

so Yo, ®F, is an invariant subspace of H*(w) for T,,. Let f(w) € Ej. Then we
may write wf(w) as

=" ofa(w) € Y DE,.
n=~k n=k

Hence

VT, f(w Z@An% Fa(w).

We have also
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FyV f(w) = Fy Appr(2) f(w)

—Akp/ﬂez/z(@k Z@fn >

=AY BPagoza(pe(z) fn(w))

n=k
= A Z @<<Pk(z)fn(w)7 @n(z)fn(w»sw
n=k "

= Ay Z B(pr(2), en(2))en(2) fu(w)
n=k

oo

_ P w Prk Pk+1 ”'(pn 1 3
= vl >@n_zmeaz4k<%1 Pt P >¢n< ) o)
ERNEIASESS (H@ N EC) eI
n=k+1 =0 J=k
= Z @An¢7z(z)fn(w)'
n==k

Therefore VT, f(w) = F, V f(w) for every f(w) in Ej and k > 0. This shows the
assertion. g

The following corollary follows directly from Theorem 2.2.

COROLLARY 2.3.  For every inner function 0(w), V (8(w)H?(w)) is an in-
variant subspace of M © z M for F,.

THEOREM 2.4. Let L be a nonzero invariant subspace of M & z M for F,,.
Then we have the following.

(i) L=V (0(w)H?(w)) for an inner function 6(w).

(i) VO(w) is a cyclic vector of L for F,.

(iii) dim(L © F, L) = 1.

(iv) (A ©ztt)© L= (V)" (H?(w) © 0(w)H?(w)).

(v) Letg € L satisfy L& Fy, L =C-g. The [LOFLL] goz.a = L if and only if
(V=19)/0(w) is an outer function. If (V~tg)/0(w) is not outer, let 61(w)
be its inner factor, then

v

V((00,)(w)H?(w)) = [L & FuLl aoza-
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(vi) g = Pr(V*)~'0(w) for g in (v).

PROOF.

(i) By Theorem 2.2, we have VT,V 'L = F,,L C L. Then T,V 'L Cc V71L
and V1L is a nonzero closed subspace of H?(w). By the Beurling theorem,
V7L = 0(w)H?(w) for an inner function #(w). Thus we get L = V (0(w)H?(w)).

(ii) By Theorem 2.2, V(T*0(w)) = FFV (0(w)) for every k > 0. Since 6(w)
is a cyclic vector in 6(w)H?(w) for T, by (i) we get (ii).

(iii) By (i) and Theorem 2.2,

FyuL = F,V(0(w)H?*(w)) = VT, (0(w)H?*(w)) = V(wh(w)H*(w)).
Since V' : H?(w) — # © z.# is invertible,
FuL S C-VO(w)+ V(wd(w)H*(w)) =L

and F,, L is closed. Thus we get (iii).
(iv) Let f € # Sz . By (i), f L Lif and only if V*f L 6(w)H?(w). Hence

V*( M ©2t)o L) = H*(w) © 0(w)H*(w).

Thus we get the assertion.

(v) By Theorem 2.2, VTEV ! = Fk for every k > 0. So [LOF,L].ser.0 = L
if and only if the linear span of {w*(V~1g)(w) : k > 0} is dense in O(w)H?(w).
Thus we get the first assertion.

Suppose that (V ~1g)(w)/0(w) is not outer. Let 61 (w) be its inner factor. By
the above argument, we have

V((001)(w)H?(w)) = [L & FuLlacza-
(vi) We have (V*)~10(w) L F, L. For, by (i) we have
{((V*)"10(w), Fuh) = (8(w), V" F,h) = (8(w), T,V ~1h) = 0

for every h € L. Also we have (V*)~'0(w) £ L. For, by (i) we have O(w) [
O(w)H?(w) = V~LL. Hence by (iii), we may take g(w) = Pr(V*)~10(w). O

For arbitrary inner function 6(w), it seems difficult to compute g =
Pr(V*)~'0(w). But for some special cases, we may compute it. For each k > 0,
let
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M =" & (pa(2)H(2)) @ (n(w) (H* (w) © &u(w) H* ().
n=~k
Then we have
S ety = S Bpn () = V() HP ).

n=~k

Hence by Corollary 2.3, #}, © z.#}; is an invariant subspace of .#Z © z.# for F,,,
and by Theorem 2.4 (ii) Vi (w) is a cyclic vector of .#}, © z.4#), for F,,.

COROLLARY 2.5.
(M), © 2M,) © Fo( My, © 240,) = C - (V) Lahy(w)
for every k > 0.

PRrROOF. Write

=Y @falw) € DE,.
n=k n==k
By Lemma 2.1 (iii),
(V) e (w Z@A falw) € My, & 2ty
By Theorem 2.4 (vi),
(%kGZ%k)@Fw(%kGZ%k) =C- (V*)_lwk(w). O

COROLLARY 2.6.  For each k > 0, (V*V) 'p(w))/vr(w) is an outer
function if and only if

[(L//k @Z.//k) @Fw(%]@ @Z.//k)] = My © z M.

MSzM

PROOF. Since (V*V) 1y (w) = V-H(V*)~ 1 (w), by Theorem 2.4 (v)
and Corollary 2.5 we get the assertion. O

COROLLARY 2.7. Let k> 0. If £&(0) =0, then
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[(.///k @Z.///k)@Fw(.///k Gz///k)] = My © zMy,.

MSzM

PROOF.  We have ¢y 1(w) = ¢r(w)& (w). Since &(0) = 0, we have ¢ (w) €

(
Ej. So we have (V*) "1y (w) = ch_l)gpk(z)wk(w). Moreover V=1(V*) =Ly (w) =
| Ak

| Ag| =245 (w). Thus (V*V) Ly (w) /i (w) = | =2 is outer. Then by Corollary
2.6, we get the assertion. O

We note that
(M 2ll)OF,(MO2M)= MO (2M+wM).
COROLLARY 2.8. If (V*V)711 is not an outer function, then
(S (2 +wl) .y # M.
Proor. By Corollary 2.6,

C MOz M.

(M ©2t) O Fu(M S2M)) 4. &

Hence

(M S (2l +wll) ez G MO 2M.

Therefore
(MO z2M)S [ MO (2 M+ Wl pcrm LM O (2 M +w) 4.

Thus we get the assertion. O
The converse of Corollary 2.8 does not hold, see Theorem 3.1 (v).

THEOREM 2.9.  Suppose that &11(0) = 0 for some k > 0. Let a = (;(0)
and B = £, (0). Then we have the following.

(i) If1/2 <|af* <1, then

[(//k O zMy,) © Fu( My, © Z//Zk)]//{ez//l = My © z M.
(ii) If 0 < |a|? < 1/2 and |B|/(1 +|8]) < |a|?, then
(M © 2M0) © Foo (M, © 24M)] . 4 = i © 24y
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(iii) If 0 < |af* < 1/2 and |a|? < |8|/(1+|8|), then
(M © 2M,) © Foo (M, © 24M)) . 4 F M © 24y,

so in this case the Beurling type theorem does not hold for F,, on M &z M4 .
PROOF. Recall that Ej, = ¢y (w)(H?*(w) © &(w)H?(w)) for each k > 0.
Since &41(0) = 0, Yr(w) L Ypr2(w)H?(w) and Yy41(w) € Egi1, so we have
Yr(w) = Y (w) (1 — & (0)&k(w)) @ &(0)Yr (w) &k (w)
= ¢y (w) (1 — & (0)&x(w)) B &, (0) i1 (w)

€ E,® Ery.

Note that A1 = AxCk(0) = adg. By Lemma 2.1 (iv),

R _L fk( )k (w) &k (w)

~ Y(w) 1— o~
= AP (1+ EE Bk (w ))

Hence ((V*V) ™'y (w))/thi(w) is an outer function if and only if

1—laf?

E )
T+ =lol

|B] <1, that is,

|a?

Therefore if 1/2 < |a|> < 1, then (1 —|al?)/|al? <1, s0 (V*V) 7! ¢p(w)) /1be(w)
is outer. If 0 < |o|> < 1/2 and |8]/(1418]) < |a|?, then ((V*V) " p(w)) /vbi(w)
is outer. If 0 < |o|* < 1/2 and |a|? < [B]/(1+ |8]), then ((V*V) " i (w)) /vbi(w)
is not outer. By Corollary 2.6, we get the assertion. (]

THEOREM 2.10.  Suppose that &,41(0) = 0, 0 < [¢x(0)]? < 1/2, and &(w)
is mot a finite Blaschke product for some k > 0. Then the Beurling type theorem
does not hold for F, on M & 2z .

PrROOF. Write @ = (;(0). Then 0 < |a|? < 1/2, so |a|?/(1 — |a|?) < 1. By
our assumption, there is an inner subfactor ng(w) of & (w) such that |a]?/(1 —
|a)?) < |no(0)] < 1. Write & (w) = no(w)m (w). Let O(w) = by (w)ni(w). Since
b1 () = ()€ (w), Bpp1 () /0 (w) = O(aw). Henee we have
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Vi1 (w) H? (w) € 0(w) H? (w) C g (w) H? (w).
We shall show that
[V (O(w)H?(w)) © FV(O(w)H*(W))] 0, 4 # V(O(w)H (w)),

so we get the assertion.
We note that ¢, (w)/0(w) is an inner function for every n > k + 1. Let

Pn(2) = Pryn(2), n >0

and
go(w)=1 and qn(w)wk&zu(;“), n>1
Write
w) = Qn+1(w)
pin (W) ()
Then
_ V() gy = Y @)

We note that {p,(2)}n>0 and {g,(w)}n>o satisty conditions (1)—(4). Let
L =" ®(pa(2)H(2)) @ (gn(w) (H*(w) © o (w) H? (w))).
n=0
Then .Z is an invariant subspace of H? and

L02L =y Opa(2)an(w)(H? (w) © pn(w)H? (w))

n=0

— () (12(0) 0 5 1))

Vitn (w)

o(w) (H2(w) © §k+n(w)H2(w))_

@) Dprin(z)

n=1
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We have
O(w) H2(w) = (0(w) H2(w) & e () H2(w))

&Y Oy (w) (H(w) © Eppn(w) H (w))
n=1

CE.® Y &E,.
n=k+1

We have also

0(w)(ZL & 22) = o1 (2) (0(w) H? (w) © Py (w) H* (w))

© Y BPrtn(2)in (W) (H? (0) © En (w) H (w))

n=1

= V(O(w)H*(w)) C M S 2.
Let

H = (pe(2)H?(2)) @ (0(w) H? (w) © Ypgr (w) H (w))

© Y O(Pran(2)H?(2)) @ (Yrepn (W) (H? (W) © & (w) H? (w))).
n=1

Then ¢ is an invariant subspace of H? and % © z# = V(6(w)H?(w)). Write
V. =T.lo, Viw=Tuwle, W, =T,|», and W,, = T,,| ». We define a unitary oper-
ator U: % — X byUf =0(w)f,f €. Then UV, = W,U and UV,, = W,,U.
Let G and H,, be the fringe operators on .Z © 2.£ and # © 2z, respectively.
Then Fy| oz = Hy, and for f € £ © 2% we have

U'H,Uf =U'"Pre.xWuUFf
=U Iy —WW)UVy f
=(lg = V.V )V f
= Pgo.2Vuf
=Gyf,

where [ is the identity operator on 2. Hence UG,, = F,,U on X © z.¢. By
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this fact, we have

[V (O(w)H?(w)) © Fu V (0(w) H? (w))] V(0(w)H?(w))

MOz M =

if and only if

(Ze22)0G,(ZLe22)] =Zoz%.

RASrAA

Now we work on . © 2.Z. We have

Po(0) _ _¢k(0) =0)=a and 0<|a]®< .

p1(0) B ¢r+1(0) 2’
and
~ Yrge(w) (W) (w)
QQ('UJ) - ajzw) - + 0(’[1))+ - Wo(w)§k+1(w)

Since £;4+1(0) = 0, we get ¢2(0) = 0. We have also

¢ (w) = W = no(w).

Hence ¢1(0) = 10(0). Moreover we have |a|?/(1 — |a|?) < |n9(0)| < 1. Therefore
by Theorem 2.9 (iii), we get

(L 622)0G, (L6 :22) £ L6z2%.

Lozz&

This shows that
[V(0(w)H?(w)) © F,V (0(w)H*(w))] 0., 7# V(0(w)H?(w)).

Thus we get the assertion. O

EXAMPLE 2.11.  Let a = ¢o(0)/¢1(0). We shall give an example of .#
satisfying 1/2 < |a|? < 1, but the Beurling type theorem does not hold for F,, on
M S zM, compared with the assertion of Theorem 2.9.

Let ¢o(w) = 1, 11 (w) be a singular inner function and ¥, (w) = w™;(w) for
n > 2. Let g(2) be a singular inner function satisfying 0 < |0 (0)|* < 1/2. There
exists a positive number 71 with 0 < 71 < 1 satisfying 1/2 < ¢ (0)[*/[0(0)™]* <
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1 and |¢o(0)]? < |po(0)™1]?> < 1/2. Let ¢1(2) = ¢o(2)™. Then there exists a
positive number 73 with 0 < ro < 11 < 1 satisfying 0 < [1(0)[*/]0(0)72]? < 1/2.
Let p2(2) = @o(2)™ and {rp},>3 be a sequence of positive numbers satisfying
0 <7rpt1 <1y <rg <711 <1 Then {¢n(2)}n>0 and {1y, (2) }n>0 satisfy conditions
(1)—(4). Note that & (w) = 91 (w)/vo(w) = ¥1(w) is not a finite Blaschke product.
Since

_ Ys(w) w3ihy (w)
Ya(w)  w?hy(w)

2(w)

:u}7

we have £(0) = 0. Also we have 0 < [(1(0)| = |¢1(0)|?/|¢2(0)]* < 1/2. Therefore
by Theorem 2.10, the Beurling type theorem does not hold for F,, on A4 & z. 4 .
O

Here we study the case ¢, (w) = w™,n > 0. We write e, = ¢, (z)w™ for
n > 0. Then {e, },>0 is an orthonormal basis for 4 & z.#. We have

Fyen = (wep, enii1)enti = (0n(2), oni1(2))ent1 = (n(0)ent1,

so Fy, on # © z.# is a unilateral weighted shift operator. The following was
pointed out essentially in [9, Theorem 2.1] as an application of Theorem A.

LEMMA 2.12.  Let H be a separable Hilbert space with an orthonormal basis
{Tn}n>0. Let {c,}n>0 be a sequence of complex numbers satisfying sup,, |¢,| < co.
Let T be a unilatral weighted shift on H defined by T1, = ¢, Thy1 for n > 0. If
1/vV2 <ol €1 and 1 < |cp|?(2 = |en_1|?) for every n > 1, then the Beurling type
theorem holds for T'.

By the above lemma, we have the following.

THEOREM 2.13.  Suppose that 1, (w) = w™ for every n > 0. If

Co(0)]* > and |¢,(0)]* > for everym > 1,

-
2- |<n—1(0)|2

N | =

then the Beurling type theorem holds for the fringe operator Fy, on M & z M .

3. The case M = p(z)H? + ¢ (w)H?2.

Let ¢(z) and ¢ (w) be nonconstant inner functions with ¢(0) # 0 and

M = (2)H? 4 (w)H>.
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Then M coincides with .# associated with the sequences of inner functions
po(z) = ¢(2), ¢n(z)=1, n>1
and
Yo(w) =1, hp(w) = w" (w), n>1.
So to study M we use the same notations as the ones in Section 2. We have

Ao = 1, A, = ¢(0) = (p(0) for n > 1, &o(w) = ¥(w), and &,(w) = w for n > 1.
We have also

FEy = H*(w) 0 ¢Y(w)H?*(w) and E, =C-w" "(w), n>1.

THEOREM 3.1.  Let ¢(z) and ¥(w) be nonconstant inner functions with
©(0) # 0 and M = ¢(2)H? + Y(w)H? Let a = ¢(0) and B = ¥(0). Then

we have the following.

(i) If1/2 < |al?, then

[(Me:zM)e Fy(MezM)],, . .\ =MG&zM.
(i) If 0 < |af* < 1/2 and |B]/(1 + |B]) < |af*, then

[(MezM)e Fy(Me M)\, =M zM.
(iii) If 0 < |af? < 1/2 and |of? < |8|/(1 + |B]), then

[(MezM)e Fy(MezM)],, .\ #MS2M,

so in this case the Beurling type theorem does not hold for F,, on M & zM .
(iv) If 0 < |al® < 1/2 and ¥(w) is not a finite Blaschke product, then the
Beurling type theorem does not hold for F,, on M © zM .
(v) IfB#0, then [MS(zM~+wM)]ar # M. Moreover if 0 < |8]/(1+|38]) < |a|?,
then (V*V)~11 is outer.

ProoOF.  (i)—(iii) follow from Theorem 2.9. (iv) follows from Theorem 2.10.
(v) Since 12(0) = 0, we have

1= (1= py(w)) & B(w) € By & B
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Since Ag =1 and A; = a, by Lemma 2.1 (iii) we have

(V)1 = () (1~ Biw)) & D)
1 mutn (o o B )
= (1-pu( ))(«p( >+a15w(w)).

Since ¢(z) and ¥ (w) are nonconstant inner functions, we have

(o) (250 ) 0) 0,

Hence there is (21, w1) € D? such that ((V*)7'1) (21, w1) = 0, so (V*)~!1 vanishes
on some complex curve C' in D? containing (z1,w1). By Corollary 2.5, M & (M +
wM) = C - (V*)711. Therefore any function in [M & (M + wM )]s vanishes on
C. On the other hand, the common zero set in D? of ¢(2)H? 4 ¢ (w)H? equals to

{(z,w) € D*: ¢(z) = 0,9(w) = 0}

and this is a discrete set in D?. Therefore we get [M & (zM + wM )|y # M.
We have

(V*V)'1 = (1 - Bo(w) & flgib(w) _ 4 0 lel)

Hence if |8]/(1 + |B]) < |a|?, that is, |3](1 — |a|?)/|e|? < 1, then (V*V)~1 is
outer. 0

COROLLARY 3.2.  Let ¢(z) and (w) be nonconstant inner functions with
©(0) # 0 and M = p(2)H? + p(w)H?. Then [M © (:M +wM)|p # M.

PROOF. Suppose that [M@(zM—i—wM)]M = M and ¢(0) # 0. By Theorem
3.1 (v), we have (0) = 0. Hence we have M © (zM + wM) = C - p(z), so
[M © (M +wM)|yr = ¢(2)H? # M. This is a contradiction. O

REMARK 3.3. Let M = ¢(2)H? + ¢(w)H? for nonconstant inner functions
©(z) and 1(w) (here we do not assume that ¢(0) # 0). We note that [M © (zM +
wM)]p = M if and only if p(0) = ¢(0) = 0. For, if either ¢(0) # 0 or 1(0) # 0,
by Corollary 3.2 we have [M © (zM + wM)|p # M.

Suppose that ¢(0) = (0) = 0. Then it is easy to see that
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M e (zM +wM) =C-¢(z) ® C - p(w),

so we get [M & (zM +wM)],, = M (see also [11, Theorem 2.3]). O

Now we study the invariant subspace M under the assumption that

w0 <1

O

THEOREM 3.4. Let ¢(z) be a nonconstant inner function with ¢(0) # 0,
P(w) = (w — B)/(1 — Bw) with |B] < 1, and M = p(2)H? + p(w)H?. Let a =
©(0). Then the Beurling type theorem holds for F,, on M © zM if and only if
1B1/(1+18]) < laf.

PrOOF. Let L be a nonzero invariant subspace of M & zM for F,,. By
Theorem 2.4, L = V (§(w)H?(w)) for an inner function §(w). Since

9 P w—0 5
H*(w)=C 1—310@1—510}[ (w),
we have
20 = . W) W= o
f(w)H*(w) =C T @e(w)l—ﬁwH (w).
Note that
A():]., An:a(n21)7 Eo—C 1—1[311}7
and
En:C~w”*1w_,ﬂ, n>1
1—pw
Then
20 = . v 2 WP
V((w)H*(w)) =C Vlfﬁw +9(w)175wH (w).

By Theorem 2.4,
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V(O(w)H?(w)) © Fu V(0(w)H?(w)) = C - g

for some g € V(0(w)H?(w)) with g # 0. By Theorem 2.4 (vi), we may take
g = Pr(V*)710(w), where L = V (§(w)H?(w)). Since

B(w) = <9(w)7 Vi- ﬁl2>\/1 197 . (e(w) ) <9(w)7 N 5|2>\/1 = W)

1 — Bw 1 — Bw 1 — Bw 1 — Bw
_ oy 118 < B 1ﬂl2>
€ Ey® (Z@En>,
n=1

by Lemma 2.1 (iii) we have

_ 2 _ 2
(V) 10(w) = p(:0(8) =2 o L <o<w> _ 9(5)“5)_

1-pfw @ 1— pw
Since
(V)" 10(w) L (w)— —5 wH?(w) = V(@(w)MwH2(w)>,
1— pw 1—pw

we may write g as

g=PL(V0(w) =aV 0(ui) bo(w) v 775 , a,beC. (3.1)

1 - pw 1—pw
Hence
I 08 00w
g=av I—Bw JraVl—Bw +b0( )1—311}’
so that
g= aae(w) —68) + ab(B)p(2) ! + bl (w) w= 5 (3.2)
1 — Bw 1 — Bw 1-pw’ ’

We have
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wh(w) = <w9(w)7 vi- |6|2> v1i- |57

1 — Bw 1 — fw
(- S

- 006 =L & (wotw) - oy =00

e bEy® < il @En) .
Hence

V(wo(u) = #0)e(:) 5 0 (wo(w) - s05) 1),
so that
V(wo(w)) = aws(w) + DL () o). (33)

1 — Bw

By (3.2), we have

(. ct() = ala (= o) ) -+ avipya( 12D wotw) )

1— pw 1-—pw
+ ba<0(w) 1“’__5530 : 9(w)>

_ 273 7 2 27 s, /1—16P
= ala|*(8 = BlOB)]7) + ala|*BlO(B)|" + bay -

= alaf’B + ba(l - |8).

and

<g, PBAIBE) o - a>> — aBOB)( ﬁl2)< o2) ol °‘>

1 — Bw 1-Bw 1-pw
_ .7 2 2 1*‘042
= aflo(B)" (1~ 161°) = EE

— a1 — |o2)Bl0(5)
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Since (g, V(wf(w))) = 0, by (3.3) we have
ala*B +ba(l — |*) + a(1 — [a*)Bl0(3)]* = 0. (3.4)
First, we study the case 8 = 0. Then trivially |3|/(1 + |8]) < |a/|* holds. By
(3.4), we have bae = 0, so b = 0. Hence g = aVO(w) = V(ab(w)), a # 0. Therefore
(V~1g)(w)/0(w) equals constant a and thus it is outer. Then by Theorem 2.4 (v),

the Beurling type theorem holds for F,, on M © zM.
Next, suppose that 8 # 0. By (3.4), we have

ba(1— 18 + aB(laf? + (1 = |o?)|0(8)?) = 0.
Hence

I
B(laf + (1= aP)6)R)

Therefore by (3.1), we have

) 51— |8P) o) o w-
gb(ﬁ(|a|2+(1—|a|2)|9(ﬁ)|2)vl—6w o )1—ﬁw>'

We may assume that b = 1. Then

_ —a(l - 1) bw) | g w—F
9= Gl + (1= )o@ 1-Bw T B
Hence
Vlg)(w) = =1 =180 b@w) | Loy 28

Bl + (1 —la)0B)) 1 - v a " "1-puw

~am (v (7 B(loP f|(21(1_|a|ﬁQ|;|)9(5)|2) )

Therefore (V ~1g)(w)/0(w) is an outer function if and only if

21— [8%)
‘ﬁ T Bl + (1 [aP)B)P)

- )
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and this is equivalent to
1B (laf? + (1 = [a*)I0(B)*) + lal* (1 = 18*) = |BI(laf” + (1 — af*)[0(B) ).
We may rewrite this inequality as
=1BI(L — |al*)|0(B)* + |af* > 0.

By Theorem 2.4, the Beurling type theorem holds for F,, on M & zM if and only if
the above inequality holds for every inner function 6(w). Since 0 < [6(3)|? < 1, the
Beurling type theorem holds for F,, on M ©zM if and only if —|3|(1—|a|?)+|al? >
0. This is equivalent to |3]/(1 + |3]) < |a|?. This completes the proof. O

By the proof of Theorem 3.4, we have the following.

THEOREM 3.5. Let ¢(z) be a nonconstant inner function with ¢(0) # 0,
Y(w) = (w— B)/(1 — Bw) with 0 < |B] < 1, and M = p(2)H? + p(w)H?. Let
a = ¢(0). Suppose that |a|? < |B|/(1+|8]|). Let 8(w) be an inner function. Then

[V(O(w)H?(w)) © Fu V(O(w)H*(w))] 0,0y = V(O(w) H? (w))
if and only if |6(B)[* < |of?/|B](1 — [af?).
By Theorem 3.1,
[(MezM)e Fy(Me M), =M zM

if and only if either “1/2 < |a]?” or “0 < |a|? < 1/2 and |8|/(1 + |8]) < |a]?”,
where o = ¢(0) and 3 = ¢(0). Note that M © zM = V (H?(w)).
Next, we shall study the case

[V(sz(w)) GFwV(wHQ(w))] V(wH?(w)).

MozM —
THEOREM 3.6.  Let ¢(z) be a nonconstant inner function with ¢(0) # 0,

Y(w) = (w—pF)/(1—pw) with |B] < 1, and M = @(2)H?+y(w)H?. Let a = (0).
Then

[V (wH?(w)) & FwV(wH2(w))}MezM = V(wH?*(w))

if and only if |31 /(1 +|BI%) < |af?.
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Proor. We have

MoezM=C-p(z) Nll—_ﬁ|i|2 + lw__ﬁiHQ(w).

Let

/1132 _
J e *U}”flw ,ﬂ for n > 1.

n —

1—Bw 1—pw

eo = p(2)

Then {e, }n>0 is an orthonormal basis for M & zM.
Let

1— |8 -
G U VIZIBE w8

0= n

1—pw ' 1—pw

Then we have E,, = C - ¢, for every n > 0. By Theorem 2.4, V(wH?(w)) is an
invariant subspace and

(M S 2M) o V(wH?*(w)) =C - (V).
We have
1= (1,&)e @ (1,e1)e1 = /1 — |B|?€ & (—Fer).

Note that Ag =1 and A,, = a for n > 1. By Lemma 2.1 (iii), we have

V)= VIm P (- Za). (35
Take g € V(wH?(w)) satisfying
V(wH?*(w)) © F,V(wH?*(w)) = C - g.
We have
Flge (MezM)o V(wH?*(w)) =C - (V*)7 .

Here we have F;g # 0. For, suppose that F;g = 0. Then
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geE(MS:zM)S Fy(M S zM) = V(H?*(w)) © V(wH?(w)),

so g = 0. This is a contradiction. Hence we may assume that

Frg=(V*) 1.
Then we may write
g = apep D are; D agzes.

Since g L (V*)~11, by (3.5) we have

apy/ 1-— ‘ﬁ|2 — gal =0.
We have

Fyeo = (Fyeo, eq)eq @ (Fuyeo, e1)er

— (1 B o, ——Yeo & VI = [BP{p(2), 1)
T

1-—pw 1
= Beo ® an/1 — [B]?eq,

F{Z@O = <F:)60, €0>60

= (€0, Beo ® ar/1 — |B]2er)eq
:Be(h

and

F{’;el = <F£;61, 60>€0

= (e1, Beq ® ay/1 — |B]2e1 )eq

=ay1—|B[?eo.

w w— 3
1—pBw’ 1-pw

We have Fye, = e,41 and Fjje, 41 = e, for n > 1. Then we have

F*

By (3.5) and (3.6),

wd = (an +ay1-— |m2a1)€o @ ageq.

e
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Bag +ay/1—|p2a; = /1|82 and az =—.

Therefore
B/ a1 s®) B
0 = , a1 = , Qg = ——.
B2 + laf?(1 = |5[%) 162 + |af>(1 = [5?) a
As a consequence, we have
(V') w) = ado & 01 &
_ 2 P w az W — I6]
(< vi-lar “1) a1—5w>@aw1—ﬁw
_arw az, -0
Cal- Bw o 1-— ﬁw
o w a azﬂ
- 1—6w<_a aw)
L (A B
1= Buw\[BP+ oA =18) "~ |af* o)
If 3 =0, then (V~1g)(w) = w/|al?>. By Theorem 2.4 (v), we get
[V(wH*(w)) © FyV(wH*(w))] 0, = V(wH? (w)).

Suppose that g # 0, then we have

1 w 7@ w E 17|ﬂ|2 @ —w
(V79)( )|a21—,3w( B (|ﬁ|2+|a|2(1—|5| )+| 2> >

Then (V~1g)(w)/w is an outer function if and only if

|a|2( 1|82 |ﬁ|)
5 BB+ JoPa—18P) T lap) ="

that is,

1 |pP2 18P _ 18]
BE+ a0 —187) | lal? = jaf?’
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Rewriting this, we have

la(1 = 181%) + B2 (1817 + e (1 = |81%)) = 1BI(18]% + [a*(1 = [8)),

and this is equivalent to |33/(1 + |3]®) < |a|®. By Theorem 2.4 (v), we get our
assertion. O

Let ¢(2) be a nonconstant inner function with ¢(0) # 0 and M = ¢(2)H? +
wH?. Then by Theorem 3.4, the Beurling type theorem holds for F,, on M © zM.

THEOREM 3.7.  Let ¢(z) be a nonconstant inner function with ©(0) # 0 and
M = ¢(2)H? + w?H?. Let

7o = sup{|6(0)[(|¢"(0)] — 16(0)|) : (w) is inmer}.

Then Yo(1 + 40) < |¢(0)|? if and only if the Beurling type theorem holds for F,
on M & zM.

PrOOF. We have
Ey=C-1¢C-w and E,=C- -w""' forn>1.

Let L be a nonzero invariant subspace of M © zM for F,,. By Theorem 2.4 (i),
there is an inner function f(w) such that L = V (8(w)H?(w)). Let

O(w) = (ap + arw) & Z a,w" € Z DE,,
n=2 n=0
where ag = 0(0) and a; = ¢'(0). We have
Vo(w) = p(2)(ap + a1w) @ (0 Zanw

V(wh(w)) = agp(z)w & p(0 Z anw™ T,

and

V (w*0(w)) = ¢(0) i anw"tF k> 2.
n=0
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Since f(w) L w*f(w) and wh(w) L w*O(w) for k > 2, we have VO(w) L
V(w*0(w)) and V(wh(w)) L V(wko (w)) for k > 2. These lead us that there
is a constant ¢ € C satisfying

Vo(w) 4+ ¢V (wh(w)) L Fy, L.

This is equivalent to V(w) + ¢V (wh(w)) L V(wh(w)), that is,

Goas + (0 2Zanan+1+c(|ao2+|so |Zan|2)

n=1
Since [|0]]2 = 1, 307 lan|* = 1 — |ag/®>. Since wh(w) L 6(w), we have
> Gnany1 = —apar. Hence

apar (1 — |o(0)]?)
*aol2 + [9(0)[2(1 — [ao|?)

9(0)8'(0)(1 — |2(0)[?)
160)2 + [0(0)P(1 ~16(0)12)’

Write g = VO(w) + ¢V (wb(w)). Then g € L & F,L. We have (V" lg)(w) =
O(w)(1 + cw). If || > 1, then (V~1g)(w)/8(w) is not outer, and in this case by
Theorem 2.4 (v) we have [L& Fy, Ll yo.n # L. If |e| < 1, then (V ~tg)(w)/0(w) is
outer, so [LOF,,L]apo.m = L. Therefore there is an inner function §(w) satisfying

0(0)[16"(0)I(1 — [(0)[*)

|
1< (3.7)
10(0)* + l(0)[*(1 = 6(0)|?)
if and only if the Beurling type theorem does not hold for F,, on M & zM.
We may rewrite condition (3.7) as
(16(0)[16"(0)] +1 = 6(0)[*) [ (0)[* < 16(0)[|¢"(0)] — [6(0)[. (3.8)

We note that 0 < |6(0)]|¢'(0)] + 1 — |6(0)|?, and |0(0)||¢'(0)] + 1 — |0(0)|?> = 0 if
and only if |#(0)| = 1. But when |#(0)| = 1, (3.8) does not hold.
So we have

0 < [6(0)[16"(0)] + 1 = 10(0)[.

Then we may rewrite (3.8) as
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2 _ _10O)I('(0)[ = 00)) 0
6" (O) = 1600)) +1 ~ v +1°

l(0)] (3.9)

If |¢(0)]? < 40/(70 + 1), then there exists an inner function 6(w) satisfying (3.9).
In this case, the Beurling type theorem does not hold for F, on M © zM. If
|©(0)]2 > v0/(70 + 1), then there are no inner functions f(w) satisfying (3.9). In
this case, the Beurling type theorem holds for F,, on M & zM. O

REMARK 3.8. Let f(w) = (w —9)/(1 — dw) for 0 < § < 1. Then 6(0) = —¢
and €’(0) = 1 — 2. Hence

0 > [0(0)I(1¢"(0)] = 10(0)]) = 6(1 — & — &%),

so we have 5/27 < ~,.
For an inner function (w), [6(0)]? 4 ]0'(0)|?> < 1. We have

V2-1
2 b

where the maximum attains at z = /2 — \@/2 andy = V2 + \/5/2 Thus we get

5/27 < 79 < (v2—1)/2. We note that there are no inner functions f(w) satisfying

10(0)] = V2 —+/2/2 and |0'(0)] = V2 ++/2/2. But we do not know the exact

value of ~p. O

Yo <max{z(y —z):2®+y*> < 1,2 >0,y >0} =

4. Remarks.

In Sections 2 and 3, we assumed that condition (4) holds, that is, ¢(0) # 0.
In this section, we study the case ¢((0) = 0. Write

wo(2) = 2%po(2), Lo >1, po(0) # 0.

We assume that conditions (1)—(3) hold. We use the same notations as the ones
in Section 2, so

M= S(pu(VH(2) © (b (w) (H(w) © &4 (w) H ().

First, we assume that (,(0) # 0 for every n > 0. Since H;ZOI Giz) =

vo(2)/pn(z), we may write ,(z) = ZKOpn(z),pn(O) # 0. We have po(z) =
Pn(2) 170 ¢j(2). Let
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oo

M=y S (pa(2)H?(2)) © ($n(w) (H? (w) © & (w) H (w))).

n=0

Then we have
LM = and AMO M) = MO 2 M.

If po(z) = Ao for \g € C with |X\g| = 1, we have p,,(2) = A, for A, € C with |\,| =
1. In this case, we have .# = H? and .# = z"0H?. Since .M © 2. = 2" H?(w),
the Beurling type theorem holds for F,. So, we assume that pg(z) is nonconstant.
Then {p,(2)}n>0 satisfies conditions (2) and (4), and the Beurling type theorem
holds for F,, on # © z.# if and only if the Beurling type theorem holds for F,,
on /Zlv o ZJZ/V

Next we assume that there exists a nonnegative integer ng such that ¢, (0) =
and (,(0) # 0 for every n with 0 < n < ng—1. Hence Ag = 1, A,, = H;L:_Ol ¢;(0) #
for 1 <n <ng,and A, =0 for n > ng+ 1. Let

0
0

H =Y Don(2)n(w) (H? (w) © Eu(w) HA (w)) = Y Bn(2)En
n=0

n=0

and
K = H2() & 1 (w) H2(w) = 3 G,
n=0

Then # C M S 2.4 .
Let 0 <n <ngand j >ng+ 1. Then we may write

(,0”(2) = Zzoqn(z)v Qn(o) 7é 0
and
pi(z) = 25q;(2), 0< Lz < <Ly, q;(0)#0.

Since ¢, (2)/¢;(2) is inner, ¢,(2)/q;(z) is also inner and we have

(oul2)s05(2)) = <”q” 1> o

q;(z)
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This shows that ¢, (2)H?(w) L ¢;(2)H?*(w). Hence

wpn(2)Ey, L Z ®p;(2)E;.

j=no+1

Since M © zM =Y, Dpn(2)En, we have Fy ” C . Let S, be the com-
pression operator of T, on K, that is Sy, = PxTy|k. For a subset E of %, let
[E].x be the closed linear span of {FXE : k > 0} in 2. Similarly, for E C K let
[E]x be the closed linear span of {S¥*E : k > 0} in K. We define the operator
V:K — . by V = V|g. As in Section 2, we have the following assertions.

PROPOSITION 4.1.
(i) VS, =F,V onK.
(i) Fyp X is dense in K if and only if 1 ¢ K.

It is known that f(w) is a cyclic vector for S,, in K if and only if the greatest
common divisor of the inner factor of f(w) and ¥n,+1(w) equals to 1 (see [13,

p.82)).

PRrROPOSITION 4.2.  Let L be a nonzero invariant subspace of % for F,.
Then there is an inner function 0(w) such that V¥pn,4+1(w)/0(w) is inner and

L = V (0(u) H (1) © Wy (w) H(w)).

Moreover Fy, L is dense in L if and only if (¢ny,+1/6)(0) # 0.

Note that 6(w)H?(w) &1, +1(w)H?(w) is an invariant subspace of K for S,,.
The following is the main result in this section.

THEOREM 4.3. The Beurling type theorem holds for F, on J if and only
if Yngr1(w) = cw® for some k > ng +1 and ¢ € C with |¢| = 1.

PROOF. Suppose that v,,11(w) # cw’ for every £ > 1 and ¢ € C with
lc| = 1. Write 9,41 (w) = w¥0(w), where k > 0 and #(w) is a nonconstant inner
function with 6(0) # 0. Let

L=V (wH*(w) & Pnei1(w)H*(w)).

By Proposition 4.2, L is an invariant subspace of ¢ for F,, and F,,L is dense in
L. Hence [L & FyL]» = {0} # L. Thus the Beurling type theorem does not hold
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for F,, on .#. Note that if ¢,,,11(w) = cw”, by condition (2) we have k > ng + 1.

Suppose that 1, +1(w) = cw”® for some k > ng + 1 and ¢ € C with |c| = 1.
Then 9;(w) = c;wh for some k; and ¢; € C with |¢;] = 1, 0 < j < ng + 1,
satisfying

k‘o:0<k1<k‘2<"'<kn0+1:kj.

Let L be a nonzero invariant subspace of %" for F,,. By Proposition 4.2, there is
an invariant subspace L; of K for S, satisfying L = V' L;. Since K = H?(w) ©
wk H?(w), we have

Li=C-w"eC-v"e .aC vt 0<m<k-1

Since L; © Sy, L1 = C - w™, we ha\@ VL, o }iw‘N/Ll = C - Vuw™. Since [L; ©
Swli]k = L1, we have [VL; © F,VLi]|» = VL;. Thus the Beurling theorem
holds. O

REMARK 4.4. Let g(w) be a nonconstant inner function and K = H?(w) &
q(w)H?*(w). Let S, be the compression operator on K. By the proof of Theorem
4.3, we see that the Beurling type theorem holds for S,, on K if and only if
q(w) = cw” for some k > 1 and ¢ € C with |c| = 1.
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